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CYLINDRICAL SYMMETRY IN EINSTEIN’S UNIFIED FIELD
THEORY. II

By A. H. Krorz anp G. K. RusseLL
Department of Applied Mathematics, University of Sydney*
(Received November 24, 1970)

A solution of Einstein’s unified field equations corresponding to a static, uniform line
charge is derived. It is shown that in the particular case considered the strong and the weak field
equations coincide. A possible empirical test of the theory is discussed.

1. Introduction

In the previous article of this series (referred to as I in the sequel) we discuss the general
solution of the strong unified field equations of Einstein. There is some uncertainty in the
nonsymmetric unified field theories which tensor is to be regarded as the metric tensor. If
we write with Einstein” *g*” for the inverse tensor of g,,, and let (Schrodinger 1947)

= V_::i *glﬁ,,

where g is the determinant of g,, and a = det (l/———_g~ *g?) then a,,,

a*

such that
a,a” = 0,
can be used as the metric. Alternatively, we can, of course, adopt gu (a line under the indices
indicates the symmetric part; in general, we use the same notation as in I), In either case,
we require that for large 7, the metric should approach that of a Minkowski space time. This
condition is not satisfied by the general solutions of 1.
It seems therefore that in the case of cylindrical symmetry only particular solutions
can be physically meaningful. We take (as in I) the fundamental tensor in the form
—a
—a E
g;w = —E _ﬂ
14
the coordinates being x! =r, x2 = z, 2% = 0, #* =1, (cylindrical polar coordinates) and
a, f, ¥, £ being functions of 7 only (the radial distance from the z axis of symmetry).
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If we assume @ priori that E' = g is a constant, the solution will correspond to the case

of a static, uniform line charge. The field is
H=0, E:=— % r,

so that q is proportional to the line density of charge.

2. A static, uniform line charge
Let us write
H X
o= e, B =2 y = w?X

and define

a=LV/FVap, B =gpd—H)/(ef—q?).

The equation
Ry =0,

then gives immediately
a

q*+ap

’

eF—K

where @ is a constant.

Moreover, Res vanishes when ¢ is zero, and therefore we may write
2

where b is also a constant.
A considerable simplification results if we take

B =0,

whence

_ ¢
p= ct—a’

2.1

2.2)

2.3)

(2.4)

(2.5)

¢ being another arbitrary constant. Incidentally, we may notice that unless g or b are zero,
we are now dealing with the weak field equations which are known to be compatible.

Using (2.5), we now find that

a

A=H =>_F,

ct—Q

and the field equations to be solved reduce to

—K
P ey A

VaB+q?

2.6)

(2.7a)



1eF~K 2
FII +F/H/+F12+ aF € + 2q AZ P 0’
Vaf+q¢® af

+ A+ AH —AF =0,

VeB+g?
and

aH’eF—K

FH-—H'—-H?— ~——___ —0,
Vap+q®

From (2.7a) and (2.7d)
a(A'+H)eF X =0,
so that
a =0,
since

A'+H =0,

2.7d)

(2.8)

leads, together with (2.6) to the trivial case of a constant electric field in the ““x” direction
24

for which & and £ are also constant.
We now have

v = const,
and we easily find that
b=0,

so that the field equations reduce to strong field equations as a consequence of assuming B

to be zero. The complete solution now follows readily in the form
1 -1
—c2 |1y
amet1s <1r+m)2] ’

T (Ir+m)2} 1+ 1
p= c? m (Ir+m)2}’
y =const, E=g#0,

¢, m, q and y being arbitrary constants.
For the metric to approach Minkowski’s at infinity

1
c=1 I=—, y=1
q
{either ¢ or y can be chosen arbitrarily).

We then have

a,, = diag [~—f‘3/2, _f—1/2, —(r+m')2f1/2,f“1/2],

gw = diag [—f2, —f1, —(r+m)2f, 1],

(2.92)

(2.9b)

(2.9¢)

(2.10)

@.11)
2.12)
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where
m’ = mg
_ q*
f— 1+ (r+m/)2'

It seems reasonable to conclude that there is no mass present, since, as ¢ - 0, m’ -0
also, and both @, and gw reduce to the metric of a flat world.

3. A free trajectory

A test particle moving in a gravitational field follows, according to General Relativity,
a geodesic of the corresponding Riemannian space. In the unified field theory we are discussing
the situgtion is more complicated mainly because of uncertainty of how a ““metric” tensor
is to be defined. Even if that is settled, it is clear that one cannot obtain the equations of
motion of a charged test particle from a minimum time principle of the form

8fds =0, ds® = awdx"ds’. (3.1)
The equations
d2x= 2 dx* dx’
ot e g =0 (3.2)

will not do either. It has been suggested (Stephenson and Kilmister 1953) that one should
use

ds = —ydx Ldw, dw? = a,dx"dx". (3.3)
The resuliing equations of motion are

d2xe {a } dx* dx” dx”

PR, sty "
dw? wy) dw dw o fo dw’

where {7} are the Christoffel brackets found with the help of au, and

(3.4)

Sur = Vo™V
is identified with the electro-magnetic intensity tensor. If we have
J{:uu = g;w H

however, equations of the form (3.4), lead to a physically extraordinary conclusion that
a uniform line charge along the z axis exerts only a lateral z—6 force. The alteinative

1
S =3 V=8 euwep*8?

(*g% being the skew symmetric part of the inverse tensor of g,,) is possible but it leads
to equations which do not bear any resemblance to Lorentz equations of motion of an electron
in the vicinity of a line charge, to which they ought to reduce in a non-relativistic approxi-
mation.
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In view of this, we postulate that the equations of motion are given by

d?xe dx* dx” 1, dx*
PR & T 7 = L ogadpy( ¥ . or -
72 -+ w I s 5 g (—g) BirBur ds (3.5)

The relevant components of the affine connection are

2 2+q2
R Y S
11 Q(92+q2) 22 33 Q
Th=Tk=Th=0 I'h= %, (3.6)
e*-q
where
o =r+m'.
Also,
V—g =0 823 = 4-
Hence the equations of motion become
dg ¢t (do)', ¢ (=)'
ds?  e(e®+¢® \ds] = e(e®+¢? \ds
_gtgt () g
0 (ds o ds (3.7a)
d%z
d%0 20 dodf
az* + Q——’—2+q2 (E £ = (3.70)
2
@t _ge de (3.7d)

ds? it qtds’
where we have written ¢ == x%
Consider now an electron (charge e, mass p) projected parallel to the line charge of

density 4, with a speed V. (3.7b), (3.7¢c) integrate immediately to give

dz df a

i b, = w, a, b const. 3.8)

In the non-relativistic case, the quadratic terms in (3.7a) disappear, and with 2% = ¢t = s,

(c speed of light in vacuum) (3.7a) reduces to the classical equation of motion of the electron,
providing we identify ¢ by

22e

ot (3.9)

g::
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In the present theory, we can still adjust the scale so that, without loss of generality,
g2b? = a2,

and (3.7a) becomes

d% q®  [de\' qdi
ot e ) = o7
(3.7d) gives
dt g 2. 2
PRy In (g2 +09), (3.10)
again without loss of generality, and (3.7a) can therefore be written in the form
d_¢* ([do)’_ ¢ 2 2 90
i (2] = e
or
0 (de’ gt
e 158 = 9 2.1 42))2
92+q2 (ds) h’+ 4 (lll (Q +f1 )) ’ (311)

h being a constant of integration. (3.8), (3.10) and (3.11) now define the trajectory since
a solution can be obtained by quadratures. There is little point in writting it out here unless
we were considering a concrete situation.

If we identify s with the proper time ct then, we must take

b= V.

In principle, these results should be experimentally verifiable.

4. Discussion

The solution of Einstein’s unified field equations derived in this article is a particular solu-
tion only. We have seen in I that general solutions of the cylindrically symmetric case with
only the electric field present, do not seem to have any obvious physical interpretation. This
must enhance the meaningfulness of our solution and of the simplifying assumptions made in
its derivation. Incidentally, it is also a solution of Schrédinger’s strong field equations. As
far as the proposed test of the theory is concerned, we must observe that the experiment
will be difficult in practice. The ¢ given by (3.9) is necessarily very small. We found it
necessary to postulate a somewhat strange form of the equations of motion. This may be
justified on two grounds. One is that for our solution they reduce in a non-relativistic approxi-
mation to the classical equation of motion of an electron. Secondly, it is known (Callaway
1953) that one cannot obtain Lorentz equations of motion from Einstein’s field equations
in any case. However, it is significant that Callaway obtains his result on the assumption that
charged particles are singularities of the field. It is not known how equations of motion are
to be derived if only everywhere nonsingular solutions are allowed as Einstein himself
maintained. Hence it is not quite so reprehensible to introduce additional postulates in writing
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them down. It should be remembered all the same that a negative outcome of our experiment
may mean simply that this postulate is wrong and not Einstein’s theory. On the other hand,
a positive result would be a clear confirmation of both. It would then follow from (3.5) that
Maxwell’s theory may have to be amended.

At present we are working on the case when both electric and magnetic fields are
present. It should be possible to extend this investigation without undue difficulty to a the-
ory of steady linear currents.
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