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The binding energy of a A particle in nuclear matter, B 4(o0), is calculated with the help
of the modified Moszkowski-Scott separation method. This procedure permits one to systemati-
cally expand the effective -nucleon interaction in terms of G, the reaction operator for free
particles caused by the short range part of the potential alone. The form of the series is discussed.
The contribution of all first and second-order terms to the binding energy has been calculated
numerically with two central AN potentials. The rearrangement energy is taken into account.
The calculated B /(o) are compared with the empirical value of B (o). Possible ways of
reducing the calculated value of B (o) are discussed.

1. Introduction

Calculations of the binding energy of a A particle in nuclear matter, B, are of great
importance and interest for the following reasons. A confrontation of the calculated binding
energy with the phenomenological well depth may give information about the A-nucleon
interactions, particularly about the interaction in higher angular momentum states. Fur-
ther, because of the simplifications occuring for an infinite system, one may hope to do ac-
curate theoretical calculations of B yand to test indirectly the validity of various approxima-
tions also for finite hypernuclei. Finally it can be instructive to consider the similarities
and differences with the case of pure nuclear matter.

The methods available for the calculation of B, are in essence the same as for nuclear
matter, for potentials with a strong and short-cange repulsion: (I) The Brueckner K-matrix
approach and (II) variational methods which use correlated, Jastrow-type wave functions.
The K-matrix approach was first used for the calculation of B , in the form of the so called
“independent pair approximation” by many authors [1-4]. More recent and powerful
K-matrix techniques for AN potentials are used by Dabrowski and Hassan [5] — they
use the Brueckner-Gammel integral equation — and by Bodmer and Rote [6], who use an
integro-differential equation. The variational approach was first used by Downs and Grypeos
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[7] and has recently been the subject of a thorough and careful investigation by Mueller and
Clark [8].

In the present paper B, is calculated using the K-matrix technique and the separation
method introduced by Moszkowski and Scott [9]. According to the present state of the
Brueckner theory [5], B, can be expressed by

—B, = A(kA) = kZ (kaAIGIkaA)’ (1.1)

where K; = ksit,(k; = momentum below the Fermi sea, s;=spin and t; = izospin).
The G matrix which represents the effective AN interaction is defined by the equation

Y

¢=v+v< G, (1.2)
where v is the A-nucleon potential,
e = exlky) +e 4k 4)—elky) —e(k)) (1.3)
and the Pauli principle operator
Q= X [REl ki) (1.4)
knka>kp

By &y, &4 we denote the kinetic energies and by ey, e, — single particle energies of the oc-
cupied states

extln) = exlln) +Vilky)- (1.5)
ealky) = Vaky

because in the ground state the /1 particle occupies the state with zero momentum.

With the help of the separation method we can develop the reaction matrix for the
A-nucleon interaction in the series with finite elements. We divide the AN potential into
two parts v = v _+v; where the separation distance, d, is chosen in such a way that v, pro-
duces zero scattering for two free particles, i. e. the attraction in v, just countec-balances
the repulsion in v. This means the equality at r = d of the logarithmic derivatives of the
functions: u)(r) = r®,(r) — where D(r) is the radial wave function of two free noninter-
acting par-icles with angular momentum ! — and uyr) = r¥,(r) — where W(r) is the cor-
responding wave function to two free (i. e. isolated) particles, 4 and nucleon, interacting
via the potential v,,. Thus we have

1 du?i 1 du(y)

u(ry dr ir=d~—l;(7) dr |=d

(1.6)

where r is the relative distance r = |7,—7,|. In the expansion for the G matrix we shall use
the method proposed by Kéhler [10] which is a modified Moszkowski-Scott method. We get
the series

G = GE+u+y % v+ (2F —1)(eg—e) (27 —1) + (L7)

+(QF —1)e(Q—1) (27 =1) +20,Q (27— 1),
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where GF, QF are the reaction matrix and the wave operator which correspond to v, and.
to e, — free, noninteracting particles propagator. The validity of the expansion (1.7) for
AN potential is discussed in [11].

2. Detailed calculations

Let us introduce the relative momenta

and

where p is the reduced mass of the AN system. The center-of-mass momentum is:
.
P=ky+E,=ky.

Let us introduce zlso the magnitude k,,, the average value of the relative momentum averag-

-

ing over ky
1.2
ko = —;~ ~05fm! for krp= 1.366fm
The k,, is useful in the numerical calculations.

2.1. Calculation of d and ¥F(r)

The G matrix expansion imposes conditions for the form of the wave function. We
have to replace the AN wave function in nuclear matter — %%, by the wave function des-
cribing A—N interaction but with no effect of any other nucleons — ¥¥(7), and by the free
wave function @(7). The condition (1.6) for finding the separation distance is simultaneously
a condition to identify the wave functions @(r) and ¥F(r). The separation distance must be
caleulated for particular values of the angular momentum. To this end we introduce the
partial waves expansion of the ¥F(7) and we solve the radial part of the Schradinger equa-
tion:

d3u1

dr?

+
+ {%L-; [E—v(n] — l(lr‘z 1) } u =0 2.1
with given potential v(r) and compare step by step w,(r), u)(r) and their derivaives, until
we satisfy the condition (1.6). Because d is a function of %, it was necessary to find the solu-
tion of Eq. (2.1) for all relative momenta in the following region 0 <% < 1 fm™1. The
d(k) dependence is rather essential for angular momentum [ =0 and less for [ =1, 2.
In this last case we assume d(k,,) in the numerical calculations.

Simultaneously, with d we can find the shape of the vave function. This can be done by
solving numerically Eq. {2.1) with the v, potential. Since for the calculation of d, we need
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©)(r) with an accuracy to a constant, renormalization of our results is necessary. Normalization
constant can be found comparing the value const X u,(d) with uJ(d). For a check, the func-
tion YF(r) was also calculated by the other method. Eq. (2.1) was solved step by step from
r=d to r ==r, with the initial condition (1.6).

2.2. The Q(P, k) operator

The Q(P, k) operator which excludes intermediate states from the Fermi sea, is different
from the comparable purely nuclear case. This is connected with the fact that in the A-nu-
cleon interaction only one particle is subject to the Pauli principle. This condition can be

written in the form
]

-~ M,
1+1\r

,kN; > kg or M,

Bi> ke @.2)

Because of the dependence of Q on the angle 6 between % and &', one approximates
by its angle average Q(%', k), which depends only on the magnitudes & and %'. The detailed
discussion of the validity of this approximation for N-N interaction, was gives by Brown,
Schappert and Wong (12). We get

QP, k) = Q(k, /»)—-~fdPQ(k k)

Here P is a unit vector in the direction of P and [dP means integration over angles. With
the help of (2.2) we can get the condition for the angle between k and k' vectors

Kp—k2— (%”) k2
cos (kk') = cos § >

1MN '
M kk
and integrating with this condition we get finally
0 for k<kp— o kn
My
B 1 for k> kp+ M’\r kn
Qk, k) = 2.3)
, . My 0
o+ 78 k) — k&
Md otherwise
N ’
4 M. kk

3. Single particle energies

Generally, the energy denominator e(k, k) is given by (1.3). The problem is to find
the form of ¥ 4(k,) and Vy(ky) and its dependence on momenta. ¥V (k 4} and ¥y(ky) can be
defined in terms of the reaction matrix and one can calculate V (k) and Vy(ky) by itcration
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only. In practice one iterates until self-constancy is achieved, modifing the single particle
energies with each cycle until the output energies are the same as the input ones.

For the single-nucleon potential we assume, following Weisskopf [13], that the theory
and the bare N-NN interaction are both correct in the sense that they should give correct
results, and then we can use the observed binding energy per nucleon in nuclear matter to
obtain Vy(ky). Therefore we can write

—By(o0) = ex+ 3 Vy
Inserting By(o0) = 15.5 MeV, &y = &h2k% My = 23.2 MeV we have
Vy = —77.4 MeV.

This average value is taken as the single particle potential below the Fermi sea Vy(ky).

For the single A-particle potential we assume, on the ground of the experimental data,
the initial value ¥V (k) =—28 MeV. Finally we get the starting value e(k, k') = ey(k, &') —
105.4 MeV. Of course we must perform the self-consistency procedure. The B () is to
some extent dependent on the initial ¥ (k) and calculations soon lead to self-consistency.
Notice that we use pure kinetic energies in the intermediate states (both the nucleon and 4
particle). This is justified from the point of view of the present state of the theory of nuclear
matter [14]. The particle potential energy Vy(ky) is very small, whereas the ‘‘hole” po-
tential energy is approximately equal to the averege nucleon potential energy in nuclear
matter (this was the starting point of our approximation). Brandow [16] calculated the ave-
rage value of V;v(k;\,) and received the value of 1 MeV which contributes only about 0.1 MeV
to the total binding energy. We assume that ¥ (k) gives similar contribution.

4. The G matrix elements

Eq. (1.1) gives the formula for the binding energy of the A-particle in nuclear matter
(without the rearrangement energy). The G matrix expansion is given by (1.7). Let us proceed
to the calculation of the particular terms of this series. Inserting (1.7) into (1.1) we get

kF
1 - -
Va= @ fde Z (kn s, msIGsF+’l»’1+vl—g v +
$

+(QF 1) (eo—e) (T —1)+(27—1) e (@—1) (27 -1+
+20,Q(QF =) [y, 5, m). (2.4)

We consider only the central A-nucleon potential, with the same spin dependence for all
angular momentum states

vn(r) = V() A+ A

where A° and A’ are projection operators on the singlet and the triplet state, respectively.
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4.1. The long range part V%

The first term of the G matrix expansion gives no contribution to ¥, because the
condition of our choice of the seperation distance is simultaneously the condition that
the diagonal elements (G¥),, are equal zero.

For calculating of 74 = (v)),, we expand the plan wave into the partial waves and after
summation over spins and angular integration we get finally

#H
-'__, &
F oo

3
) Z 21+1) f K2dik f REr) (vt + 3ut)r2dr. 2.5)
! d

mzich
M

4.2. Born approximation for v, V&
This correction is connected with the scattering of particles to the intermediate momenta
states above the Fermi sea. Inserting summation over the intermediate states we get

#
i

s 1 [\ | k) |
VA“W(7>0/‘”“ Wy .

where
Dy = ,,7 33 16m3( i) i B YV 0 1 1)
™ X jE T (Eryv(r)rédrdQ,.
Because afier summation over the spin states we get the following expression
) (‘lésms]v’/l‘—kv’/l‘ F's'm) (%'s'mﬁv‘/l‘%—v’/l‘ik’sms)
) — i) 31O, @)
in order to simplify the formulae we shall use in all the following expressions v(r) which

equals either v*(r) or v*{r). We must muliply this last term by 3.
With the help of the orthogonality condition for Y}, we can perform the angular inte-

gration and we have

3X¥;kF >
4 (M kK
ri=Y" @+1) — (7”) f k2dk f di'k'2 (‘Z((k ,f))
i 0 0

X ]‘jodrer,(k'r)j,(kr)v(r) 2. 2.8)

4.3. The Pauli correction V4§

From the definition of the wave operators and from the definition of the operation of
the GF matrix on the @(r) function we have

(©@F —1)|0()) = i G | D)) = PF(F)—D(F).
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Using this formula we can eliminate in (2.4) the unknown operator 2F, and V% becomes

Vi = X =D E)e, ) (Q(k 1)1 @ —1)1h

£ oer
My o0
M\ (2 [ =
=(Ti{)‘6' (_MH) j dh f i ek, k') (QUR)—1)
[i] 0
X 10f ) [PEG) — Pr(D)dr 2. 2.9)

We expand PF(r) and perform the angular integration. The function u(r)/r is calculated
numerically and also given in analytic form, convenient for integrating.
4.4. The dispersion term, Vo

The important correction term is the dispersion factor due to the presence of other
nucleons:

VR = S(ERF-1)F) [eqlk, K)—e(k, k)] (F|(@F—1)[h). (2.10)

kR’

Remembering that eglk, &) —elk, k') =—[V(ky)+V (% )] and calculating analogously as
for VE we get

M F oo
D 1 (M N (s [
Vi = —Vnkn)+Valka)] @\ dk | dk' x 211
o 0

X Lf PEC)(PEF) — Dz(1)1d7

4.5. The interference term, VY

The last term of our expansion is calculated similarly as V™.

LA
My o)
I - 2 MN 3 1 ) 7 ’
Va= Gy (7) f‘”ﬂ]d’c ek, F)x
0 0
X [of @}(F’)v(r')qz;(?')d?;fq)g(?)(WQ(?)—@;(?))d?]. (2.12)

In order to check our integral methods and the approximation used for the wave function,
VY was calculated also in an other way. Consider

Vi =2 g (Flo (0 [F') (Q(kE) —1) (F'|(QF—1)[R).
On the other hand
Vh = Vi+ S (flo| PE—Bp).
r
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This term is equal to zero because v, = 0 for r < d, and ¥F = @ for r > d. Hence we get
V! = V! Numerical results for both methods of calculating the 77 are in very good agree-
ment. This confirms the method of integrating and the wave function approximation.

5. Numerical calculations

All the numerical computaiions were performed on the GIER computer of the Univer-

sity of Warsaw. Two kinds of calculation were performed:

1) Calculation of the d(k) and ¥F(r).

2) The numerical calculation of the diagonal matrix elements of the G matrix for the an-
gular momentum /=0, 1, 2.

Calculations were performed with the two various central spin-dependent, A-nucleon
potentials. The first one is the HTS potential fitted by Herndon, Tang, and Schmid [16]
to the binding energy of the s shell hypernuclei. Its intrinsic range is equal to that of a purely
attractive two-pion exchange Yukawa potential. The form of this potential is

{ oo for 1 <04 fm
v =5
N\ =V, exp (—5.059 (r—0.4)) for r > 0.4 fm

where V== 1221.1 (the singlet state) and 954.1 MeV (the triplet state).

Potenticl AGK has been fitted by Ali, Grypeos and Kok [17] to A-p scattering under
the assumption of a common intrinsic range, for both the singlet and triplet interactions.
No fit to hyperfragments energies has been attempted. The form of this potential is

{oo for r <04 fm
I3 ==
N =V, exp (=212 1)/2.12 1) for r> 0.4 fm

where V= 1118 MeV (the singlet state) and 929.4 MeV (the triplet state).

The Schrédinger equation was solved by the Runge-Kutt method modified for our
problem. Calculations of the matrix elements were performed using the wave functions for
the average value of the relative momentum k,,. For checking the form of u(r) the diagonal
matrix elements G, was calculated, which with the exact wave function should be equal to

zero. We get for HTS potential:

©) —0.004 for the singlet state
SRR {—0.005 for the triplet state

This shows that ¥F(r) has the proper form.

6. Results and conclusion

The results of our calculations are shown in Tables I and II. All results were obtained
for the S, P, D waves. Results show that there is no need to go bevond the D waves. The
contribution from the P wave is greater for the potential with greater intrinsic range and
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TABLE I
Results for HTS potential {(in MeV}
‘ ;
% Vﬁ 1 Vﬁ { Vﬁ V,‘? V.ll i V_4
=0 L —36.9 ‘ —2.0 ' 0.4 9.6 | —1.6 } —30.5
= é —83 —09 0 0.2 0 ! —9.0
—2 ‘ —03 | o0 ‘ 0 0 o | —os3
| |
Total ’ —45.5 } —2.9 ‘ 0.4 . 98 -16 = —398
TABLE I
Results for AGK potential (in MeV)
Vi Vi vh Vi Vh V4
I=0 —53.2 —1.1 0.6 13.9 —2.2 —42.0
1=1 —21.1 —0.9 0 0.3 0 —21.7
I=2 —23 —0.1 0 0 0 —24
Total —76.6 —2.1 0.6 14.2 —2.2 —66.1

equal to one half of the S wave contribution. This dependence was observed also by other
authors [3]. The greatest contribution is connected with the long range part V5. The
dispersion term is the important correction term.

We must take into account the rearrangement energy Vg [4]. This quantity is proportio-
nal o V 4y and to the N— N correlation volume in the nuclear matter. Our present knowledge of
the N— N interaction does not allow us to make a precise estimate foc V. We take Vp=0.1V7,
[5} and by introducing ¥V, we get B,(co)==35.8 MeV for HTS potential and B (o)
= 59.5 MeV for AGK potential. Results of [5] agree with our results. The Moszkowski-
-Scott separation method was used for the A particle in the nuclear matter problem by Taha-
rzadeh, Moszkowskiand Sood [18]. However, the results obtained in Ref. [18] are outdated
because of the assumed form of v, and of the single particle energies. The separation of the
A-nucleon potential into two parts was also discussed by Bodmer and Rote [6]. They cal-
culated only V%4 with the Herndon, and Tang potential [19]. The difference ¥ ,— V% is, for
potentials with hard core 0.45 fm, very similar to that for AGK potential of this paper.

The experimental value of B ,(o0) is to be understood as an extrapolation value me-
asured from hyperauclei with a high but definite 4 number. At present, however, experi-
ments in this field are still very difficult and the uncertainty of the experimental value of
the A binding energy in heavy hyperfragments is still large. We assume the experimental
value B (o0} = 3243 MeV [20] and agreement with the theoretical value is rather bad.
One may notice the large difference between both theoretical values — nearly 80%,. The value
of B (o0) = 59.5 MeV obtained with AGK potential seems to eliminate this potential as
a realistic representation of the A-nucleon interaction in the nuclear matter. The value
B 4(e0) = 35.8 MeV (HTS potential) is reasonably close to the range of the empirically de-
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termined value of B (o0). However, the HTS potential is fitted only to the binding energy
of the s shell hypernuclei and this poteniiad has been outdated by the new poteniials of
Herndon and Tang [19], determined from both sources of information about AN inter-
action. Calculations with the new potentials gives also rather wrong results {5, 6], only one
potential gives the value of B which is in agreement with the empirical estimate. One conclu-
sion to be drawn from this is that components other than the central component in the
A-nucleon interaction may be important in B (o0}, and one can reduce the theoretical value
of B (o0} in the following way:

(I) One can reduce the B4(oo) by weakening the p-state interaction. This possibility
was first pointed out by Walecka [1]. Herndon and Tang [19] suggested 409, p-wave
suppresion. This effect corrects our results and we get 33 MeV and 52.7 MeV, respectively.

(I) Inclusion of the tensor force. The tensor part, adding to the A-nucleon potential,
gives the binding energy smaller by about 2-3 MeV [21].

(IIT) Effect of the three-body ANN forces. No doubt, there are theoretical reasons to
expect the existence of an appreciable ANN intecaction and several authors have investigated
its possible effects in hypernuclei [21]. With the present possibilities of deriving theoreti-
cally v nn and with the present possibilities of solving the hypernuclear problem, the
task of determining v 4y seems to be extremely difficult.

(IV) Isospin suppresion effect, pointed out by Bodmer [23], would lead to the conclu-
sion that the whole idea of treating hypernuclei as systems of nucleons and a A particle
with the same v, potential as in an isolated AN system is wrong.

All those effects can give essentially a suppression of the binding energy, but which one
is important, remains to be understood.

The author wishes to thank Professor J. Dabrowski for many helpful discussions
throughout the course of this work.
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