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Two known methods of deducing from quantum electrodynamics the approximately
relativistic quantum-mechanical equations for n charged fermions in an external electromagnetic
field have been discussed in connection with the problem (not completely solved, as yet) of a con~
sistent quantum-mechanical interpretation of such systems in terms of relativistic particle-
-observables (in the sense of the ‘“ mean” observables of Foldy and Wouthuysen). The important
role of a *‘ quasirelativistic”” wave equation describing positive as well as negative energy states
has been stressed. A new form of such an equation has been proposed and the idea of a new
effective method of its reduction to the subspace of positive energy states shortly outlined.

The well known difficulties of the relativistic quantum mechanics are caused by: 1) the
distinguished role of the time variable, as compared to that played by the position observab-
les, 2) the approximate character of all quantum-mechanical schemes describing interactions
between particles. Many attempts towards overcoming the former difficulty have been given
in the last years. Some of them introduce the time (or the proper time) operators, while
others try to avoid this assumption, as provoking some too far reaching modifications in the
standard formalism and interpretation of the non-relativistic quantum mechanics. Following
the latter path, a general scheme of a covariant Hamiltonian formalism of quantum mecha-
nics has been proposed by one of usl. In particular, the case of the homogeneous Dirac
equation shows that its usual quantum-mechanical interpretation in one specified Lorentz
frame remains consistent with the relativity postulates. A further extension of this covariant
formalism to the problem of n (identical or different) free Dirac particles desccibed in the
““covariant configuration space” is straightforward. As usually, the Hilbert space of states
of the whole system becomes then the direct product of the spaces belonging to the single
particles (or its subspace of antisymmetrized states in the case of identical particles).

On the other hand, it is obvious that no strictly covariant formulation can persist,
if interactions between the particles are to be taken into account. However, an approximately
relativistic, quantum-mechanical description is still possible in this case and it consists
in eliminating the field observables, so that only the particle observables appear in the final
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formulae expressing these interactions. It is well known that for electromagnetic inter-

actions (discussed in this note) such a simplified formulation remains valid to the second
N . o . e
order of approximation obtained by an expansion in a power series of @ = ;— = (137)~1

he

The terms expressing the influence of a given external electromagnetic field can also be
taken into account. The so described procedure leads to an approximate ‘‘quasi-
relativistic” wave equation, still including positive and negative energy states of the
Dirac particles. Its subsequent reduction to the subspace of the positive energy states
must lead to the known Schrédinger equation for n charged spin-one-half particles,
with the “effective” positive definite Hamiltonian containing relativistic corrections of the
first and second orders. Hence, the final result as well as the starting point of considerations
{from the respective formulae of quantum electrodynamics) are well established. Neverthe-
less, there are two, rather controversial, view-points of the method of deducing that result:
either the (previously mentioned) ““quasirelativistic quantum-mechanical equation can be
used in the role similar to that of the Dirac equation in its Hamiltonian formulation, or
alternatively, this intermediary step of calculations can be completely circumvented, if the
elimination of the negative frequency part of the spinor field precedes the reduction to the
approximate, quantum-mechanical description of the electromagnetic interactions. Both
methods are found in literature, with a variefy of further modifications. Let us call them
shortly the “‘intermediary-equation method” or the ““direct-reduction method”, respectively.

The ““d-method” has been used, i. e. in the papers of Berestecki and Landau [2], Itoh
[3], and Weber [4]. This is the simplest way of descending from the general formulae of
quantum electrodynamics to the explicit form of the final effective Hamiltonian. However,
this method leaves aside the important problem of other relativistic observables of particles
described by the so established Hamiltonian. The known transformation of Foldy and Wout-
huysen [5] has thrown some new light onto this problem in the simple case of the one Dirac
particle. In particular, the definitions of the ‘‘mean-position” and ““mean-spin’’ operators have
contributed to the explanation of some ambiguities having their source in the ‘‘trembing
motion” of the electron. For the case of two (or, generally, n) Dirac particles this problem
remains still open? but it is obvious that only the ““i-method” allows one to expect a satis-
factory solution. Therefore, we limit our further considerations to this method only. It has
been used in a large number of pubiications and is based on the well known quasirelativistic
equation given many years ago by Breit {7]. For two Dirac particles it has the form

d
ih % =#pY, Hp=H1+Hu+V (1)
where
H g = myc?0s x+oo klx+exPE, 2
Zx = ok - (px~5§A5<*), ®)

2 For an interesting special case dealing with the relativistic ‘‘relative position operator” defined in connec-
tion with the scattering problems see Mc Donald [6].
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In (1)-(6) quantities describing each of the two particles are labelled by the subscripts
K =1, 1I so that mg, eg, T'g, and Py denote the mass, charge, position, and momentum of
the K-th particle, respectively. AF == A%(ry), PF == P™(rg) express the potentials of the
stationary external electromagnetic field in the pesition of the K-th particle while P{ry, 74, 1)
is the wave function (in the six-dimensional configuration space and in the sixteen-dimen-
sional spinor space). The symbols @4, 6, denote the well known Dirac operators® (ex-
tended in the usual way to this direct-product spinor space).

During a long period of time, the Breit equation (deduced afier some approximations
from quantum electrodynamics) was treated as the only possible focrm of the quansirelati-
vistic two-fermion equation. In this role it was widely used despite of its known defficiencies
(for details see e. g. Bethe and Salpeter [8] p. 256). Its reduction to the Pauli formalism has
been performed in a close analogy to the case of the Dirac equation (although by means of
much more complicated calculations and in the presence of some specific difficulties not
encountered in the former case). After the elementary method of large components (used,
in particular, by Breit, himself) a generalization of the more correct method of Foldy and
Wouthuysen [5] has been displayed in a series of papers by Chraplyvy ([9], [10]), Barker
and Glover [11], Chraplyvy and Glover [12] (see also Chraplyvy and Glover [13], Chra-
plyvy [14]). The formal consistency of these two methods? has been verified by the
identity of the final result (7. e. of the effective Hamiltonian).

The use of the explicit form of the 16X 16 matrices defined as direct products of the
Dirac matrices seems to prevent this method of reduction from being generalized to an
arbitrary number of interacting particles.

An interesting new idea has been introduced in [11}] (see also [14] and [13]) where an
equation different form that of Breit has been proposed (and reduced to the identical final
result), however only for the special case

A= =0, = = 0. (7)

That new equation, deducible, after some approximations, from the Bethe-Salpeter equa-
tion ({18], [19]), can be expressed in the form (see also Eriksen [20])

., oY
ih 5

= HpsT°, Hhs = HV+H N0+ WO, @)

3 The use of p, 6 instead of a = g,0, f§ = 3 is more advantageous in problems dealing with the two signs
of energy, but leaving aside all questions concerning the spin.

¢ The question of their strict equivalence (to an arbitrary order of approximation) was widely discussed
for the Dirac equation, until it has been solved (in the positive sense) by de Vries and Jonker ([15], [16], [17]).
For many-particle problems this question becomes rather immaterial as their formulation is, from the beginning,
approximate only.
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1
Wo = Y [A2+2%, V14, 9

A = HY(HR) %, H% = mk c® 03k +C01,x Ok * Pk (10)

where [ ,]; denotes the anticommutator. Hence, in the case (7) there are two different, at the
first sight equally justified, quasirelativistic equations (2) or (8). The detailed discussion
given in [11] strongly implies the superiority of (8), as compared to (2): as the former equa-
tion automatically includes the hole theory, it is free of some peculiar difficulties encoun-
terned in the interpretation and reduction of the latter. On the other hand, {8) cannot be
applied, as ye:, in the presence of an external electromagnetic field.

We propose such a generalization which must be treated as an independent assumption,
rather than a conclusion from the Bethe-Salpeter equation. We can put, namely

S .
ih_QTZ%BSTa Hps = Hy+Hn+W, (8)
1 ’
W= 4 [Ar+Am, V], 9
A = Tp(TR)™, T = myc?y x+coy k2 (10)

instead of (8)-(10), respectively. The verification of the proposed formulae (8')-(10') may
be summarized as follows: in accordance with the point of view proposed in [1], we can base
our considerations on the quantum-mechanical formulation for two free Dirac particles,
i. e. on the equation

oP°

ih It

= (YA DO, (11)

for their wave function @°(ry, 15, ¢} (instead of referring these considerations at first to the
respective formulae of quantum electrodynamics containing the spinor field function).
The equation (11} is — at least formally — strict (and if necessary, it can even be put into
the manifestly covariant form). All limitations to the approximate description are brought
about by taking into account interactions of two kinds: 1) with an external electromagnetic
field, following the standard method of introducing the potentials A, @, 2) of the two
particles with each other. Here the necessary recurrence to the known approximate results
of quantum electrodynamics gives, alternatively, ¥ or W9, the way of deducing the latter
term being more satisfactory. However, while the Breit term ¥ can be added to the Hamil-
tonian (11) independently of the correction related to the external field, the introduction of
W containing the momenta® Py is not so simple, unless an additional postulate — that of
the gauge invariance — leads unambiguously to the postulated formulae (8')—(10"). The con-
sistency of the so established new quasirelativistic two-fermion equation (8') within the
scheme of the relativistic quantum mechanies must be verified by a detailed comparison of
its formal properties (as compared to those of the Breit equation) and by the inspection of

% One can say that, in zontradistinction to ¥, 7° does not possess the character of an ‘‘effective potential
energy” depending merely on the position coordinates.
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conclusions obtained, in particular during its reduction to the Pauli formalism, This can be
done on the basis of a new method of reduction, simultaneously proposed by us, different
from Chraplyvy’s method, although also related to the idea of Foldy and Wouthuysen.
The idea of our method may be summarized as follows: an extension of the FW-transforma-
tion for a free Dirac particle has been given by Case [21] for A* # 0, ®** = 0. It has been
shown, subsequently, by one of us (Garszczyniski, Hanus [22]) that the same transformation
used in the general case A 5= 0, @ £ 0 gives a much more simple procedure of reducing
the Dirac equaiion than the original iterative procedure used in [5]. Simultaneously, the
so obtained modified scheme of describing the Dirac equation gives some new insight into
the general problem of separating the positive and negative energy states. All these results
can be immediately extended to the case of two Dirac particles, despite of the higher degree
of complexity of the problem. The so constructed new method of reduction can be applied
to the equations (1) and (8'), successively. A comparison of them shows that only the latter
equation can be unambiguously reduced to the Pauli formalism, without introducing any
additional assumption. The result holds for different as well as for identical particles. Hence,
a striking contrast exists between this simple and consistent result for the equation (8)
proposed by us and many conlroversial aspects accompanying the reduction of the Breit
equation (by our method as well as by that of Chraplyvy). Our method seems to be simpler.
Moreover, its extension from two to an arbitrary number of particles is almost trivial as
no use need be made of the explicit form of the Dirac matrices and of their direct produsts.
Explicit, rather lenghty, calculations and a detailed discussion of the new scheme of describ-
ing the n-fermion quantum-mechanical systems in the ‘‘generalized Case representation”
will be given separately by one of us (Janyszek [23]).

We conclude by characterizing the role played by the covariant Bethe-Salpeter equa-
tion [4] in deducing the approximately relativistic, quantum-mechanical wave equations
in the configuration space expressed by (8) or (8'), respectively. The connection is more
immediate for (8) whose deduction has started from the BS-equation, although it must not
be forgotten that — independently of the approximations made during this deduction —
an additional assumption has been introduced by Barker and Glover, in order to arrive to
the Hermitian Hamiltonian Hg. Our generalization (leading to the “generalized BS-Hamil-
tonian” Hpg) refers to the equation (8) so that only indirectly it is related to the original
BS-equation, preserving, however, the most important physical content of the latter (as
conclusions related to the hole theory appear in our final results, in contrast with those
based of the Breit equation). Both, (8) and (8’) represent an approach essentially different
from that of the BS-equation, not only in its original, many-time formulation, but also
in the covariant one-time scheme proposed by Krélikowski and Rzewuski [24], (the differ-
ence becoming, however, less striking in the latter case). The cause is that (8) and (8') are,
from the beginning, expressed in the Hilbert space of the first quantization, in terms of
the Hermitian Hamiltonian, the formulation being, by definition, restrained to the second-
-order of approximation, imposed by the way of introducing the interaction between particles.
This formulation seems to give the better starting point for defining other relativistic part-
icle-observables, including the position observable, treated as different from the geometrical
space-time coordinate.
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