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ON THE MOTION OF DYONS
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The paper deals with the problem of motion of two dyons (particles with electric and magne-
tic charges) in relativistic classical mechanics. It is shown that the Bohr-Sommerfeld quantization
rules lead to an exact formula for energy levels.

Introduction

A recent article by Schwinger [1] renewed interest in the dynamics of particles with
both electric and magnetic charges. Following Schwinger we call them ““dyons”. The quanti-
zation of electric and magnetic charges and a small value of the electric charge leads to a very
large value of the magnetic charge [2]. As a result the “‘fine’ structure constant & of the
magnetic Coulomb interaction is no longer small (~ 137 rather than ~ ;) and a relati-
vistic treatment of the problem of motion becomes a necessity.

In Section I we present the solution ot the nonrelativistic classical problem of two
dyons. In Sectiion II the relativistic classical problem is discused and its canonical descrip-
tion is given. This allows us to use the Bohr-Sommerfeld quantization rules to find the energy
levels of the corresponding quantum system. The resulting formula turns out to be exact.

The estimated mass of the dyon is roughly the same as that given by Schwinger [1].

1. Nonrelativistic classical motion of two dyons

The Newton equation for the relative motion of two dual charged particles, called dyons,
with the charges e;, g, and e,, g, respectively, has the form:

dv r oXr
e = hithh 1
m— @5 +p = o
wherel m is the reduced mass, @ = —(e,e,+8:85) and f = (e;8,—€581)-

* Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warszawa, Hoza 69, Poland.
1 We omit % and ¢ in all formulas.

(707)



708

Equation (1) has four standard constants of motion: the angular momentum vector J cor-
rected by the term representing the angular momentum of the electromagnetic field [3], [4],

J=mrxv—pg 1'7 2
and the energy
mv? a
F=m7 ®

. .. T . . .
Since the projection of J on — is also a constant of motion we can choose the z-axis of the
r

spherical coordinates in the direc.ion of J. This gives

cos P = — Vi = const. (4)

This means that the trajectory lies on the sucface of a cone. The motion is given by the equa-
tions

mrtg = ®)
L Jr—p2
e ©

Exactly as in the case of the pure Coulomb force it is possible to find the trajectory. To this

end we use the relation
. Jd (1
T T dp \r

to eliminate the time variable from the equaiion (6). The trajectory is given by the formula:

1 2Em  om? J2—p? o
— =1/}2—[32 + TEE cos []/—Tzﬂ (‘P_‘Po)] + “]2—_7{%2' @

With the exception of circular orbits, all trajectories have the form of rosettes.

To investigate the scattering we introduce a unit vector in the direction of the incoming
particle:

t = (sin ¥ cos @, sin ¥ sin @, cos F)
and the outgoing particle,
f = (sin & cos @, — sin & sin &, cos B,

where @ is the smallest positive solution of the equation

i SN
cos (‘I/—JT @) = —55 . 3
1 o g
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The scattering angle @ is introduced through the relation
cos (m—0) =1 - f = sin? & cos 20 +cos? P, )
Conservation of J at infinity gives
J? = (mbV)*+p? (10)

where b is an impact parameter and V, is the velocity of the particle at infinity. Using (4),

(8), (9) and (10) we find the relation between the scattering angle © and the impact parameter
b in the form

o _—mVaE [ [miVEEp [« p?
o8O = v vz o \Jamaran) |~ mrar e

To reduce the results of this section to those given in [4], Section 3.1, we should seta = 0.

2. Relativistic classical motion and the quantization

The relativistic equation of motion has the form

d mb r vXr
Gl =~ T TP (1)

and should be understood as the description of the motion of a light dyon of mass m in the

field produced by a heavy dyon located at the origin of the coordinate system. Constants (2)
and (3) are replaced by

rXxXv r
J="27Y T
]/1——'1;2 b r

a
P

E—_"_
Vl—v2

‘The motion is again on the surface of a cone. This allows us to handle the problem as if it
were two dimensional. Similarity of the nonrelativistic motion to the Coulomb case suggests
the following choice of canonical momenta conjugate to ¢ and r:

_ e __m
Poyize TS
The energy of the system expressed through the canonical variables can be called the Hamil-

tonian
3_po
H= 242 Pp—p* _ a
]/m e r2 r

because the equation of motion can be obtained as canonical equations, viz.,

OH

I R Po

 9v. 353
e r2 ‘I/m”—%pf-%—p—-——q’rzﬂ
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OH Dr
r.—_.-a?: —52
]/m2+p;°‘+p‘p 5
OH
Pw*—5q;=0
_ _9H_pe—p 1 e
Pr="9, = " B

The last equation is the radial component of (11). It is possible to give a three dimensional
canonical formulation of the problem [5]. The essential feature of this formulation is that
the canonical coordinates cannot be the physical particle’s coordinates.

Now, one can make use of the Bohr-Sommerfeld quantization rules to determine the
energy levels of the bound states of the corresponding quantum system

1 do — i+ 1
97 VPP TIT S
1 1
ZZ . Pr dr = ne-+ E‘.
The resulting formula reads:
2 —%
SN P S (12)
B M AR S s

It coincides with the exact formula derived by Bialynicki-Birula [6] with the help of the
relativistic hydrodynamic formulation of the quantum problem. The radii of the circular
orbits are equal to

= VG =PI+ o] 13

ma

Results for the circular orbits were obtained for the first time in [5].

Both (12) and (13) show that there exists a limitation on the quantum number j similar
to that which exists in hydrogenlike atoms whose nuclei have a charge number greater than
137. In fact for a system composed of two dyons of magnetic charges g2 = 4.137 and f == 2
(compare [1]), the lowest state could be realized for n, = 0 and j = 548 (!). Applying for-
mula (12) to the system of two? spinless dyons of equal masses and equating the mass of
the ground state to the mass of the charged z-meson, we estimate the mass of dyon to be

mD = 6-5 Gev,

in agreement with Schwinger’s predictions.

2 This implies an instant interaction and it therefore undermines the relativistic character of the problem.
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If the electrically neutral meson is built in an analogous way as the charged one, the
corresponding case is obtained by setting § = 0. The electromagnetic mass difference is

i i L7
Ty

The order of magnitude is reasonable, but it is alvays positive.

I am indebted to Professor I. Bialynicki-Birula for bringing the problem considered to-
my attention and for valuable conversations.
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