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The accuracy of the phase-shift approximation in calculating the well-depth of a A-parti-
cle in nuclear matter, D 4, is investigated. A model case of a simple /-N potential is considered.
The value of D4 calculated in the phase-shift approximation is about 10 MeV higher than the
value obtained by the complete K-matrix method. This indicates that the phase-shift approxima-
tion is too rough for application in the D, problem.

1. Introduction

The well-depth D, of a A-particle in nuclear matter is of importance and interest be-
cause it gives some informations about the A-nucleon interaction.

The most accurate method of calculating D, is probably the K-matrix method based
on the Brueckner theory [1], [2]. Recently, an approximation to the K-matrix method,
namely, the phase-shift approximation (PSA) has been applied by Bhaduri and Law in cal-
culating D, [3]. However, in the case of pure nuclear matter the phase-shift approximation
is known to fail [4]. The purpose of the present paper is to investigate the applicability of the
PSA in the D, problem.

To check the accuracy of the PSA we consider a model case, in which we assume the
AN interaction to be represented by one of the simple spin-independent potentials consi-
dered by Downs and Ware [5]:

o for r<r
Vin = . (I
—Voexp [—3.5412(r—r)/b] for r>r,

with 7, = 0.4 fm, b = 1.1 fm, ¥, = 330.9 MeV.
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In this case we calculate D4 in the PSA. On the other hand, the *“‘exact” result for D,
i. e., the result obtained with the K-matrix method, is known for V,, Eq. (1) [1].

The results obtained indicate a large difference (of about 259,) between the PSA and
the “‘exact” result for D ,. This seems to indicate that the PSA is too rough to be applied
in the D, problem. The calculational method is presented in Section 2, and it follows in
essence the procedure applied by Bhaduri and Law [3]. The results obtained are presented
and discussed in Section 3.

2. Calculation of D, in the PSA

In nuclear matter, according to the present state of the Brueckner theory, the potential
energy of a A-particle is
pkp

4 1 -
—DA—W*BEG[<kItN‘k)d3k, (2)

where B = m,/(m,+my)(m, and my are the masses of the A-particle and the nucleon),
kg is the Fermi momentum of the nucleons, E is the relative momentum, and ¢V is the
AN reaction matrix inside nuclear matter.

Expressing ¢ in terms of ¥ (the reaction matrix for free AN scattering) one gets:

€o EN

P 1
= tFiF (— _e )tp-i- higher order terms, 3
€y en
where P is the principal value operator, Q' is the exclusion principle operator, ey and ey
are the energy denominators, which will be specified later. Combining Egs (2) and (3)
one gets DY), the first-order term of D, in the PSA,
PkF

DY = g s | O @

and the second-order term,
Bk

F 1 , f
DY = i [<k F(i eQN>tF}k>d3k' ©

To evaluate D'V one has to know the diagonal matrix elements of the reaction matrix ¢F.
These matrix elements can be expressed in terms of §,, the I-partial wave phase-shifts
generated by the AN potential,

ar 1
(K| lfe) =—da g o Z (21+1) 0, ©6)

where p,y is the AN reduced mass.
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Inserting (6) into Eq. (4) one obtains D(/}’),, the l-partial wave contribution to the first-
-order term of D,

BkF

1 8 1 h2 N 1.

Dy = Py m(f@l 1) dikdk. )
In our calculation we restrict ourselves to the first three phase-shifts, [ == 0, 1, 2. In our
model case the phase-shifts are obtained by the numerical solution of the Schédinger equa-
tion with ¥ 45, Eq. (1). The values of 8¢(k), 6,(k), dy(k) thus obtained are shown in Fig. 1.
Using these values of ¢, and taking kp =1.366 fm! we have performed numerically the

integrations in Eq. (7). The resulting values of Dg’), are presented in Table L
The caleulation of D is more complicated. Let us denote by g the momentum transfer
of the interacting lambda and nucleon whose momenta are initially %, and k,. Then, the
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Fig. 1. The phase-shifts (in radians) generated by the ¥4 5 potential, Eq. (1), as functions of the AN relative
momentum, &

TABLE I
The results of D4 (in MeV) obtained in the phase-shift approximation and the exact results of Ref. [1]
! First-order term Second-order term Exact [1]
!

0 34.7 —4.4 21.2

1 16.9 —_ 14.0

2 1.2 — 11
Total 52.8 ~—71 36.3
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energy denominator eg is defined by

2 2 hl.—a)?  h2kE heR2 2
o= e o — T = g (4280, ®

2mN ZmA 2mN 2”’LA 2/,LA

To determine the energy denominator ey we assume that the nucleon and the A-particle
are moving initially in a potential well Uy and U , respectively and they are free after scat-
tering, i. e., we assume the single nucleon and lambda potentials to be equal to zero in the
intermediate states, Then!

2

eN =— (q2 +2kq)— LTN— U'A. (9)

2uan

We approximate Uy by a quadratic function
Uy = AK+C, (10)
with the constants 4 and C fixed by the two requirements [1]:
go+ 3 Un = 3(Eo+2n) = &vol (1)
en(kp) = yor (12)

where &, denotes the nucleon kinetic energy, &y = &3+ Uy, the bars denote average values
over the Fermi sea, and ¢, = —15.8 MeV is the energy per nucleon in nuclear matter.

Solving Egs (11) and (12) we obtain

A = 63407 MeV fm2, € = —113.33 MeV.
Taking U, = —36.3MeV (which is the “‘exact” value obtained in Ref, [1]) we may write
Eq. (9) in a modified form

2
en = =1 (g2 2kq+ A—vEY), (13)
2uaN

with 4 = 3.917 fm%, » = 5.6254.

Now, the second-order contribution to D, is given by:

BkF oo
4 1 1 p Q
sz————————fdkfd P+ 2(—»———— ——«-—). 14
T g p s ) B SO Gy~ g Y
The main problem is to evaluate off-the-momentum-shell matrix elements (k|tF|k+q).
Assuming that tF is local and energy-independent, i. e.,
(k|| +q) ~ { () rdyr = 1F(g), (15)

1 The gap in the single lambda particle spectrum has been neglected in Ref. [3].



619

and replacing t¥(¢q) by t§(q) (the s-wave contribution is predominant) one arrives at the
following formula:

16x h2

)=~ 5 3— {f dk kdy(k) [6(2k—q) +8(2k +9)1} - (16)

Now, the total AN cross-section o may be expressed in terms of §, 1. e,

4
or ka (@1+1) sin? 8 = § o 17)
1

where o, is the [-partial wave cross-section. Hence t{(g) may also be written as a function
of @4, the s-wave cross-section,

he
g0 =2 g2 2)/24B |. )

Changing the parameter 4 to

4
— (BER)®
and performing part of the integrations in Eq. (14) we obtain:
4
D = — oo e P [ rigrg et 19)
0
with
n(q) = ql/<(9)—f (9)] for fg <2, (20)
qf(q) for fg> 2,
where
@) =1 [(4— ) g2 +4q). 1)
2 - 2
1 1= (o ) s (0+5)
—Bq
1
Ak
Folg) = f kdmn[ + 2_2kqka2+ a]‘ (3)
0

The cross-sections o and o calculated with the phase-shifts obtained previously are shown
in Figs 2 and 3. These cross-sections are reproduced by the following forms

0o = 7.31 exp (—3.5 k19), (24)
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Fig. 2. The s-wave cross-section given by Eq. (24). Crosses represent values calculated with the &, phase-shift
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Fig. 3. The total cross-section given by Eq. (25a, b). Crosses represent values calculated with the phase-shifts &,
015 93, Eq. (17)

and

oo 7.5 exp (—3k™%)  for k< 0.66 fm1, (25a)
T 71267 exp (—k%  for k> 0.66 fm1. (25b)

Inserting expression (24) into Eq. (18) we have

1F(g) ~ 2V7.31 [1—0.2643 ¢¥] exp (—0.2937 ¢**). (26)
Inserting (25a) into Eq. (18) we get

1F(q) ~ 2V/7.5 [1—0.2455 g"*] exp (—0.3069 g9, (27a)
and inserting (25b) into Eq. (18) we obtain

F(q) ~ 2V/2.67 [1—0.0818 ¢%] exp (—0.1023 g"9. (27b)
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Introducing expressions (26} and (27a, b} into Eq. (19) and performing the g-integration
numerically we find D(f,)o(the s-wave contribution to the second-order term of D ) and Df,i)T
(obtained by replacing 64 by o, in Eq. (18)).

3. Discussion

The results of our calculation are shown in Table I, which also contains the “‘exact”
results of Ref. [1]. Our total first-order contribution, DY) =52.8 MeV, i. e. it is 16.5 MeV
higher than the “‘exact” result, D, = 36.3 MeV.

Strictly speaking, the second-order contribution, D%, goes beyond the PSA. Only
by introducing drastic approximations (locality and energy independence of ¢F) is it possible
to express the second-order contribution through the AN phase-shifts. Actually, Bhaduri
and Law [3] express the second-order contribution through the AN total cross-section and
obtain in this way, in our notation, D In the spirit of the approach of Ref. [3], the value of
D(/%}T =-—7.1 MeV is supposed to approximate the second-order contribution. This reduces
the PSA value of the A potential depth from 52.8 MeV to 45.7 MeV, which is still higher
than the “‘exact” value of D, by 9.4 MeV. If, on the other hand, we assume that D) may
be approximated by D'Z), = —4.4 MeV we are lead to a difference of 12.1 MeV between
the ‘“‘exact” and approximate value of D ,. In any case we see that the PSA procedure of
Bhaduri and Law [3] applied to our model case leads to a value of D, which is
about 10 MeV higher than the ‘“‘exaci” result. Now, the difference between the D,
values calculated with the contemporary, phenomenological AN potentials and the D,
values estimated empirically is probably less than 10 MeV [1]. For this reason it seems to
us that the PSA is too rough to be applied in the D, problem. On the other hand, as seen
from Table I, the PSA may be useful for estimating the higher partial wave contribution
to D,
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