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The three-alpha structure of the ground (J*, T = 0+, 0) and first excited (2+, 0) states
of the C12 nucleus was investigated in the framework of the shell-model theory. The proba-
bility density for the space distribution of the three alphas was obtained by projecting three-
-alpha states from the intermediate-coupling model wavefunctions of the CI12 nucleus.
The projection procedure was done with the use of three-alpha coefficients of fractional
parentage of the translationally invariant shell model. The main result is that the triangular
and linear configurations of the three alphas are present in the intermediate-coupling model
wavefunctions of the analyzed states. The intermediate-coupling model privileges a linear
oscillations in the ground state, while a triangular oscillations are more probable in the first
excited state. The probability of the three-alpha clusterization of C12, predicted with the
aid of intermediate-coupling model wavefunctions, is equal to 0.47 and 0.52 for the ground
and first excited state, respectively.

PACS numbers: 21.60.Gx

1. Introduction

The alpha-particle model has been used in a description of many properties of light
nuclei [1-4]. In particular, there have been many papers [4-18] where the C12 nucleus
has been treated as three-alpha bound system. In most of these papers, involving different
methods, the attention has been mainly focused on the calculation of observable quantities
such as binding energy, energy levels, B(E2) values, electron scattering form factors, the
reduced alpha decay widths and their comparison with experimental data.
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Among the papers devoted to the three-alpha structure of C12 the ones reported by
Kamimura et al. [5-7] seem to be the most valuable. In Refs, [5-6] the microscopic three-
-alpha eigen-value problem of C12, based on the resonating group method (RGM), has
been solved with total antisymmetrization taken into account. The most successful result
of this approach is the proper location of the second 0 level (which cannot be satisfactorily
predicted by the shell model {19-21]) and negative parity levels as well as explanation of the
electric transitions in the ground state band and transitions connecting different bands.
On the contrary, in other papers [22-24], the interest has been concentrated on the density
distribution of alpha particles, the aim being to connect the space correlations of the alpha-
-clusters with different modes of excitation of some states of the C12 nucleus.

Nevertheless, in most of these pappers one assumes that C12 nucleus is “a priori”
aggregate of the three structure or structureless interacting alpha-particles. So, in this
approach, one can notice a trivial fact that the probability of the three-alpha clusterization
of C12 is equal to unity for any considered state. On the other hand, looking at the same
nucleus from the standpoint of the shell-model theory this probability will be less than one,
since except of the three-alpha clusterization any other kinds of clusterization might
be preffered by the nuclear interactions. Taking into account this fact it seems
reasonable to investigate a content of the three alpha-cluster structures in the shell-model
wavefunctions of the C12 nucleus. These investigations become particularly important
in the case of lowest states of C12 which reveal a shell-like structure, on the contrary
to the excited (E, > 7 MeV) states which, according to the results of Japanese theoret-
icians {4], possess a clear three-alpha cluster structure.

The present work is along the philosophy of Refs. [22-24] with a special emphasis
on the problem of analyzing how much the correlations in the motion of the alpha-clusters
are contained in the shell-model wave functions. To this end we will consider the projection
of wavefunctions of the lowest states of C12 onto the subspace spanned by the three-alpha
states. The wavefunctions will be evaluated in the intermediate-coupling model which has
been shown to give a satisfactory description of light nuclei [19-21, 25-30].

In Section 2 the formalism of the projection method is briefly outlined, while in
Section 3 we present a method for calculating the three-alpha coefficients of fractional
parentage (CFP) of the translationally invariant shell model (TISM) which are required
to perform the projection. Some results on the three-alpha structure of the ground (J*, T
= 0+, 0) and first excited (2+, 0) states of C12 are shown and discussed in Section 4.

2. The projection method

The basic idea of the present method of analyzing the alpha-cluster structure of the
lowest states of light nuclei is based on the assumption that, in principle, realistic nuclear
wavefunctions describe all possible configurations and space correlations of nucleons in the
considered states. In the case of 1p-shell nuclei, the low lying states can be well represented
by the intermediate-coupling model wavefunctions [19-21]. Thus, the relevant three-alpha
structures in the low lying states of C12 will be described by the projection @}, of the
intrinsic part of intermediate-coupling mode! wavefunctions @, ,,(C12) onto the subspace
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spanned by the three-alpha states. In particular, we will study the three-alpha correlations
in the ground (J*, T = 0%, 0) and first excited (2+, 0) states which are better described in
the intermediate-coupling model.

Since, in the present work, shell-model calculations are performed in a restricted
harmonic oscillator (h.0.) space i.e., limited to the s*p® configuration or equivalently to the
N = 8 h.o. quanta, the three-alpha states will be expanded in the h.o. space with the same
number of h.o. quanta. A suitable orthonormal set of functions for description of the
relative motion of three alphas can be defined as follows

Fin(Ry, Ry) = [ (R) < fan (R)T™, (1)

where the abbreviated notation ¢ = N;LN,L, is used and the h.o. wavefunctions fy ‘L,(I'éi)
(i=1,2; N;=2n,+L;; N,+N, = 8) refer to the Jacobi coordinates

R, =7,~7, and R, = F3—(F +7,)/2, %))

and 'r'i (i = 1, 2, 3) is the centre of mass (c.m.) coordinate of the i-th alpha particle fixed
in the laboratory reference frame. Thus, the wavefunction of the three-alpha system has
the form

Bu(Ry, Ry) = A(fiu(Ry, RS, 8.,2..), (3)
where

A = V@ IGn2y 3 (-)°P *)
P

is the antisymmetrization operator with the permutation operator P of nucleons between
different alpha paricles, and @,, is the internal wavefunction of the i-th (i = 1, 2, 3) alpha-
-particle. The factor (,/31)~! in Eq. (4) takes account of indistinguishability of alpha parti-
cles. Although the set states of Eq. (3) does not constitute the orthonormal basis it covers
interesting us N = 8 three-alpha space. The orthonormal three-alpha basis wavefunctions
Fj u are obtained by constructing the matrix

NIl = IK@5u(R,, Ry) | S5u(Ry, R )
by the functions (3) and by solving the eigen-value problem of this matrix as follows

T B5u(Ros R) | B5(Ry, R)YCT = pC. ©)

]

a

The orthonormal eigen-functions corresponding to the eigen-value u, # 0 take the form!

1 - e
™M= N/ Z CyPiu(Ry, Ry). )

' From (7) one obtains u: = |3 C¥®%,(Ry, R2)\% If u, = 0, then Y, C¥®9, (R, R,) = 0. This
a -3

defines the linear dependence among the functions @;M(fix, Rz) which is caused by the Pauli principle.
Thus, the basis functions of the threc-alpha system are defined for u, = 0.
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The matrix elements N°® of Eq. (5), in what follows denoted as norm overlaps, can be
immediately obtained with the aid of appropriate RGM norm kernels [31, 32}, Calcula-
tions of the RGM norm kernels, in general, are complicated and require advanced algebraic
methods (for instance see Refs. {14, 31, 32]). However, in interesting us case, these overlaps
can be simply evaluated with the aid of the three-alpha CFP of TISM which are considered
in detail in Section 3.

Since states (7) form an orthonormal set, they can be used as basis functions of the
three-alpha system and the following projection operator P can be constructed

P =Y Fiy) (Fiyl (8)

which can serve to select from any wavefunction that part which refers to the three-alpha
system. Then, acting on the intrinsic intermediate-coupling model wavefunction @,,,(C12)
of C12 one obtains

|®7x> = Pl@;u(C12)) = ¥ (F5u|®sm(C12))1Fipr, ©®)

where (Fju|®,u(12C)) = a([444]L = J).

The coefficient a([444]L = J) represents the amplitude of the state &,(s*p8[444]L = J
S = T = 0) in the intermediate-coupling model wavefunction of C12 which is expanded
in the basis of Eq. (16) (for details see Appendix Al). In order to study the geometrical
distribution of the three-alpha clusters in C12 the overlap

I(R,, R;) = (A[0(R,—R,)6(R,~R))®,,9,,9,.] |02y (10)

has to be calculated by integrating over all the internal coordinates of the three alphas.
Taking into account Egs. (7) and (9) one can easily point out [32] that this overlap

(R, R) = a([444]L = J T = S = 0) Y. /i, C5fu(R,, R,). (11)

Inserting into (11) Eq. (1), the explicit form of the amplitude I'(R;, R,) in the cartesian
reference frame (X, Y, Z) of Fig. 1 finally takes the form

(R, R)=a444lL =J) Y i CT<LM,L,M,[UM)

oM M2

X L (R O, (R2) Yo (845 ) Ym0 92), 12)

where fy,(R) is a radial h.o. wavefunction?, Y;p(# @) a spherical harmonic and
(LML, M,|JM)> a Clebsch-Gordan coefficient. The probability density to find the three
alphas at the positions described by the Jacobi coordinates R, R, of Eq. (2) is equal to

Po(R,, Ry) = IN(R,, R)P. 13

2 In the present work the wavefunction fyL(R) corresponds to f,1(R) of Ref. {33] on the condition
that N= 2n+L.
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Fig. 1. The reference frame for the three alpha-particle system

Immediately from (13) via (12), one obtains the total probability (i.e., the spectroscopic
factor) of the three alpha clusterization of Cl12. This probability is

P = [ (R, R,)\*dR,dR, = a*([444]L = 1) Y p.. (14)

Eqgs. (12) and (13) will be the starting point for study of the behaviour of the three-alpha
particles density distribution Pp, in the reference frame of Fig. 1.

For the J = 0 states the wavefunctions (and their projections) must be isotropic.
Thus the Pp, will not depend on the orientation of the three-alpha system in reference frame
of Fig. 1. On the contrary, in the case of J # 0 states their wavefunctions are not isotropic
(but only symmetric about the Z-axis) and then Pp, should depend on the three-alpha system
orientation in the considered reference frame (Fig. 1). This property is discussed in detail
in Section 4.

3. The norm overlaps of the three-alpha cluster states

In this Section a method of calculating the norm overlaps of the three-alpha cluster
states of Eq. (3) is shortly presented. The method is based on the use of the three-alpha
CFP of TISM for pure s*p® shell-model configuration (see also Ref. [34]).
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3.1. Coefficients of fractional parentage of the translationally invariant
shell model

The threc-alpha CFP of TISM can be defined as follows

5(¢, 6 = N1L,N,Ly) = {®4A4 = 12, @) | A{[ fu,.,(R) X frou (R ™', 8,.8,. )},
(15)

‘where A is the antisymmetrization operator of Eq. (4), ®,(4 = 12, q) represents an internal
(translationally invariant) and totally antisymmetric wavefunction of 12 nucleons in the
state labelled by the set of quantum numbers ¢, and @, is the internal wavefunction of alpha
particle while the meaning of functions fN,_(ﬁ) is the same as in Section 2. The wavefunction
@,(A = 12, q) can be chosen as the one forming internal part of the following h.o. shell-
-model A-nucleon state

{¥(s*p*™*, q; IT)} (16)

with g = [ f1BLSJT, wherte [ f] is the Young diagram determining the permutational symmetry
of the orbital part of the wavefunction and § denotes the set of quantum numbers required
for a complete labelling of the states, in addition to the total orbital L and spin S angular
momentum, the total spin J and isospin T (the method of constructing wavefunctions (16)
is described in Ref. [35]). Thus, the wavefunction @,(4 = 12, q) can be extracted from
(16) with the aid of the following relation [36]

P(s*pA™4q; IT) = fooR)D,(s*p* ™%, 9), (17)

where foo(ﬁ) describes the motion of the c.m. (with zero h.o. quanta) of a nucleus 4 with
respect to the fixed center of the h.o. potential well. In order to calculate the CFP of TISM
of Eq. (15) let us define the auxiliary integral (see Fig. 2b)

1,(a, ¢ = N1L,NoLo; L) = <¥(s*p%, q; IT) | A{[ fu,L (R X fruorol R) ="
x w13¢az¢a1}>’ (18)

a) b) €)

Fig. 2. The sets of coordinates for the three alpha particles
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where the h.o. shell-model wavefunction of the alpha-particle is approximated by the
Y.(*4]L = S = T = 0). Thus, due to the relation (17) @, is directly defined by
P 4L =S=T=0) = Foo(NP(*[4JL =8 =T = S = 0). (19)

Making use of the generalized Talmi-Moshinsky brackets [37] the transformation from
the Jacobi coordinates of Fig. 2b to those of Fig. 2c leads to the following relation

S(q, 0) = <00N0L03Lo}4f8100N2L23Lz>—l11(‘1, 6 = N,L;NoLy:L)
X ONoN,0LyL,. (20)

In order to evaluate the overlap /, one defines a second auxiliary integral 7 (see Fig. ia)

I(g,0 = N,L,N,L;) = C¥(s*p%, I ) | A{{ Sy, F1) X v F)T ™7
X V382 Bai}y = {fooRy(s*p%, 9)]
VA Sy % firata )T ool 3) s Pz e, }- 1)

Finally, transforming the integral 7, of Eq. (18) from the coordinates of Fig. 2b to those
of Fig. 2a and taking into account Egs. (20) and (21) one obtains

5(q, ¢ = NyLyN,L;) = (OON,L,: L;|4/8{00N,L,:Ly> "}
X ~ L;L (—)L1+L2-£‘<I_V_1L11!2£'23L‘N1L1N2L23L>I(q, o = 5151]!252)- (22)
1L1N2Ly

The formula for the integral I of Eq. (21) is derived in Appendix A2.

3.2, The norm overlaps

The norm overlaps N°® of the states (3) can be written as
N7 = (AL Ry, Ry)Po, 80, JIALf(Rys B8, @,28251), 23)

where notation of Section 2 is kept.

Any shell-model, totally antisymmetric wavefunction of 4 nucleons with defined total
spin J and isospin T, corresponding to s*p*~* configuration can be expanded in the basis
of the states of Eq. (16). Thus, due to the relation (17), one can construct in the space
restricted to the s*p®~* shell-model configuration the following unit operator

1= z 1®,(s*p" ™%, 4> < ¢J(34PA 4. (24)
q=[r18LST

Inserting this operator between “bra” and “ket” states of Eq. (23) one obtains that

N = Y. 5(g, 9)S(g, o"), @3)
q

where S{g, o) are just the CFP of TISM defined by Eq. (15). Although the present method
is applied to the s*p® shell-model configuration, a generalization to more complex
cases can be straightforward (on the condition that the appropriate CFP of TISM are
known),
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4. Results and discussion

Calculations of the probability density distribution were performed according to for-
mulas (12) and (13) for the ground (0, 0) and first excited (2+, 0) state, respectively. The
norms 4, and expansion coefficients Cy of the three-alpha states of Eq. (7) entering into
these formulas were obtained by solving the eigen-value problem of Eq. (6). The solution
of Eq. (6) gives only one eigenvalue u, + 0 for J/ = 0 and J = 2 (also for J = 4) which
is equal to 0.593 (see also Ref. [38] where u, was calculated by using the generating function
technique). The expansion coefficients Cy’ corresponding to this eigenvalue are just the
<(4O)L, (40)L, (0L = J) Clebsch-Gordan coefficients for the SU(3) group?. The matrix
elements N°” of Eq. (6) were calculated with the aid of formula (25), while the three-alpha
CFP of TISM, entering into (25), were calculated by using formula (22) via (A2.4) and
taking the required alpha-particle CFP from Ref. [39]. The CFP of TISM used in the
present work are listed in Table I. As expected from the three-alpha structure of Cl2, the
term &,(s*p®[444]L = J S = T = 0) is dominating in the intermediate-coupling model
wavefunction of the C12 nucleus (see Eq. (Al.1)) and appears with the amplitude
a([444] L = J) equal to 0.89 and —0.937 for the ground (J = 0) and first excited (J = 2)
state, respectively, if the parameter of interactions of Ref. [19] were used in the intermediate-
-coupling model hamiltonian. The h.o. frequency parameter for the radial wavefunctions
of the relative motion of the three-alpha particles was obtained from the formula
hao = 41 4713 [40].

The results for the ground (0%, 0) state are orientation independent because its wave-
function @, o(C12) (as well as q)g,o) is isotropic. In order to present the results, we found
more convenient to consider a different reference frame (U, V') obtained from the one of
Fig. 1 by translating the origin to the c.m. of the three alphas and by rotating the axes
so that the position vector of one particle (say particle 3) is paralell to the V-axis. The

TABLE 1

The three-alpha particle coefficients of fractional parentage of the translationally invariant shell model
for the s*p® shell-model configuration. For explanation see text

{
N.L, ‘ 4 0 4 2 | 4 4
N.L, | 40 4 2 ) 4 4
L=0 1 —0.411 0.459 5 —0.462
N.L 40 4 2 4 2 4 2 4 4 4 4
N,L; 4 2 4 0 4 2 4 4 4 2 4 4
L=2 0.205 0.205 ~0.510 —0.066 —0.066 0.489

3 Since the three-alpha states are expanded in the h.o. space their classification can be given by the
use of SU3) group. In the N = 8 case only (Au) = (04) states are allowed [11, 16]. Therefore, the expansion
coefficients C” of the states (7) (in basis (1)) are just the <(40)L; (40)L; [(04)L = J) coefficients.
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distribution of the other two alphas will be represented by the contour plotts of their prob-
ability density. Two peaks will show their most probable positions which, together with
the already fixed point along the V-axis, give the most probable configuration of the three
alphas. In Figs. 3a-d the results for the ground state are shown for some values of the
coordinate v(= 2R,/3). For small distances (v < 1.3 fm) particle 3 from the c.m. the
dominating mode of motion is a linear oscillation. When particle 3 is placed at 1.3 < »
< 1.8 fm, two configurations; linear and triangular, emerge with a comparable probability.
The triangular configuration is represented by an isosceles (almost equilateral) triangle.
When v > 1.8 fm, the absolute value of the probability is smaller because we are now
in a region where the nuclear density is small. In this case we find the triangular shape
to be the most probable, but the linear configuration is still present.

In order to get a closer inspection to the mode of oscillations of the triangular configura-
tion in Fig. 4 the density distribution corresponding to this one is plotted in the R,, R,
plane. Looking at Fig. 4, only a single distinct peak is seen at point (R, R,) = (2.8, 2.4 fm)
which corresponds to an equilateral triangle with the edge equal to 2.8 fm. The distribu-
tion of the contours in the neighbourhood of this peak suggests that the most probable
motion of this structure is an oscillation around its most probable shape. The second hill,
peaked at (R,, R,) = (1.6, 1.4 fm), allows to suspect the presence of breathing mode
in the internal motion of the triangular structure. The two scarcely visible islands around
the points (R, R,) = (3.1, 1.2 fm) and (1.4, 2.6 fm) may suggest only a small probability
of two other kinds of oscillation, i.e. when the height of the triangle varies and its base
remains unchanged or vice versa. It is worth noticing that for R, < 1.1 fm andfor R,
< 0.9 fm the triangular configuration is not present at all.

The above results allow to conclude that some competition between the linear and
triangular configurations of three alphas is predicted by the intermediate-coupling model
in the ground state of C12. Since, as already stressed, for the J = 0 states the probability
density Py, does not depend on the the three-alpha system orientation (in the reference
frame of Fig. 1), thus the quantitative competition between these two configurations can
be estimated by calculating the quantity

k = j IRy, 84 =0, 9¢,,R;, 8, =0, ‘Pz)lzdedde%d(]/‘z (26)
j (R, 8 =0, 91, Ry, 8, = 7j2, ¢2)12dR1dR2d¢1d(P2

with I'(R,, ﬁz) of Eq. (12). The k-quantity defines the ratio of the probability density
(integrated over R;, R;, ¢, and g,) for the linear (¢, = 0, ¥, = 0) configuration to that
for the trianguiar (¢, = 0, #, = n/2) one. For the ground state k = 4.5.

As already mentioned, in the case of states with L + 0 the density distribution
is orientation-dependent (but symmetric about the Z-axis) and the shape of a system can
change with its orientation. This property is visualized for the first excited (2*, 0) state
in Figs. 5-7. From the analysis of the density distribution for some different orientations
of the three-alpha system in the reference fram (X, Y, Z) of Fig. 1 and for two alternative
orientations of the angular momentum I, namely, for the M =0(L L Z) and the
M = L(L || Z) case, it turns out that the most dominating configuration appears when
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Fig. 3a—d. The probability density Pp distribution for the three alpha particles in the ground (J%, T = 0+, 0)

state of the C12 nucleus plotted in the reference frame (U, V) for different values of the v = 2R,/3 param-

eter. A-denotes the PHAX of a given peak multiplied by the factor 100 (in [fm2]). In all figures g = 0.75,
r = 0.50, s = 0.25, and 7 = 0.10 indicate the fraction of the PMAX
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Fig. 4. The Pp for the triangular configuration of the ground (0%, 0) state of the C12 nucleus plotted as
a function R;, R,. The most probable triangle is described in the upper right-hand corner. Symbols as in

Figs. 3a-d
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Fig, 5a~c. The Pp for the three alpha particles in the first excited (J*, M, T’ + 2+, 0, 0) state of the C12
nucleus plotted in the reference frame (U, ¥). The description of the most probable configuration of the
three alphas in the (XYZ) reference frame is given in the upper right-hand corner. Symbols as in Figs. 3a~-d
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Fig. 6. As Fig. 4 but for the (J*, M, T = 2+, 0, 0) state

L 1L Z (M = 0). This dominating configuration is triangular one lying in the X-Y plane
(Fig. 5a) and its most probable shape is represented by an equilateral triangle with the edge
equal to 2.75 fm. If alpha particles are constrain to lie in the X-Y plane a linear configura-
tion is almost absent since in this case k = 0.15. We also plot for the triangular configura-
tion lying in this plane the density distribution as function of R, and R, (Fig. 6). Compar-
ing the shape of the contours plotted in Fig. 6 with those plotted in Fig. 4 it becomes clear
that the same modes of motion appear in the triangular configuration of both (0+, 0)
and (2+, 0) states of C12. When the vector R, is placed along the Z-axis, both the linear and
the triangular configurations emerge (k = 4.5). But, it depends on the value of the
v (= 2R,/3) parameter which configuration is dominating. The most distinct linear configu-
ration emerges at v = 1.23 fm (Fig. 5b) and its most probable length [ = 2.93 fm. When
the v-parameter increases the linear configuration disappears while the triangular configura-
tion becomes more and more clear. Its most distinct shape, represented by an equilateral,
triangle (with the edge equal to 2.80 fm), appears at » = 1.57 fm (Fig. 5c). When
v > 1.6 fm, only triangular configuration is still present, but with a small probability
because we arrived at the border of the nucleus. Similar behaviour of the three-alpha
system is observed when the vector R, (instead of R,) is placed along the Z-axis of Fig. 1.
Considering the M = 2 (L || Z) case, when vector R, is parallel to the Z-axis, the only
present configuration is the triangular one (k = 0). The most probable triangle is the
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Fig. 7. As Figs.S but for M = 2

equilateral one with the edge equal to 2.8 fm. This triangular configuration contains the
same modes of internal motion as those visualized in Fig. 4 for the ground state. The char-
acteristic density distribution for this case is plotted in Fig. 7 in the (U, V) reference
frame.

From the results we have shown, one can conclude that the three-alpha structure of
the ground (0%, 0) and first excited (2, 0) states of C12 is contained in the intermediate-
-coupling model wavefunctions. The probability of the three-alpha clusterization of the
ground and first excited state is, according to Eq. (14), equal to 0.47 and 0.52, respectively.
The two possible modes of oscillation; the linear (more apparent in the ground state)
and the triangular one, are present in both analyzed states. This result is, for the ground
state, different from that of Refs. [22-24] where the triangular shape was found to be more
probable. Indeed, in Ref. [23] it is remarked that the triangular configuration is prefered
when a repulsive core is included in the alpha-alpha interaction. In any case we want to
stress that a direct comparison is difficult since the two approaches are completely different.
In the approach of Refs. [22-24] the wavefunctions of C12 are expanded in.the basis
of three alpha particle states and an effective alpha-alpha interaction is used with param-
eters adjusted to get a reasonable-fit to some observable quantities. On the contrary, we
start from the wavefunctions obtained in the intermediate-coupling model [19]. As it is
well known, these wavefunctions give good results for. energy levels, magnetic dipole mo-
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ments, B(M1) gamma transition strengths, logf for allowed Gamow-Teller beta decays
[19], few-particle transfer spectroscopic amplitudes [41] and so on. Then we do not have
ad hoc adjustable parameters.

As we said before, our aim was to analyze how much the three-alpha particle structure
is contained in the shell-model wavefunctions and which kind of correlated motions of the
three alphas emerges; Our main conclusion is that both; the triangular and the linear
configurations are present in the intermediate-coupling model wavefunctions of the analyzed
ground (0+, 0) and first excited (2+, 0) states of C12. The intermediate-coupling model
privileges a linear oscillations in the ground state, while a triangular oscillations see mto be
more visible in the first excited state.

APPENDIX 1
The overlap {Fp|®;(C12)>

. The intermediate-coupling model wavefunction of C12 expanded in the basis of Eq.
(17) can be written as

;0 (C12) = ¥ a(q)®,(s*p°, 9), (Al.1)

q

where the expansion coefficients a(g) depend on the parameters of interaction used in the
intermediate coupling-model hamiltonian [19-21]. Thus, dealing with this wavefunction
and with F}, expressed by Eq. (7) the above overlap takes the form

1
FiulPsm(C12)) = Ti Z a(q)CTL Pl Ps(s*P%, 9D, (AL2)
Vv £

where summation over g reduces to only one term g = ([444)L = J T = § = 0) because
of the already assumed symmetry [4] of the alpha-particles. Since the overlap
(Piu|Ps(s*p® q)) is just the CFP of TISM, Eq. (Al.2) can be written as

1
(Fiml®m(C12)) = —=a(q =([444]L=J T =S = 0)) Z CyS(q,0). (Al3)

T

On the other hand, by inserting the unit operator 1 of Eq. (24) between the “bra” and “ket”
states of the overlap {FilFia> = 1 one directly gets that

Y CyrS(g=([444]L =J S = T = 0), 0) = /.. (AL.4)

Thus, -putting (Al.4) into (Al.3) one Maally obtains that

(FiumlPim(C12)) = a([444]L = J). (ALS)
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APPENDIX 2

The auxiliary integral I

In this Section is derived a formula for calculating the overlap integral I of Eq. (21).
This derivation is based on the use of the alpha-particle coefficients of fractional parentage
for the 1p shell in L-S coupling [39]. If the shell-model alpha-particle wavefunction is given
by Eq. (19) the integral 7 of Eq. (21) becomes

I(g, 6 = N{LiN,L;) = <¥(s*p°[£,]B,LSq: IT)!
AL, F) X D) TP AIL = S = T = 0)9,,0,,}>. (A2.1)
By introducing the alpha-particle CFP [39]

CY(s*pPL£,1B, LS I Ti = LZL (s* PP £1B.LeS, T

ISP LAIBLS,T, pT4ILS, = T, = 0)
x <(s*p*[ £,)B,L,S,TIs*[4]L, = S, = T, = 0, p*[4]L,S, = T, =0)
x.((‘l’(s‘[«ﬁl]L,, =8, =T, = 0)¥(p*[4]L,S,. = T, = O)¥(p*[4]L,S, = T, = O))L = J|
X 8545,95,007001,1, + Q> (A2.2)
where, because of symmetry [4] of alpha-particle, [f,] = [444] and [f,] = [44] and Q

contains the remaining terms with the Young diagrams of four nucleons different from
diagram [4]. Since

(S*PLfIBLSTIs*p" " *[ f1)B:1L1S1 Ty, p*L21B2L2S: Ty = \/(z )/\/(Z+4)

x (P LLIBLSTIP" [/, JB1LuS1 o, P £31B2L2S, T, (A2.3)

where [f,] and [f,,] are the counterparts of the diagrams [f] and [f;] corresponding to 1p-
-shell nucleons only, by inserting Eqs. (A2.2) and (A2.3) into Eq. (A2.1) one finally gets

12! 12
g, o) = \/ T / \/ ( s ) x <p*[44]L00p*[41L,00, p*L,00

X {P*T4IL s, (FOBe,> <PA1L2 fro,(F2)Be)- (A2.4)

The overlaps {(p*[4]L| fNL(;)¢,) are the well known overlaps from the theory of the alpha-
-particle spectroscopic amplitudes for 1p-shell nuclei, whose value is equal to ,/3/2/4
independently of the quantum numbers NL [42].
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