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The diffraction dissociation of pions and kaons into three particles is discussed under the
following assumptions:

a) deminance of the natural parity exchange
b) Gribov-Morrison parity rule.
The measurable consequences of these assumptions are derived.

In this paper we discuss some consequence of
a) dominance of the natural parity exchange,
b) Gribov-Morrison parity rule [1},

for the spin dependence of the diffraction dissociation of pions and kaons into three part-
icles.

We consider the reactions
a+X - (3m)+X (1)
and
K+X > (Knm)+X (1a)
where X may be any particle or nucleus.

The consequences of the assumptions a) and b) are presented for the case where no
measurements of polarization of particle X are performed?.

* Address: Instytut Fizyki, Uniwersytet Jagiellonski, Krakéw, Reymonta 4, Poland.
1 The discussion of Gribov-Morrison rule for scattering on polarized target was given recently by Meggs
and Van Hove [2]. We also refer the reader to this paper for a detailed explanation of Gribov-Morrison rule.
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If the parity exchanged in the ¢ channel of the reactions (1) and (1a) is natural, then the s
channel amplitudes of these reactions satisfy the relations [3]:

M 5320 — n(_l)ﬁMu—ﬁ;zo V3]

U
where 7 = P(—1)7".

In the above equation, 4, w are the initial and final helicities of particle X, 8 is the
helicity of 37 or Kaizw system and JF —its spin parity state, 7 = -1 for unnatural and
7= —1 for natural parity of the produced 37 and Kzmz systems. Formula (2) implies
restrictions on the behaviour of the spin density matrices of 3n (Kmm) system.

The immediate consequence of (2) is

Oppr == 77(‘1)’39—5;3'- 3
As we have seen, this formula follows just from the assumption that natural parity exchange
dominates in diffraction dissociation. It is valid for any spin projection axis provided it is
in the reaction plane. If the spin projection axis is chosen along the normal to the reaction
plane, the formula (3) can be equivalently written in the form

055 = M(—1)"0pp. (32)

The physical meaning of (3) and (3a) depends on the value of the spin of the ‘“‘decaying”
3n (Knm) system.
This may be seen by expressing these equations in terms of statistical tensors. They

read

DYWL~ B |jmy—n(—1) T,y 5 TP JB |jm+26)] = 0

BB =0, +1, £2,..., +J (4)
D=1/ (T3 I imY T[(—1)" P — ] =0
BB =0, &1, £2, ..., +J. (4a)

Formula (4) refers to the spin projection axis chosen in the scattering plane; in (4a) the
spin projection axis is chosen along the normal to the scattering plane.

Not all of these formulae (4) and (4a) can be easily checked, because for higher spin
states the statistical tensors cannot be measured from angular distributions without a detailed
knowledge of the decay dynamics. For any particular spin state one can, however, derive
the relations between moments of the angular distributions. We give here such relations
for I+ and 2- states which are probably the most important in the 4, and Q regions.

Let @ and & be the polar and azimuthal angles of the normal to the decay plane
of 37 (Knn) system in a frame X YZ which is the cm frame of this system with the Z axis
normal to the reaction plane.

Furthermore let

Ni, = [dQY}(O, D) WO, D) (5)
where W/(@., @) is the normalized distribution of © and . Then the formula (4a) implies
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a) for the 1t state
1
/807 (6)

Ni — 4,1/ B @

To derive the above formulae it is necessary to use the relations between the angular distri-
bution of the decay and the statistical tensors, as given e.g. in [4]. Formula (7) is trivially
fulfilled for the case of charged 3w system. In this case Ny = N3 = 0 because two particles
in the decaying system are identical to each other (see e.g. Ref. [4]).

The formulae (6) and (7) provide the test of the natural parity exchange dominance,
but only in the case when one spin-parity state of the 3w (Knm) system dominates in the
interesting region.

In the case when different spin parity states interfere we have worked out some tests

N =

b) for the 2— state

under the simplifying assumption that the main decay modes of A4, and Q bumps are gz
and K*n. In this we follow the approach propesed in [6] and derive the relations between
the double averages over the production and decay angles of g (K*).

Let us introduce the following notation:

Zlj = [dQdw Re [V, @)D (D, O, 0) W(O, D3 9, ¢) ©)

where @ and @are the angles determined by the g (K*) momentumin X YZ frame described
before, &, @ are the polar and azimuthal angles of the final #(K) momentum from the p(K*)
decay in the rest frame of o(K*). The frame xyz in which ¢, g are defined has its z axis along
the o(K*) direction in the rest frame of 4; (¢J) and the x axis in the plane defined by Z and
z axes. W(0O, ®; 9, ¢) is the experimental distribution of angles @, @, ¢.

If only O—, I+ and 2~ states interfere then from (2) we get

%zgg 7B 5 7 +3]/ 734 —

5 5
Z8— V— o+ — ]/5 Zgo—— =78 Z ]/5 28+
+9283—%1/5_Z§3=0; Zh =0 for j >5. )

The above relations follow from natural parity exchange dominance, Gribov-Morrison rule,
and the assumption that the highest interfering spin does not exceed 2. Thus they may be
used in order to test these assumptions.

It was shown in (4) that some relations of this type may follow from the Gribov-Morrison
rule only and can be very useful as the test of the rule. We have also derived such relations,
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they read:
Ly=Zi=23=23=71=2=0

Zh= 28— 28— 28— 24 = 2% =0
25— 2= 28— Z8=0 (10

ZM—]%SZ‘%H V3 28 =0
. 5 —

-0 e ysa=o
Z8%— V; Z8+ V3 Z3 =0

V5w 3 m
2 2
5 3
ZS‘Z——‘%Z@% 7 Z2=0 (10a)

and

Zl3 =0 for j >5.

Here Z/, = Z3! and Z4;] have the same meaning as in (9). It is worthwhile to note that
(10) follows immediately from equations (13) and (15) of Ref. [5].

At the end we give the formulae analogous to (10) and (10a) for the case when only 0~
and 1 interfere. They read:

Z3 i =0 for j >3
Zy=28=0

21 _ 722 __ 2l 21
Zog=Zg =Ly =Zg =0

2

f;l 7% — 12-/-5— Z8+-3V5 282728+ /5 Z8& =o. (11)

To conclude, we have derived the experimental consequences of the Gribov-Morrison

rule and natural parity exchange dominance for the processes of diffraction dissociation of

mesons into three particles. It seems that our relations are fairly easy to check with the

existing data, Therefore they may be perhaps useful in the experimental verification of the
assumptions used.

The authors thank Dr A. Kotanski, Dr K. Zalewski and Mr A. Golemo and Mr P.

Gizbert-Studnicki for useful discussions.
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