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FINAL STATE INTERACTIONS IN =~ MESIC DECAYS OF
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Final state interactions in the three and four body @~ mesic decays of hypernuclei are
considered and a general formalism is developed which enables calculation of the angular and
energy distribution. The distorted wave impulse approximation is applied to account for final
state interactions. Spin effects, many channels, Coulomb interaction are discussed in detail.
The paper contains only the derivation of the basic formulae, a comparison with experiment will
be given in the second part of this work.

1. Introduction

Since the early days of research on hypernuclear structure there has been parallel in-
terest {1}, {2] in hypernuclear @~ mesic decay processes. The decays by a~ emission are
known to usually undergo by several modes leading to multiparticle final states. The meas-
urements of the branching ratios for various decay modes, energy distributions and an-
gular correlations are extremely useful as they bear directly on the structure of hypernaclei.
In particular, valuable information is provided for the determination of the spin values for
hypernuclei (theoretical results are reviewed in Ref. [3] [4]; experimental daia may be found
in [5], [6], [TD)-

Owing to the simple form of the leading, effective A-decay interaction, the decay rate
is essentially given by the overlap between the A-hypernuclear wavefunction with the
multipasticle final state function, The comparison of the decay rate with experiment is thus
a test of our understanding of both — the effective AN and ANN forces which determine
the A~hypernuclear wavefunction, and the final state interactions beiween nuclear fragments
which may form various intermediate resonant states. A reliable evaluation of the decay
rate with realistic hypernuclear wavefunctions, taking into account all of the final state
interactions would be a very complicated many body problem of nuclear physies.

In order to cal:ulate the total m~decay rate various approximation schemes have been
developed in the literature. The first ingredient of the overlap integral, the A-hypernuclear
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wavefunction, has been represented in a simplified form, sutticiently flexible, with para-
meters adjusted to the known A binding energy. In the evaluation of the total rate the
summations over the final multinucleon states have been accomplished by means of the
closure approximation (for details the reader is referred to Refs [3], {4].

The second physical factor, the final state interactions have been accounted for by
several methods, by making use of the Waison theorem [8], by representing the interactions
in the form of a square well potential [9], by using the zero range approximation [10], or by
solving numerically the appropriate Schroedinger equation [11].

In this work we shall concentrate our attention on the decay spectra and no attempt
will be made to calculate the lifetimes and branching ratios for various decay modes. OQur
goal is to formulate a theory of final state interactions capable of explaining the observed
angular and energy distributions for three and four body decays, basing on an extremely
simple model of the decaying hypernuclei. We shall assume that the hypernucleus is a two
body (A+-core), or a three body (A+ two clusters) system, ignoring all of the intrinsic
structure of the ‘‘particles”. On the other hand, much effort has been made in order to
incorporate the final state interactions among the decay products. Our aim is to check how
much of the experimental spectra can be explained with a comparatively simple hyper-
nuclear wavefunction, but with all available information about the final state interaction
used as the input. In our model the different decay modes are described as the exit channels
of the reaction proton+core — anything.The pion, in these considerations, is regarded as
a noninteracting pariicle, what may be justisfied by the fact that the phase shifts for =P
scattering are small in the relevant energy range. In those cases when the core is not stable
and no information about P+ core reaction is available, we rely on the cluster model of the
initial state. The philosophy of the present approach is to reduce a genuine many body
problem to a few body problem which can be given a more refined treatment.

The hypernuclear wavefunction is assumed to be a product of correlation factors of
Gaussian shape with parameters adjusted to the binding energy. This form enables to carry
out analytically the overlap integrals even if the final state interaction is taken into account.

The final state wavefunction has the form of a distored wave. The analytic coniinuation
of the corresponding Schroedinger equation from the asymptotic region inwards has been
made by means of a number of auxiliary phenomenological poteutials. The solution in the
interaction region is essentially of the form of a plane wave multiplied by an enhancement
factor which carries the information about the interaction. This form is very advantegeous
in that it may be immediately generalized to a many channels situation. The iaclusion of
many exit channels does not introduce any additional complications in the wavetunction,
all changes being contained merely in the generalized enhancement factors. The enhance-
ment factors are determined by adjusting the appropriate scattering parameters to the
data.

In principle, the four body decay cannot be treated along the above described lines,
as that would require knowledge of the wavefunction describing a process of the type P+
core — three body state. Therefore, four body decays, if they compete with three body final
states, may be only crudely estimated by introducing absorption in the three body channel,
simulating the existence of four body channels.
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Some of the four body decay modes, however, are still feasible in the present approach.
We shall be concerned with those four body decays in which the core can be reasonably
well represented as a system of two clusters. The four body decay is interpreted as a disin-
tegration of the core into two clusters, caused by the decay of the boud A into the proton
and the pion. The clusters, assumed to be structureless particles, are likely to interact
strongly both with the final state proton, and among themselves. We shall develop an
approximation scheme in which all three pairs of secondary interactions can be accounted
for, including rescattering effects.

Spin effects will be considered with great care. The wavefunctions in the continuous
spectrum for particles with spins are constructed in the form of spin operators acting on
spinors. This formalism considerably simplifies various overlap integrals and spin summa-
tions, the latter being reduced to the standard calculations of traces.

In this paper we are going to present only our basic formulae, the detailed comparison
with experimeat will be given in the second part of this work.

2. Phase space and kinematics for three body decays

We shall consider three and four body decays. Let us remind then, at the begining,
that for a NV body decay 3 N-7 kinematical variables are required in order to provide a kine-
matically complete descripiion of the decay. The number 3 N-7 appears as follows. We
have 3 N momenta but not all are independent as the energy-momentum conservation yields
four constrains. Three further variables may always be eliminated by chosing the coordinate
system in a convenient way by performing a suitable rotation. Hence, for a three body decay
we have two variables, for a four body decay there are five variables, etc.

For a three body decay instead of the laboratory momenta P, P,, P it is convenient
to introduce vectors qq9, K, P defined as

_ Py — Py
92 = — mytm, (la)
ke; = [my(p, +Ps)—my +my) Pol/M, (1b)
P = p,+p;+Ps;s M = my+my+my, (1)

y» is the relative momentum of the pair (1,2), k4 is the momentum canonically conjugated
to the separation of particle 3 from the (1, 2) center of mass, and P is the total momentum
of the system. In the laboratory frame (overall center of mass) P = 0. The laboratory
momenta are expressed by ¢,, Ky and P as follows

. m m

P =4+ —m1+m2 k;+ 173 P, (22)
o my my

P~ G2t —m1 T - ks + M P, (2b)

m
Ps = —k,+ ﬁp_ (2c)



592

We shall also need the expressions for the total kinetic energy E,; and the relative (2,3)
momentum ¢yg

’ p? 1 1\gh 1 1\ k2 1 p?
Fyin = = {— + — + -+ + E, (3)

4 2m; my+m, n_z; 2 M

1=

. mg _ Mgy
T = My -ty T + [1 (my +my)(my+my) ] k. @)

Henceforth we shall write ¢ and k for q,, and k; respectively.

We will consider now the decay hypernucleus — core +P -+ (the core, the proton,
and the pion are labeled 1, 2 and 3, respectively) where the pion may need relativistic
treatment. Using relativistic kinematics for the pion, we obtain

T~%—2&_]

Bugn = -
k 2(mp~+m)

?*+T [1+

2phep

1 m
~——qg24+T 1|1 = , 5
2ﬂcpq * ( * mp+mc) ©)

where u,, is P-core reduced mass and T is pion kinetic energy,

1

= 2 2 ~
T = (k2+m?¥)t—m, S

k2 +0(k%). (6

The three body phase space volume element is
do(3) = O(Eyn—AE)d%p;, d’pyd®py
= §(Ey,;,— AE)d3kd3q, )

where AF is the energy released in the decay. The decay is, as we know, described by two
variables, and as our two kinematic variables we introduce s, the squared total energy of
the pion, and ¢, the squared coce recoil momentum

s = B4m2 = (T+m)?, (8a)

2
=] 2: e 5 b
t =pt (q+ m——— k) . (8b)

In terms of these variables the phase space volume element takes a very simple form
dp(3) == copst ds dtO{— Gs, t}], 9)

where the step function @ has been introduced for indi:ating the limits of integration.
The function G(s, t) and the limits of integration are obtained from the condition that the
cosine of the angle § between vectors g and k is less, or equal to uaity, i.e.,

m, 2 2 2gkm, 2
cos? fl = | t—qg?— ) R (=) <1
m;-+my i \Mmc+myp




593

The above condition is cast into the form

m N 2qkm, 2
=lt—g2—| —— ) 12| — { =25 <o,
Gl ) = [t 1 ( mc+mp) ’ ] ( mc+m,,) <0

where k2 and ¢® are functions of s

k2 =s—m2 (10)
2
2 o S—Mx . /—_“
q 2pep [AE Smetmy) Vs mﬂ)] . (11)

The condition G(s, t) = 0 gives the equition of the boundary curve in the (s, t) plane. A decay
event is represented as a point in the (s, £) plane and all of the events should fall in the region
of space surrounded by the boundary cusve G(s, t) = 0. This curve is quadratic in ¢ and
the solution of the equation Gis,t) = 0, for a fixed s, can be obtained immediately:

2
o=t = (o b 2
where k and ¢ are given by (10) and (11). Formula (12) gives the limits of integration over ¢.

It is somewhat more difficult to determine the integration limits over s because V}
enters the expression for g2 Although no simple analytic expression can be obtained for
the integration limits (s ) over s, the boundary curve is determined completely by folding
together the two pieces ¢.(s) and ¢_(s); thus, the integration limits s, may be read off from
the plot.

3. Plane wave impuls approximation (PWI1A)

Consider now the dynamics of the decay hypernucleus — core + Pz, The simplest
approximation one can make is to assume that the decay of the A-pariicle is quasifree, which
differs from the free A decay by that the A is not stationary but has momentum distribution
appropriate for the hypernuclear bound state. The core, which is assumed to be undistorted
by the A, is only a spectator during the decay; the decay products are assumed to move
freely. The effective A decay interaction leads to the hypernucleus decay matrix element

Mt = P(E) [ YA(Ire—ra)) (S +p"i'q_‘lff) gibe- o it ve gipme e

o A

mor.-+ mprp -+ myr,
Me-Mp -+ My

X O(ra—1p)d(ra—7x)0 ( )d”’Ad3fcd3fpd3fm (13)
where P(*) are spin projection operators, projecting the two possible spin values of the
hypernucleus Jy+% (Jy — spin of the core nucleus), y 5 is the s-state wavefunction of the
A-core relative motion, S and P are the s and p-wave amplitudes of the free A decay?, g, is

1 The PJS ratio is P/S= 0.384-0.01 and the relative phase is consistent with zero (¢f. Ref. [14]).
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the relative wp momentum for a free A decay, and q_, is the relative 7p momentum. The
first two delta factors are necessary since the weak interaction is of the contact type. The
third delta insures us that we are performing the calculation in the overall c.m. In order
to simplify the integral in (13) it is a customary procedure to express ¢, in terms of ¢ and k
and neglect all terms of order of m_/m,,. From formula (4) one has then q,, ~ k, which means
that in formula (13) terms (m_/m,)Vy, can be neglected, and the decay matrix element may
be taken out of the integral. On performing the trivial integrations with delta functions
one has

ME = Pl) (5 +P1q._k) fwz(r)eiq r eim" c+m;k~,d3r' (14)
A

The overlap intergral in the above expression will be denoted by Q” and may be written as

Q) = [ya(ne®dr = yp(Ip.)), (15)

where P, is the core recoil momentum (cf. {2a)). Having in mind Eq. (8b), we see that in
terms of PWIA the overlap integral (15) depends only on ¢ and does not depend on s. The
integral (15) is equal to the Fourier transform of the A wavetunction in the hypernucleus.
The partial decay rate 7% is obtained by squaring the modulus of .#* and summing over
spins

9t st @[—GC S|2 pzﬁ O)(py]2
57 = comst 6 (=G 0] [S[#+1PP 5 | [@@0 (16)
Since the decay rate, in this approximation, does not make any distinction between the initial
spin being Jy—$%, or Jy+%, we shall drop the + labels. As seen from formula (16), the rate
is a product of three factors, the kinematical factor @[—G(s, t)], the A decay factor, and
the core momentum distribution factor. This product form is typical for PWIA. The inte-
gration over s can be easily carried out and one arrives at the expression

54 (1)
2
%f = const [ [\.9|2+1P\2 2 qz’"’“} ds|QO(t)}2 = const K(2) |QO(5)P,
. A
s_(1)

where the integral over s has been abbreviated by K(z). With real Q(¢) is also real. Solving
the above equation for Q(t) one can compare with experiment the expression

S 1 or|t
(0) : s S ——
Qt) = const [K(z) é’t] .

For all reasonable wavefunctions, Q®(¢) should be a decreasing function of ¢, and any
deviation from this behaviour (typically a local maximum) should be ascribed to a strong,
final siate interiction.

For p-shell hypernuclei, in the first approximation, Q) will given by a unitorm
function — the same for all core nuclei from *He up to 0. This uniformity property follows
from the uniformity of the A wavefunction which, as pointed out in Ref. [14], varies little
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with increasing mass number A, due to two opposing trends tending to compensate each
other. Assuming that the A particle feels only the mean potential well provided by the core,
the depth of the well can be regarded nearly constant and the range increases with 4. It is
argued in Ref. [12] that the increase of the range has the effect to push p,(r) towards larger
values of r, but this tendency is largely reduced by the increase of the A binding energy B,
with A, which causes sharp fall-off of g, in the region where the A-core potential goes to
zero. Numerically calculated wavefunctions for hypernuclei with A4 ranging from 4 =8
to A = 13 obtained by Gal et al. [12] show that these two effects nearly cancel each other
and a single Gaussian term

1
wa(r) = const exp (- 5 Ar2> (17a)
(A == 0.33 fm~2) provides a fair approximation, and a two-term Gaussian form
a(r) = const (ye™ ¥h g ¥ (17b)

(A, = 0.495 fm?, 1, = 0.165{fm?, y = 3.0) appears to be an excellent approximation of
the mean A wavefunction.

Another simple approximation for 9, can be obtained by assuming that the /-core
potential is of Fermi shape (Saxon-Woods potential), viz.,

-1
Va.core(r) = —D [1 +exp (’—;—C)] , (18)

where ¢ = rgd}, D = 27-35MeV, r = 1.1-1.3 fm, and a = 0.54-0.68 fm.

An approximate solution of the Sechroedinger equation with the potential (18), for
{ = 0, can be obtained by introducing an equivalent square well potential [13] of depth D
and a variable range R, chosen in such a way that the binding energy is always exactly equal
to that inferred from the potential (18). The range R is then a function of the
binding energy B,,

R = c—ad(B,),
where
1 . .
A(By) = F [2arg (1 +n+i&)—arg I' (1 +2i8)],
with £2 = 2ua? (D ~B,), n* = 2ua®B, and g is the A-core reduced mass.

The wavefunction 1, is then approximated by the expression appropriate for the
equivalent square well potential

rya(r) =
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1
here N = | L
where [27_[ T7R

The overlap integral Q®(¢) calculated with the wavefunctions (17a), (17b) and (17¢)
is given, respectively, by the expressions (18a), (18b) and (18c)

b3
] for y, normalized as [ 924mr2dr = 1.

t

QOt) = const ¢ %, (18a)

t t
Q(t) = const (ye 2h +e 2h), (18b)

O(F) — cons (&)a) sin (/¢ R) cos (ERJa)—/t sin(£R/a) cos (/¢ R)
e tV { i (Efa)®

. $in(ER/a)[(n/a) sin (/& Rv+ V¢ cos (t R)]
t+(n/a)?

(18¢)

With sufficiently large statistics also expression (16) can be compared with experiment.
In the absence of strong final state interactions, for fixed core recoil (¢ == const) the rate
should be a known linear function of s. This test is particularl yconvenient since no know-
ledge of p, is required.

4. Final state interactions (FSI)

If the final state proton interacts strongly with the core nucleus in the expression for
the overlap integral (14) the free relative motion represented by the plane wave exp (iq - 7)
should be replaced by the exact wavefunction u,(r) which takes into account the proton-
-core interaction. The function u,(r) is a solution of the Schroedinger equation

_i|72+V ) (r)——iz (r
2‘14 p-core\7) | Uq = 2/1, Ug ),

where the p-core potential V.

p-core
tion of the scattering problem, it has the asymptotic behaviour

u (1) — LT (1)r), (19)

will be, in general, spin dependent. Since u,(r) is the solu-

where T'is the scattering amplitude and can be, as usual, wriiten in terms of phase shifts
and mixing parameters. The asymptotic form of u,(r) may be used as an approximate
expression for u,(r) for all #’s. This approximation, used for calculating the overlap integral,
is known as the zero range approximation, or, if the overlap integral is written in momentum
space, as the on-shell approximation. The overlap integral will be then a sum of two terms,
the PWIA: term (15), and a correction for FSI proportional to T. The phase shifts may be
taken from experiment and the correction term is completely determined.

It is clear that the overlap integral will in this case be a function of both variables, s
and ¢. The rate will contain, besides the PWIA term, an interference term proportional to 7.
This term is s-dependent and can strongly modify the ¢ spectrum (after integrating over s).
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The interference term may, e.g. produce a maximum in the ¢ spectrum, or cause an increase
of the rate for large £. Although the zero range approximation leads to piredictions which
seem to be quite reasonable, it is, in general, not very accurate. The wavefunction y, damps
the integral stiongly fo. large r and, in fact, the contribution from the asymptotiz region
where formula (19) is valid, is negligible. The largest contribution comes from the region of
small 7, i.e. from the region where the asymptotic expression is not yec applicable. The zero
range approxima.ion would work if the range of the proton-core force were much smaller
than the dimension of the hypernucleus. Since they are roughly equal, the zero range approxi-
mation is not likely to be correct. We shall work out another approximation based on the
assumption that the ranges of the A-core and p-core forces are nearly equal, as the correspond-
ing poteatials essentially follow the nucleon distribution within the core nucleus. This poiat
of view is in the spirit of the optical model approach.

Spin complications will be considered in the next section and now, for simplicity, we
shall assume that the p-core potential does not depend on spin, but may be I dependent.
In other words, we introduce as many different potentials, as the number of phase shifts
which give a non-negligible contribution in the energy range considered. In practice, it
should be sufficient to neglect all phase shifts for I > 2, though there is no difficulty to
take more partial waves into account.

Adding and subtracting from w,(r) the plane wave e"0" we define a new function u,(1)

ug(r) = eiq"+[uq(1')—ei""] = eiq"+ﬂq(1‘). (20)

Expanding into spherical harmonics, one has
ug(¥r) = 4n IZ ilf; () Y1) Yooy (@5 (21a)
(1) = 4 3 0 Yl Vind). (21b)

f{r) = fin—ijfan), (22)

where f(r) is the solutions of the radial Schroedinger equation and the asymptotic behaviour
of fi(r) is
filr) = jilgr) +ih{ D (gr)e™ sin 8, (23)

where 8, is the I-th wave phase shift, j,(gr) and h{~)(gr) are spherical Bessel and Hankel
funcrions normalized as in Ref. [18]. Notice, that the expansion for zzq('r), in contrast to
that for u,(r), contains only a few terms since begining with some I > [, all the phase
shifts become negligible and fl.(r) a2 (. In order to be able to analytically perform the inte-
gration over r in the overlap integral, we find it practical to approximate the interacion by
a number of square well potentials with depths D, and ranges R,, adjusted to reproduce the
phase shifts. The parameters D, and R; for [ =0, 1, 2, ... are determined by fitting the
experimental I-th phase shift using the expression

qj (g R ) — wiji(g Ry)j (i Ry)

t 6 = - 7 T Y2 ?
me qni(qRY)ji(xaRy) — e gRYjE (i Ry)

(24)
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where »? = q2+2uD), n)(gr) is spherical the Neuman function (c¢f. Ref. [18]), and differen-
tiation is with respect to the argument.
The analytic expression fy(r) is readily obtained

£i(r) = jirar) [ ji(@R) ;;(t,jlrjlz gz n(gRy) ] cos e®, <R, (25a)
fir) = Ljlqr) +tan d;n,(qr)] cos 61‘3{5', r>R,. (25b)
The amplitude which multiplies ji(%,y) may be regarded as an enhancement factor. For
gR;> 1 this factor becomes essentially the Watson [15] factor Si;i’iias
The overlap integral
Q = | pa()ug®)e™ *ddr, o k' = ;%”_L; k, (26)

using (20), may be written as a sum of two terms

Q= Q+0%, 27
where Q© is given by the PWIA expression (15) and QW is the correction for FSI

lm ax

QW = [ Yi(u )™ "dy = 3 21+1)4mc{IP, (cos O), (28)
1=0
where
4 = [ YRtk s (20)

Since the square of the overlap integral ¢ enters the integrand in the integration over s
and ¢ in the expression for the partial rate, it is desirable io have an analytic formula for Q.
This can be achieved by representing 9, as a superposition of Gaussians and taking for fy(r)
the expression (25a). In fact, for r > R; we should have used expression (25b), but due to
the sharp fall-off of g, the contribution from the region r > R, is small and the error intro-
duced by using formula (25a) will be also small. This approximation will be frequently
employed in subsequent sections and may be called the distorted wave impulse approximation
(DWIA). The radial overlap integrals ¢;, using DWIA and Gaussian y,, are superpositions
of integrals of the form

e 1 s 2102\  fab

5. Spin effects

In this section we will generalize the previous results by taking spin effects into account.
The plane wave e will be replaced by a suitable opecator u(S, q,7) acting on spinors
describing the spins of the core and the proton. If a system of two colliding particles has
the total spin S, the wavefunction with definite momentum q is

Vade ) =uS. g = B SAOTY L )Y Dtne  GD
s L, My,
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where xf,s is the (2S+1) component spinor, f; are the radial wavefunctions with definite
JLS, IT*S is the projection operator A; |JMLS){JMLS| which acting on YLmL(I)xzspmjects

a state with definite JLS. This operator can be written as [16]

oS- L—0()
= om—ag) (32)

where Q(j) = 3[j(G-+1)—L(L+1)—S(S+1)], and L is the angular momentum operator
L=—irx o acting on the spherical harmonics YLML (r) in formula (31).

It is evident from formula (32) that the operator /TS is a polynomial of order 2S in
S - L, and therefore the operator u(S, g, ¥} defined by expression (31) will also be a polyno-
mial and may be written as

xR

w8, q, 1) =) i'lglg) +&P (S - L+gP(gn(S- L)? + ...

=0

+ g HV(gN(S - L)2S|P,(q - 7)
= @W(q,r) (S L)V (q, r)+(S- L)20V(q, r)+... (S- L)*SdCS+ (g, r), (33)

where the functions g{ are superpositions of f{ functions. The functions gg) for =141,

R

have been explicitly evaluated in Appendix A.

Although the form (33) of the wavefunction may have appeared rather complicated
at first sight, it proves to be very convenient for two reasons. The first is that the spin summa-
tions of the products of spin dependent expressions are quite simple and can be accomplished
by taking the traces of spin operators. The second advantage lies with the operator L acting
on PL(@ - 7). The differentiation over 7 may be switched to differentiation over fl, viz.,

LPyG - #) = —iF- GPYar) = 1§ X 53 Pr@- F) = —LoPul-9).
Thus, in expression (33) the operator S - L is replaced by —S L, and can be eventually
taken out of the overlap integral.

Formula (33) is easily generalized to the case when the colliding particles have spins S,
and S,, respectively. The corresponding operator w(S,, S,, q,r) which acts on the direct
products of spinors is a sum of terms of the form (33), each multiplied by spin projection
operator IT55:S projecting the total spin S:

AR
WSy Sy g ¥ = 3 u(S, q, NIISSS, (34)

S = (Si—S:

In particular, for S, = 4 and S, = J, we have

w ( % 6,Jdn. q, r) = [OY+(I- L)PO + ...+ (I - L)V +10@+1]P+ 4

L[N - LY®D + ...+ (I - LX81EN] P) = u, PH) u_PO), (35)
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where I = Jy, +1}0, the & sign refers to I = Jyy+4, and P™) are the spin projection operators

In+lde-dy In—0-Jdxn
P(+) = 5 P(_) _ g
2Jn+1 a1 (36)
Similarly as in the preceding section, we add and deduct from w(S;, S,, ¢, 1) the plane
wave €7
w(S), Sy, q, ) = M 4 u, P 4 u_PO), (37)

The functions u¥ are obtained from u_ by replacing f4 — f1 = f1—j;.

The appearance of 25+1 functions @O, @@, ..., S reflects the presence of spin-
-orbit splitting. For central forces we have 25+1 fold degeneracy and only @@ will be
different from zero. The functions @™ for n > 1 may be regarded as correciions due to
spin-orbit forces which vanish if we are to neglec. spin-ovbi- interaction.

Consider now a thiee body decay rate (27) corrected for FSI. The transition matrix
element is

M*E = const PF)DQ, (38)
where D = S+ P o-k , and
ga
Q = [wr0)e" "o, Iy, q, v)d®r. 39
Inserting expression (37) for w(de, Jy;, q, r) enables the overlap integral (39) to be written as
Q = QP +Q_PO), (40)

Q. = [ ¥H0E ull, g, ) d.

The transition rate is obtained by averaging |.#=|2 over spins

P27
== +12
515 const E | A £

spin
= const Try, tr, [PEDQQIDIP)]
= const Tryy tro [DIPHD(Q Q1 PH) +Q_QLPO)]. 41)

With two independent vectors ¢ and K there is no pseudoscalar quantity available and,
therefore, only scalars can survive spin summation. Thus,

Pop Jo E\?
77 = ot {[ISI2+\Pi2 (?;:{ ) ] Try tra [PEQ, Q1]+

2 E\? . .
*+ 2 N+ 1 [P‘Z (&I) Trpy trs [(In+1+0 - qJN * Q)P(_)Q—QI+

+(—JIn+o - qdn- Q)P‘+)Q+QI]}~ (42)

In constrast to formula (16), this expression does make a distinction between the initial spin
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being Jy+4%, or Jy—2. In particular, neglecting spin corrections due to spin-orbit inter-

action in Q,, one has
2t
© r _ const 41152 2
5.5, = const {DS’{ + |P| ( )

4 7 I
v 5z e () te-i— o) )

S eona {[ s riee ()] 10

L N S i A
—g"_““zy‘wl P (a) (iQ—12—3Q+§2)}- (43b)

@42+

Writting @, as
0 1
0. = 00+ 0, )
one can calculate explicitly the FSI corrections to PWIA. The dependence on s and ¢ is
now, in general, quite complicated and does not factorize. The expressions for the + rates
will be different provided that the p-core forces are spin dependent.
Another example where the trace calculations are also very simple is the case of a spinless

core. The spin of the hyperaucleus in then § and the overlap integral Q) can be written as
(¢f. Appendix A)

Q= Q4= QV+QV+(—1e- L)Q?, (44)
QY = [ya(Ne*"d(q, T)d?.

The last tesm in (44) can be further simplified

1 w1 [0 1. do®
— @) =i ¢ — 2 =i — 0 - ¢
50 LQ i (qXQQ)Q izo (qxk) 5=

On evaluating the traces the decay rate is
d2 ' 2 , (2)
R, const [[S[Z—}— |P|? —k— QO+ QM2 + :in?2 O } dQ 1
Jtds qA !

where Q© is given by the PWIA expression (15) and the FSI corrections Q% and Q® when
expanded in Legendre polynomials are of the form

Lmax

QW = da > (—)EPP, (c0s 0), i =1,2;

L=0

& = (L41) [ yR0) B ar)dr +



602

+ wa,t(r)jL(k'r)ﬁ(qr)err,

of) = fw VRO KDL ()~ (gr))redr.

Using the DWIA and Gaussian 9, one can easily obtain analytic expressions for the radial
integrals (cf. formula (30)).

6. Many-channel case

In ths section we shall discuss a many-channel three body decay situation. We will
consider all two body final states which may be reached from the initial state P+core and
are energetically accessible. For NV open channels, both, the functions @), and the operator w
from the preceding section, become matrices in the channel space. To simplify matters
let us, for the time being, disregard spin effects. We define the final state wavefunction v,
j=2,3,..., N, as a solution of the many channel Schroedinger equation. Separating out
the angular part, one obtains the radial matrix equatlion

(@ds)y; + 20 2V jp, = 0, (45)

where

2 -t
PR N (G2

—dr T rdr 2
Va; = Vij(l—(s,-j),

= pj 2V
%,(0) =0,

p; and u; are j-th channel momentum and reduced mass, and Vj; is a potential matrix
which may, in general, be ! dependent. Similarly as before we assume that V;; are square
wells of depths 7; and equal ranges in all channels. To simplify notation we shal drop the
index I

The solution which vanishes at the origin is

wn = nj(}'r)' (4'())
Inserting (46) into (45) one is left with a set of Jinear, homogeneous equations for 4,
(2—20A, + > 2u, VA, =0, 47

and the condition for the existence of nontrivial solutions for A4, yields the equation for 4
Det |[(¢,—2%) 8, + 241,y Vel | = 0. (48)

Denoting the roots of Eq. (48) by 4,, 45, ..., A5, a general solution , can be written as

N
Yo = 2, AFj(Ar). (49)
@=1
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We have N2 constants A%, which are determined as follows. First, we divide 45 into diagonal

and off-diagonal parts
Al = C,, A% = E"C,, m # n.

The amplitudes C, can be calculated from the boundary condition at infinity, and the off-
-diagonal elements E™ are readily obtained from the requirement that (49) is a solution of (45).
One obtains for E7 a set of linear, inhomogeneous equations

(= AV Ep + 2 2u, Vo BT = =200,V s 1 # .
sFEm
For r> R we have N different column matrices »{® 1o represent the solutions with the
ingoing wave in channel &, where @ = 1,2, 3, ..., N. The asymptotic form of wff) is

9 = Vool i(par)ns + ik o) Trals 0

where g, = p,p, and T,_is the reduced 7' matrix for the & — n transition with such a norma-
lization that the cross-section for the & — n process is

dn
ola — n) = — | Tnel2
(a —n) 72 [ Trel

Matching (49) and (50) at r = R one has N equations for the N constants Cy. The solutions
are functions of T, and, therefore, the amplitudes C, may be regarded as many channel
generalizations of the enhancement factor introduced in Section 4. Explicit calculadon for
a two channel case is presented in Appendix B. For a given partial wave [, we have
IN(N+1)+1 parameters V; and R) to be fitted from the scattering data.

7. Coulomb interaction

It is not difficult to extend the formalism introduced in the preceding sections to
include the Coulomb final state interaction. To this end we assume that in the region where
the strong interaciion is operative we can neglect the Coulomb interaction. In the outer
region the plane wave ought to be replaced by the appropriate Coulomb wavefunction. Let
Fi(gr) and G,(gr) be, respectively, the regular and irregular solutions of the radial Schroedin-
ger equation with the Coulomb potential (the particles are assumed to have no spatial extension,
and the charges are Z,e? and Z,e?). We adopt here the definitions and normalizations of F;
and G as in Ref. [17]. It is convenient to take linear combinations of F,and G, and construct
the following functions

x(qr) = [F{(qr) cos 0,—G(qr) sin o} (1/gr),
vi(qr) = [F){qr) sin 0,4 G(gr) cos a;] (1/gr),
#*Ngr) = [F{(qr) £iG(qn]e**(1/gr),

where o, is the Coulomb phase shift o; = arg (I +1+in), 5 = Z,Z,au/q, « is the fine struc-
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ture constant, and u is the reduced mass. In the absence of the Coulomb interaction the func-
tions x, y;, 2%) go over into ji, ny, h{*), respectively. Theasymptotic behaviour of x,, y,, 2 is

x4(gr) — sin (qr—y—;—l —nln 2qr) (1/qr),

yi(qr) — cos (qr—- %l —nln 2qr) 1/qr),

z{£Ngr) > Liexp [:F i <qr— Zzz—l —7nln 2qr>:| 1/gn).

In the region where the strong interaction is no longer present and the particles interact
only via the Coulomb potential, the radial solution of the Schroedinger equation is

filar) = x(gr) + § (¥ H 1)z gr).
The above expression is a generalization of formula (23) and may be written as
Slq) = x(qr)+ 5 (¥ —1)a{(gr) + § e* (> —1)z{")(gr).

In the asymptotic region the first term will represent the ingoing distoited wave, whereas
the second and third terms will represent the cutgoing wave scatteced by the Coulomb and
nuclear potential respectively.

The prescription for accounting for the Coulomb interaction is the following. Change 9,
into d;+ 0}, and change the functions j;, ny, /L§i) into x, ¥, z}i), respectively. For example,
the radial wave function (25a), which has been used for evaluating the overlap integral, in
the presence of the Coulomb interaction has the form

x{gRy) +1an (6;+a))yi{(gR)
J1uRy)

Hence, the inclusion of the Coulomb final state interaction changes merely the enhancement
factors and does not lead to any complications.

Jilgr) = ji(zr)

eidtTiot pog (6l+01)-

8. Four body kinematics and phase space

As we have already mentioned, there are five independent kinematical variables to
provide a complete description of a four body decay. We find it convenient to define two sets
of momenta in the overall c.m. system. The first set is suitable for situations where one is
willing to account for the interaction of only one pair of particles, and to treat the two
remaining ones as free. The second set will be useful when one particle is assumed to move
freely and the three remaining particles interact among themselves. In both cases we have
three independent momenta (after making use of momentum conservation) and a particular
choice of the axes leaves us eventually with five kinematical variables, such as angles
and energies.



605

Set I. Let the only interacting particles be 1 and 2. As the independent momenta we
take q,,, the relative momentum of 1 and 2; g, the relative momentum of 3 and 4; and ¢,
the relative momentum of both pairs. They are expressed in terms of the laboratory mo-
menta as follows

@y = MoPr— Py _ P33P,
12 mytmy, mytm,
L)
q =P tP:= —Ps—
The total kinetic energy is
2
Ekin = Z 2,; == T)Q+T34+ T,,
gt i
I L,
» Tay = 5— G, 52
Ths 20a qre. 13=5 n g34 (52)

T -——,1_[ 1 + 1 2 ..__,17‘ 2
T2 UmAmy, | mimg | T T 2upa

We take our Z axis along the direction of g, and the XZ plane is identical with the q,q,,)
plane. With this choice three angles are needed to determine the directions §, @y, Qag» Viz-s

(1, = [sin 0,5, 0, cos O],
q=1[0,0,1], (53)
Qss = [cos @ sin @y, sin @ sin Oy, cos Oy
The angle @ is then the angle between normals to the (qy,,q) and (¢34, q) planes.

As the independent kinematical variables one can take any two of the relative energies
and the three angles. The phase space volume element is

do(4) = d3qy, dqay dq O(Ey,

kin

—AE)
= const [Ty Tgy TN 8 (Tyg+Tas + T.— AE) dTyy dTy dT, d cos Oy dQyy. (54)

Set I Let particle 4 be the noninteracting one. As independent momenta we take Py,
q12, and the momentum canonically conjugated with the separation of particle 3 from
the {1,2) center of mass. The transition from Set I to Set Il is accomplished by usiag the
following relations:

Qo = — my Jeo m3(m1~f-m2+m3+m4)
3 mg+my 0 (mg+mg)(my +my+my)
q = Fk,— mytmy P (55)

My + My -+ Mg
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The total kinetic energy is
Ekin = I3+ T12,3 + lea,aa

where

1 1 1 1
Tos =+ [ + —] K3 K3,

2 Lmy+my 3 2103
1 1 T, 1
Tons = 5 [ o * ) = g ©0

As the kinematic variables use may be made of any two of the three relative energies and the
three angles defined as

G2 = [sin 9y, 0, cos ¥y,],
ks =10,0,1], 67)
P, = [cos @, sin O, sin @, sin O, cos O].
The phase space volume element is
do(4) = const [T}, Tios Tma,:x]*dTm dTyp5 dT 954 X

X (T + T12,3 +Tyg3 4~ AE) d cos Gy, d82. (58)

9. Four body decay rate — cluster model approach

In this section we shall consider a four body decay of a hypernucleus: hypernucleus
— X+ Y+ P+, where X and Y may be either light nuclei or nucleons. We shall assume
that the decay of the A particle causes a disintegration of the core nucleus into the clusters
X and Y. In terms of the cluster model the initial state is viewed as a three body system
(XYA) characterized by the wavefunction v, which depends upon the three relative separa-
tions. The position vectors of the clusters and the A will be denoted ry, 7, and 7, respectiv-
ely, and the proton and the pion will be labeled 3 and 4. The transiion matrix element for
the four body decay in terms of PWIA is

ME = P=) (5 +p7 I q‘”) Q, (59)
qa
" 4
QO = [ pr(r;, vy, 1y) exp (i erj- P)) 6 (ry—ry) X
=

4
_Z mir;
X 8(ra—19)6 | “o—— | d3rydPryd®rydrydira. (60)

m;
i=1



607

Introducing @ — the separation vector of particle 3 relative to the (1, 2) center of mass —
and performing the trivial integrations one obtains for Q¥ the following expression:

Q) = [yi(r, @) ¢ €7 d¥rd = y}(q2r @)- (61)

Hence, similarly as for a three body decay, the overlap integral (61) is a (double) Fourier
transform of y,. The rate does not depend on spin addition and may be written as

93y = const [lsl2+lpl2 (934) ] l q q)i %
O T100 T34 cos Oy, Yl
XT3 AE—Tyo—To) Toslt. (62)

In general, the right hand side will depend on 0, except for those cases when in the initial
state che relative motion allows only s-states. The two other angles (g and 6,,) are redudant
and have been integrated out in (62).

The next step in incorporating final state interactions, is to assume that the two clus-
ters may interact, whereas both the proton and the pion do not. The overlap integral (60)
is then generalized by replacing the exponential ‘™" in the integrand of formula (60) by the
corresponding wavefunction representing the relative motion of the interacting clusters.
In this approximation also the rate does not depend on @ and @y provided the clusters are
spinless. If at least one of the clusters has non zero spin the rate may contain pseudoscalar
terms proportional to ¢ - (@12 X Qss)- As is well known, the parity nonconservation in the A
decay allows both the scalars and the pseudoscalars to appear in the expression for the par-
tial rate. In a three body decay, in contrast with the present situation, we simply did not
have a pseudoscalar at our disposal. In a four body decay there are three independent vectors
available and one can construct a pseudoscalar which can survive spin summations. The
overlap integrals are functions of Tj,, Ty, and cos 0. Thcy do not depend on (}34 and the
only place where g5, appears is the pseudoscalar quantity ¢ - (15X @s). Since the latter
expression is linear in q34 it must vanish after integrating over df2;,. As we shall see later
on, the pseudoscalar correlation terms are sensitive to the initial spin of the system and
supply a useful test for the spin determination of the hypernuclei.

Usually, it should be expected that the proton is likely 1o interact with the clusters and,
therefore the above approximation is not well justified. It is, however, a good starting point
for a more adequate treatment in which only the pion is assumed o move freely, the re-
maining three particles interacting among themselves. Consider then a three particle sys-
tem, labeled 1,2, 3, embedded in a four particle system with noninteracting particle 4.
For the three body system we can write the Schroedinger equation

1 ., 1, 1 1 ' my
— e __— PR V o1
[ 2uy5 Ve 2p42,3 Ve~ 2 m1—|—m2+m Vi ) Ve ( ;g 1 ¢ " *

f I 2 2
my _ gie |, k5 1«
a ( zg+ my -+ 1y ; )] Fir e, By) = [21‘12 21,3 * 2 m1+m{2~‘—m3] #r e By
(63)

where P, and R, are the total momentum and center of mass vectors, respectively.
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3 3 3
3:3219{:—‘?4’1{3:2"‘:"/ lm’i‘
i=1

i=1

fe==

Our approximatjon consists in representing ¥ as

P(r, o, R)) ~ o' FFe Ug, (1) Wy g (0), (64)
where u, () and w, (@) are solutions of the equations
1 g3
— ~—~V?.’V.r—}u"r:——uu'r, 65
[ 2/112 h 12( )_ q.( ) 2y12 q ( ) ( )
[ L Ve @) | e © = 5 ) (66)
- ., TV effi& b5 ste = 5 Wiy, q:,
2840, ¢ o 12 . 2193 .

where

Uq,,(P)dPr.

r -
Vest(0, q12) = / u;u(?“) [V23 ( ie_ LT') +Va < ]Q“F _Ma T‘ )

. my +my | my+my

In practice, we shall approximate ¥ by an energy independent local potential F(g) of

a given shape, adjusted to fit the scattering or binding energy data for a 3+4(1,2) system.

In other words, we shall apply DWIA twice, for u, (), and for w,,_(g). To emphasize the

fact that Vg has been replaced by F; we shall consequently write w,, (o) instead of 1, (o).
The overlap integral takes the form

Q= f pa(r, 0) e""""uq(r) w,(0) d®rd®,

where p = Mwl_
my+ Mg+ my
respectively.

P, and we have discarded the subscript 1,2 and 3 for ¢ and F,

In order to simplify the discussion, let us, for the time being, ignore the spin complica-
tions. Writing u,(r) and w,(e) as

u (r) = ug’)('r) —|—uf11) (r) = eiq"+[uq(1')—ei""], (68)
wi(e) = wd(e) +uwiP(e) = *+ [wy(e)— ™, (69)
the overlap integral may be written in the form
Q = QY 4 QA | QIO ofL.1] (70)
where
QU = [ pi(r, @)e™ ™ ud(r) wil(e) d*rd%. (71

The first term Q% is the PWIA expression (61) where all final state interactions are neglec-
ted, the second term QM represents the correction for the cluster-cluster interaction, the
third term Q%Y represents the interaction of the proton with both clusters, and the fourth
term QW is a rescattering correction.
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The angular integration in (71) can be easily performed using the expansions in spherical

harmonics,
valr ) = 4 33 L, 0) Y iad®) Yiar (o), (72)
ugr) = 4 37 it f1(qr) Y p(P) Y@ (73)
w, (0) = 4n§ iLF, (ko) Yyp(0) Yiuk). (74)

For the overlap integral (71) one obtains the following expression:

Qb =1 W, (q.p, k), (75)

LA

where

10 = (dm)? it 2L+1) 21+1) 24+1)x
x [ o1 @) /gn) ji(pe) FP(ke) r*dr o2do, (76)
ar) = jlan)s f0an) = fulgn—idlen),

FO (ko) = (k). F (ko) = F(ko)—J (ko)
A~ oA dn \( 4n \![ 4a \}
WU‘(q’p’k)z(2L+1) <2l+1) (2/1+1) 8

Lil2A a . R )
% (000) Z (ﬁ{,ln ) Yim(@) Ym(p Yidk). @7)
Mym,pu

u

Owing to the presence of the 3j symbols L, [,  must fulfil the triangle inequality and the sum
L+1+2 must be an even number. In the correction terms (75) the summations over L
max and lmax'
but terminates, due to the triangle inequality, a: . = L.+ A ., The correlaiion function
Wi ((}, P,K) can be also written in a form very convenieni for computations:

and A run from zero to some L The sum over [ is does not go to infinity either

A A A 1 ~ A A A .
Winq, p, k) = i f Pr(q - x)Pi(p - ©)Pi(k - £)dS2,. (78)

Some properties of the correlation function are collected in Appendix C. The radial double
overlap integral I}5} can be evaluated analytically when y,(r, @) is assumed to be a product
of three Gaussian functions represeniing the correlations between the particles which cons-
titute the hypernucleus and if the distorted wave expressions are taken for f;(qr) and
F,(kg). The details of the calculation are given in Appendix D.

There is no formal difficulty in generalizing the above results by including spins,
Coulomb interaction and more channels. We shall briefly discuss the case when the clusters
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have spins 8; and 8, and add up to form the total spin Jy, of the coce. The wavefunctions
ug r) and wy(g) are then replaced by operators in spin space

u (1) = [+ 1+ (—dy - L)ud + ...+

+(_JN . Lq)le u;2JN +1)] HSIS,JN; (79)
wi(e) = W)+ [ (=T - L) wii) (=T LN QI +D)] Py
Hlwd) (=T L) wd ..+ (—1 - L)Y wEi] PO, (80)

where Jpy = 8,+8,, I =J,+ie.

The overlap integral will receive various spin corrections in addition to those which
have been already accounted for in formula (70). The terms (—dJy - L)) and (—1I- L)
multiplied by P P'*), in general, will give a nonvanishing contcibution in the summation
over spins. This contribution will be proportional to the pseudoscalar :{:(} < (ke x P), wherce
the sign + corresponds to I = Jy+%. The decay rate integrated over all kinematical va-
riables except @ will be of the form

dr .

k3 = const [4#* 4 B*sin ¢], (81)
where A* and B* are numbers. This formula, when confronted with experimental distribu-
tions, may prove to be quite helpful for establishing the spin value of the hypernucleus.

APPENDIX A

The wavefunctions with deteimined momentum and spin

The wavefunction with determined momentum and spin § is represented as an operator
ug(r) acting on a (25+1) component spinor x. The operator u,(r) is given by

o0

ug (M) = 2 i (8PN +£P(gn) (8- L) ...+ Dgr) (S - L)®) P (¥ - q);

a. S=

(S5

g = L+ ff+LfL,
g =rfi—ft
where =+ denotes J = L+}.
b. S=1
g = QL+ fL +ff /L

@ L+2 + L—1 . 2L+1
A e S A A TS T
@ 1 2L+1

gL = 7/t 'Lf" L(L+1)f
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where & and 0 correspond to J= L1 and J == L, respectively

c. §S=1%

o (L+4@L+3) (L+4)(2L+3) 3L(2L—+—3) 4. L+a
gL = 2(L+1)(L+2)(L—+—3)f+— 2AL+1) (L+3)fF o) L+y! © T g/t
=2  2L24+20L4-33 f4_ (L+2) (L—6) f'*% 22— 1 (L——2)(L+6) .3
L= S DL +2(L+3) L T L+ DL +3) L 1)(L—1-2)fL 3L(L2—1)

o_ 26L+10 _oq  20LiT) g A4Q oy 14
A YY) ) Y) A RSl A 1 A R RS S 17 s R V7 )fz- ;

(4) 4‘ g 4’ 4' 4 ____3.’
D TR T el L(L+1)(L~L3)f+ 1)(Lu2)fL =/

where + 3 and -+ } correspond to J= L+ § and J = L1, respectively.

APPENDIX B

Explicit formulae for generalized enhancement factors in the case of two channel scat-
tering

The equation for 4 {(¢f. (48)),
y— A% 2 Vi
265 Via wy— A2

== 0

has the following solutions
M2 =1 (G +o8) £R0A— B2 +Au,u, V,E
y, and y, can be written as

9= CijlhN—C, ’é‘ i),

2
Y= —C ﬁg 12}(31’)'*‘6'2]('12’),

where the two complex amplitudes C; and C, may regarded as generalized enhancement
factors. €} and C, can be expressed in terms of the reduced T’ matrix elements

1 A2 2u,V4a
G= JAR) A —43 [A TB%r"lz

. 1 542 }.1 2#2V12
G=— j(A,R) 13— 73 [B 4 B—23
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where
A =yP(R) = j(p, R)+ih T psk) Ty,

B = ‘/’g)(K) = 02/0 [ih(—)(PzR)Tz,l]’
if the ingoing wave is in channel 1, or

A =y (R) = Voo, ik (piR) T1y),

B = p{(R) = j(poR) +1h(pyR) Tay,

if the ingoing wave is in channel 2.

APPENDIX C
Some properties of the correlation function W, (q,p, k)
(7)) For A =0 W ,is a Legendre polynomial

1

Win(@, P, B) = du 57 Puld@ - P);

(i7) Symmetry properties
W@, p, k) = W ,(P.q, k) = W,(q, k. P),
W, @, P, k) =0 if L+1+4=odd number.

(i77) The integral (78) can be easily evalusted using the following expressions

[ A By e R,y 42, =0,
" A . 40. 1 A sum of all possible products
Xa Xy oo Xugyyy Biéx = (2A7+T5ﬁ of Kronecker’s delias.
APPENDIX D

The radial integral

If (7, 0) is a superposition of Gaussians, the radial overlap integral will be a sum of integrals
of the type

Xin =0f e™ " Ty (@) J. 1oy (02) Jopy(ex) 2* do.
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Expanding the product of Bessel functions J; ., (ax) J;,,(bx) in a power series one can
evaluate the integral and arrives at the expression

(L+1+A+3+2n)
X =+ %i -y * 2
i 2 “C L TR T+ T+ I+ %
a L+3+2n ( I+3 c At+i
% %) \2a) ~
1 3 b2 L+I+A+3+2n 3 2
XF(—TI, ‘—n‘_‘L_ 7, L+ ?,”—) lFl( 2 ,)&‘l_ -é—,_l—L-a_Z)'
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