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CYLINDRICAL SYMMETRY IN EINSTEIN’S UNIFIED FIELD
THEORY. 1

By A. H. Krotz anp G. K. RusseLL

Department of Applied Mathematics, University of Sydney*

(Received November 24, 1970)

The static, cylindrically symmetric solutions of Einstein’s unified field equations are
derived, in the case when only an electric field is present. It is shown that, in general, the strong
field equations lead to untenable physical conclusions.

1. Introduction

The solutions of the field equations in the nonsymmetric unified field theory (Einstein
1945, Einstein and Straus 1946, and Einstein 1951) hitherto discovered, fall into three classes.
They are either static, spherically symmetric (Papapetrou 1948, Wyman 1950, Bonnor 1952
and others), plane-symmetric (Rao 1958, Sarkar 1966) or wave-like (Takeno 1958, Ingraham
1950, Vaidya 1961). None of these have met with marked saccess in leading to empirically
verifiable predictions of the kind which enhanced the acceptance of General Relativity as
a theory of the gravitational field, better than the classical model of Newton.

There are several obvious reasons for the difficulties in relating Einstein’s theory to
physics. First, of course, is the purely mathematical complexity of the equations themselves.
Secondly, there is a considerable difficulty in interpreting a given solution because is it
not clear either what should be regarded as the “metric” tensor (which ought to be sym-
metric and need not be the symmeéiric part guw of Einstein’s nonsymmetric fundamental
tensor g,, — we let Greek indices go from 1 to 4), or how to define the electromagnetic
field (which might not be the skew part g of g,,, e.g. Hlavaty 1957). There is doubt also
how one should define symmetry itself and more will be said on this point in the next sec-
tion. Similarly, we encounter trouble in postulating boundary conditions because we cannot
easily conceive what happens “‘at infinity”’, and we do not know a priori with what kind
of objects we are dealing locally. Einstein’s own insistence that only everywhere nonsingular
solutions should be regarded as meaningful does not help and there is also something radically
wrong with the only postulate of the theory which has a clear physical content, namely the
concept of Hermitian symmetry or Transposition Invariance (Klotz 1970).
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All this does not contribute to rendering Einstein’s (or, for that matter, any other)
unified field theory credible as a model of the macroscopic world structure. On the other
hand, it may be argued that General Relativity itself requires construction of such a theory,
even if it should prove a failure providing we knew where the fault would lie (Klotz 1969).
In particular, no avenue should be left unexplored through which new solutions of the field
equations can be found.

In this and the subsequent articles, we propose to derive a number of solutions in the
case of static, cylindrical symmetry. It may be felt that the latter symmetry is more interesting
in unified field theory than spherical since, celestial bodies apart, should stars carry a resi-
dual charge, it is more likely to be developed into an account of electric current flow and
perhaps of a locally observable effect. Such an extension would involve seeking time depen-
dent solutions and although we cannot attempt it now, one can regard our results as a first
step towards it.

One final remark should be made before we can proceed. Up 1o a point we shall discuss
concurrently the so-called strong (whose compatibility has never been proved in general)
and weak (which have been derived from an invariant variational principle by Einstein and
Straus and are therefore compatible whatever symmetry restrictions may be imposed)
field equations. Indeed, one of us (Russell 1970) shows that in the particular case to be

. discussed, the two sets of equations coincide.

In this article we shall discuss the derivation of general solutions reserving the parti-
cular cases to the second paper. We shall find that the former are valid only for the strong
field equations.

2. Cylindrical symmetry in a unified field

In General Relativity, definition of symmetry does not create serious problems because
a Riemannian manifold can be always embedded in a higher dimensional, Euclidean space.
Although the group G of coordinate transformations X under which the equations of the

nonsymmetric unified field theory are invariant, is the same, the embedding property must
be now assumed.

' = x"*(x"). 2.1)

This means that the space is to be thought of as possessing a symmetry in as much as it
might do when viewed in a Euclidean space.
Let y(x*) be a mathematical object, possibly the space itself. Then if

¥ (&™) = y(x'") (2.2)

for an element of G, we say that this element is a symmetry of y and the set of all such ele-
ments (a sub-group of G) is called the symmetry group of y.
Suppose that a tensor A, possesses a symmetry for infinitesimal transformations

aH = ot el 2.3)
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where & are known functions of x* and &2 < ¢. The law of tensor transformation then gives
A () = A, () —eE A, —eE A, +0(e?),
and, using Taylor’s expansion
A (8) = A,,(2%) +-ed;, £ +0(e?).
Hence, from (2.2)
Ay b7 +8 A+ E A, =0, (2.4)

since y'(x) == y{x*} also.

Here, as throughout, comma denotes ordinary partial differentiation with respect to
the coordinates, and the summation convention over repeated indices is used. A semi-colon
will denote a covariant differentiation for a suitably specified affine connection I" ,’l,, which
replaces the Riemannian-Christoffel brackets {,f,,} Equation (2.4) represents the condition
that 4, be symmetric under (2.3). In the Riemannian case, when A4, is the metric v
of the space, it reduces to Killings’ equations (10 in number)

SupF =0

. . - . ;.
because the connection is given by {;}.
However, in Einstein’s nonsymmetric theory, the connection is defined by

(g;;_ :;). E)g,uv,l— I‘Zlgar_ nggya = 0‘ (2'5)

Hence, putting 4, = g, in (24) gives
F;nggvfo.‘%' thlvgyg§0+§6,ugcv+§g,vgyc = O’
that is
gyg(gg,v + I‘fwéu) +ggv(‘fg,,u+ ]‘Vza U) = 05

or, in Einstein’s notation,
0 o
g#e‘f+;v +gov§_;u =0 (26)

and we cannot conveniently lower the indices inside the semi-colon (see, for example,
Einstein 1950).

In the case of cylindrical symmetry we require y(x”) to be invariant under arbitrary,
and in particular, infinitesimal rotations {(given by equation (2.3)) about a fixed axis of
symmetry. In other words, a hoop of radius ‘@’ which is perpendicular to, and centred on
the axis must transform into itself under (2.3).

Let (r, 8, 9) be polar coordinates chosen so that the axis is given by

0 = 0.
The metric on the hoop is then

ds? = a?dy?,
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and will be invariant if, in (2.4)
A,=0(u,v #3,3), Az =a®

A rotation along the hoop is given by &1 = £2 = £* = (), so that &% = const, and therefore
for a nonsymmetric g,, equation (2.4) gives

Bus =0, 2.7

g, being thus independent of v, we are left with sixteen funciions of three variables each

which can be specialised further by two more coordinate conditions. Since guw and gur

transform independenily of each other, a particularly simple form results when guv is

assumed to be the ‘‘metric” tensor in the following sense. B
Invariance under the transformations

p=—y, t=—t, (2.8)
gives
Guda'dx” = g)1dx1? 4 2g19dx1d X% + gppdx® -+ ga3dn% 4 gy, di?,

and the remaining coordinate conditions enable us to take

8n = 822y 812 0.

We then have the so-called isothermal coordinates.

As far as the skew symmetric & 18 concerned, it is simplest to identify it (Russell
1970) with the electromagnetic field tensor but, following a suggestion of Einstein, with
the electric vector E interchanged with the magnetic vector H. Thus we take

g;=Ex; i k=cyclicl,2,3; g,=—H,. (2.9)

In the sequel, we consider the problem of solving the unified field equations corresponding
to a purely electric field

E = (E(r),0,0), H=0, (2.10)
in cylindrical polar coordinates
xt=r, ax?=2 a2 =0, =1,
for which the axis of symmetry is
r=20,

and r is the outward radial distance.
In view of the above discussion, we can take g, in the form
—& . .
R - T T
g,uv - . —FE '—ﬂ . J (2.11)
14

where @, 5, ¥ and E are functions of r only.
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3. The field equations
The Ricci tensor is defined by

=1, ,— I, — I+ 1,17, 3.1)
As mentioned before, we can consider concurrently the strong unified field equations
B = 0, R,=0TI(= FZS =0 3.2)
and the weak ones
B = 0, Rw=0, R/gf,l =0, [I,=0, 13.3)

where, as for g,,, a hook denotes skew part (and underlining of a pair of suffixes, the sym-
metric part) of a quantity and the dots indicate a cyclic sum. The difference between (3.2)
and (3.3) will be seen in the case of g,, given by (2.11), to reduce to the vanishing or otherwise
of a constant. The first equation of either set (2.5) can be solved for I’ ,’lv to give

1 da
Ih= 2q dr’

1 D o dE? ame @B Ao a0 .
Fzz—;{—a(aﬁ—E)—d-r— + 202F ———dT(a,B +EY¢,

dr
e L L e A
1 dy
Tis= 2a dr’

F;‘:f:g—(aﬂ——E%{ —(ap—E?) dE +Ed(§ﬁ)}

dp da
2 2 ‘. 2 2
Iy = { (af— E) —akF I +af dr}’
dF dg da
2 _ e __ 3 2
Fl?‘D{ RS A S dr}’
dF de dp
3 . 3 "
It _D{a(aﬁ E?) = +E A Ea dr}’

1 Zd 2 2’3
F1_=D{§(aﬁ—E)d —BE* 5" +a }

4_1d’}’

= (3.4)
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where
D1 = 2(a2f2—E%),

all other components being zero. The equation (2.5) which determines the above components
of the affine connection is written out in full in the Appendix.
The only components of the Ricci tensor which do not vanish identically are now

Rll———{r +Tis+ Nigy— (112~ ()~ (I *~

—2T4 I+ I {I'f+ s+ Iy},

drs
Ryp === + Th {ITh— T+ Tt Nl —2I% T,
dr
Ry = d:& —I3sT8y— eI+ Iip(Th+ Iy,
dr}
Ry == + Ti{Iy + I'y—Tis + Tia} -2 T,
R dF414 Iu Fl -+ 2 ]wa —F4
= awtd 1+ Tie+ Tia— L'ia) (3.5)

dr
In view of (3.4), the last of the field equations:
r =90

(the condition that R,, should be Hermitian symmetric) is identically satisfied. Hence
the weak field equations become

R;=0, Ry=0, R;u=0Ry=0 (3.6)
and
dRys
= 0. (3.7
From (3.7)

R, = K, a constant
23 >

and when K == 0 we obtain the strong field equations.

4. The general solutions of the strong field equations

The form of the components I, given by (3.4) suggests that we write

u=af, v=-— e = E2 4.1)



Then, dashes signifying differentiation with respect to r,

1 ! 1 ’
Fh*—‘l L), Ity = ——y/, F144=1Z—
u 2 Y

4‘ v uy E ’
1 v +e 1 1 ute 1 uted
1 _ - v, s 2T Y — L -
Tz 2 u+te 4 u 4 u—ew v I3 2 u—e v
1 u'+e 1 w o 1 u o
2 il 3 i _
T 4 u-te 4 yu—e s + 2u—ev’
e fute 1
sz3—2g[u+e 2 e]’
1 wiu+e o e v 1 g |u'+e W e 2
2 1w _w e v =9 v v ]
Ty 4 g [u—!—e v u—ewv|’ ¥ 4. [u+e u + u—e v]’ (*2)
where
q = Vuve.
The equation
Ry=0
integrates immediately once, to give
;}_ (wv)Hu+e)t =k, a constant. (4.3)
Y
Also, from
Ryy=0= Ry,
we find readily that
F ’ 3
u v u u-te
2y aY —
(v> 7 <u+e) — k,, a constant, (4.4)
so that, from (4.3) and (4.4)
v _ ko ou

y hku—ev’
Clearly, we can impose one (and only one) scale condition on the metric. Choosing therefore

kl - kz,

we obtain the result

- =2 (4.5)

which enables us to proceed.
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Let us write

Th=U, Th=V, Th=W,p= % (4.6)
The field equations now become

— V'~ +p)V2—pUt— W2+ UV(1+2p)+ W2V —U) =0, (4.7)
U'—2V" +(1+2p) U2 +2(p—1) V2—4pUV = 0, (4.8)
pU —(p—1V' +p(1+2p) U2+ 2(1 +pA)V2— (A +p+4pR) UV = gg 4.9)

and (using (4.8))
W+ B@2V—U)=0. (4.10)

Let us now take
K=0 (4.11)

(strong case).
We obtain one first integral of the equations (4.7)-(4.10), by eliminating U”, V'’ between
them:
QA—p)V2—plP4+ 20UV -0+ FR2V—-U) = 0. 4.12)
Moreover, eliminating U’ between (4.8} and (4.9), we find that
V4+r2r-uy=2o,
so that, from (4.10)
V' is proportional to W
or
y = Blu+e)’, (4.13)
where B and a are constants.
If we write now
z = In(u+te),
and
a?b = (1+4a—a?),
equation (4.12) gives
a¥(bp+1)z'2 = (p+1)~1p"2 (4.14)
and a straight forward though tedious calculation shows that the equations (4.7)-(4.10)
are compatible only if
p =0 (4.15)
Assuming that p = const (# —1) in (4.2), gives

’

v 1
v V=g

’

1
4

u 17 1
PR A

- P
T4

U=
p—1

LAy =
v v

P
p—1
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and
. . ' o 20-1 p o
V-— CW, D7 ” —I *;
Hence V=mU, W =nU,
2Ck 2k
m= —— | it
(k+1)y2C—-1)’ k+1)(2C€-1)

E 201

p p—1

Equations (4.7)-(4.10) then give as a compatibility condition,

(1—m)2(1+p) = 0.

(4.16)
The case p = —1 must be investigated separately and we easily convince ourselves that
m =1 is impossible.
When p = —1, D71 in equations (3.4) vanishes. Nevertheless, equations
gu v3A == O’
il
still have a solution for I'}, indeed a much simpler one. As before
1o 1 1y
1 Lo Ty LAY &
I‘ll 2 a ’ 44 9 q s Fﬁ 92 y L
but, since now
E2
--=, (4.17)
7 3 i L
The—2, Ih—ss, Th=s2, Th=v%,
z 2 z = 2a
! 1 {1 2 1
=2 = (-21+2) r—==xy 18)
B= I 2z(2a+z) 12 =52 (4.18)
where we have written
R
=

The field equations become

1z 1y
“(7?7;

:{Q
v
»é]H
p——
| vy
\_/
N{N\
———
S
+
ro|
R|R
N ——"
|

/\
v
)__4
——
Y[‘f
N
+
0| —
2[R
——————
™| —
N |
+
bo| =
SEE
+
rof —
Y\
S
i
R
>
[—)
O
&
N’
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o2 e
)32 222 5
CRCTEE PEIFIET I

and
</E)+%(%+%% ~é~;’7): . (4.19)

Equations (b), (d) and (e) integrate immediately (providing neither z’ nor y’ are zero)
1o give respectively

2 = CaVYaly, 2 = Afalzy and ' =BVyjz, 4, B, C
being constants, whence

C al !

z
Qt=—z% —=-2—,
a z

B !
———:{;-—..:—:S;gsay.

yAC 2

~ |

Therefore, & and y can be eliminated from (4.19a, ¢) and it is easily seen that these equations
are compatible ouly if

either 2’ =0, or S=0.

The latter case implies 9" = 0, and both when z = const (K) (or @ = KF) and y = const (g),
we have to go back to (4.19) to obtain the corresponding solutions.
1. When 2z’ = 0, we get from the equations (4.19a, ¢) which alone survive,

a = —h? exp (myr¥+fyr) = KE,
1 2
=% (mor+/5)%

he
B = g exp (mr*+/), (4.20)

where k, my, fi, my, f are arbitrary constants related by
2my fp = myfy-
2. When 9" =10,2" #£0,
« = (Br+C)¥s,
a® = AE?,
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y =& 4.21)

with 4, B and C arbitrary constants.
3. Finally, when both z and y are constants, equations (4.191) give

o = KFE = B exp (4r),

f=— —Ilé: (4.22)

These solutions cover all the possible forms of the general case. Particular solutions can be
obtained by taking @ priori any of, say u, v and e variables as constant.

5. Discussion

Up to the point when we found it necessary to postulate equation (4.17), the functions
o, B and y were regarded as possitive. For a real E this is no longer possible. However,
analogy with General Relativity shows that the signature of guw should be +2. Hence, if 8
is, for example, positive, the parts played by the coordinates 6 and ¢ must be reversed. The
same happens if 8 is negative, the sign of y being in each case the same as that of §.

The above, however, is only of academic intecest since a glance at the solutions (4.20),
(4.21) and (4.22) shows that their physical meaning as global solutions is doubtful. In
particular they are singular at infinity. Thus, they can have at most local significance. This
conclusion may be used as evidence that the strong field theory is untenable except that in
the second article we find a particular solution which is perfectly meaningful and which is
in addition singularity tree in the sense of Einstein.

APPENDIX
The equations determining I,

d

Ef_ —2GF111 == O

—aly—aly =0

—aly—als =0

—alf,—al}; =0
—al%—El%—all, =0
—al%,—El,—aly =20
—al'—ElrS—als, =0
—aly—ElY—al'l,=0
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EI%—BI% -l =0
El,—Bli—alk =0
EI%—BI%—all =0
Er},—Blry—ali, =0
yIy—all, =0
yly—alh =0
yliy—al3 =0
yIYy—aly, =0
—aly—al'h+ElS =0
—aly—al% + ET% =0
—aly—als +El =0
—al'y—alf +Elg =0
da

7 —al3i—ET}—al%+ET =0

—al—El—als+Els, =0
—alg—EIly—al%4-ET5, =0
—oeF§4—EF§4—oc_I’f2+EF22 =0

- %’ +EIG—pTh—alf+EIs =0

El:,—Brs,—als+ET3 =0
EI%—BI3—al%+EI% =0
Ely,—pré—alt,+El3, =0
yIy—~aly+El, =0
yly—alfy+El3 =0
ylyy—aly+El, =0
ylyy—algy+EIl, =0
—aly~EIl'*,—Bri =0
—alg—Ely—pIs =0
—aly—Els—pr3 =0
—alL4—El3,—pIs, =0
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%E' —al%—Elry—ETl,—BIi =0
—al%,—EI%EI%,—pT% =0
—acF§3—EF§3——EF322—ﬂF§2 =0
—ol%,—ETl3,—El,—pI5,=0

9 | EIy—pro—ETh—pTh =0

EI2,—BI%,—EI%—pI% =0
ET%—pIs,—El5,—pls;=0
EI%—BI%—EI%—pI% =0

YF§1—EF124“!9F$4 =0
yIyy—ET3—BI3 =0
Vrgs—EP:il—ﬁFgc: =0
yI% —ET%,—pI%, =0
—al'y+yly =0
—alfy+yl5 =0
—alyy+yly =0
—alg+yIl=0
—al}—El +yI, =0
—al—Elg+yI =0
—al2—Elg+yI3=0
—al'},—ET3,+yly =0
Ery—BIri+yIlfy =0
ET} Bl tyI =0
El;—Bli+yls =0
EIrt,—pBli+yly=0
- d— yI'a+ylts=0
7F 12ty =0
yTas+yla0 =0
ylgy+yI =0
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