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NUCLEAR MATTER APPROACH TO THE OPTICAL POTENTIAL
FOR SCATTERING OF '*O AND “°Ca IONS*

By J. DABROWSKI
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A simple theory of the heavy-ion optical potential ¥ = ¥'r+i¥7 is applied to 1°O
and *°Ca nuclei. The colliding ions are described locally as two slabs of nuclear matter with
the frozen density model for the local density and momentum distribution. ¥'g is defined
as the energy difference between overlapping and separated nuclei, The energy density of the
two slabs is derived from the properties of nuclear matter, and supplemented by inhomoge-
neity corrections. For ¥y the frivolous model is applied. ¥ 'r agrees with, and ¥ is smaller
than results of “exact” X matrix calculations.

PACS numbers: 25.70.-z

1. Introduction

In the present paper, the simple nuclear matter (NM) approach to the heavy-ion
optical potential ¥~ = ¥ ¢ +i¥ presented in [1] (hereafter referred to as I) is applied
to 1°0 and “°Ca ions. In a simplified form, the approach was employed a long time ago
by Brueckner et al. [2]. It is based on the local density approximation: the two colliding
nuclei are described locally as two interpenetrating slabs of NM, moving against each
other. For the local density and momentum distribution the frozen density model is applied.
The real part ¥y of ¥ is defined as the difference between the energies of the overlapping
and spatially separated nuclei. The difficult task of solving the two slab problem starting
from the NN interaction is bypassed by a simpler procedure. The energy of the two slabs —
and thus the real potential ¥y — is determined directly from the known properties of NM.
For the imaginary potential ¥, the frivolous model is applied, and thus ¥7; is expressed
directly through the NN cross section. Empirical density distributions, determined by
electron scattering, are used for the colliding nuclei.

The paper is organized as follows. In Section 2, a short presentation of the local
density approximation for ¥ and ¥, is given. In Section 3, the frozen density model
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for the local density and momentum distribution in the system of two colliding nuclei
is described. In Section 4, results for two slabs of NM are presented. In Section 5, the
inhomogeneity corrections to the energy density are introduced. In Section 6, the calcula-
tional procedure is outlined. In Section 7, results obtained for 160 and #°Ca are presented
and discussed. A summary and conclusions are given in Section 8.

2. The local density approximation

2.1. The real part of ¥

We consider nuclei 1 and 2 (with masses M, and M,) moving in the CMS with relative
momentum Kgg; (in units of %) and energy E (see Fig. 1). We denote by R the relative
position vector between the centers of mass of 1 and 2. We define the real part of the optical
potential ¥y = ¥ (E, R) between the two nuclei by splitting the nuclear CM energy
&cw(Krer, R) into the kinetic energy of the relative motion of nuclei 1 and 2, h2K2p, [2u
[u = M, M,[(M,+ M))), the intrinsic nuclear energies of isolated nuclei 1 and 2, &;,(1),
and &,,(2), and ¥

Ecm(Kzer R) = 17K 20+ 81D +E,0(2)+ ¥ (E, R). (2.1)

During the collision, the instantaneous relative momentum is changing with R,
K = Kpe(R), in such a way as to conserve the total energy:

Ecm{Kre(R), R)+ ¥ (R) = E, (2.2)

where ¥"(R) is the Coulomb potential between nuclei 1 and 2. Energy conservation Eq.
(2.2), which may be written as

h? Kee(R)* /2004 ¥ "o(E, R)+ ¥ ¢(R) = h*Kger(0)’/21 = E, 2.3

determines the dependence of Kgzg; on R.

ffn-3]

Fig. 1. The density distribution in two colliding nuclei. The CM of nucleus 1(2) is 0,(0;)
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We apply the energy density formalism, and write &y in the form
Ecm(Krer, R) = fd'HCM(KREL, R;r), 2.4)

where Hcy is the energy density (in CMS) at r. We assume that for a given
distance R between the two nuclei, the system may be approximated locally (at each point
r) by a piece of NM of total density ¢ and with momentum distribution n(ky). Obviously,
we have

e = [4/2n)°] | dkyn(ky), 2.5)

where the factor 4 takes care of the four spin-isospin states (we assume that both colliding
nuclei are spin and isospin saturated).

At the moment, we do not consider the problem of determining ¢ and », which we
shall overcome later (in Sect. 3) with the frozen density model. Our present task is to deter-
mine the energy density H of NM with given ¢ and n. Instead of trying to do it starting
from the NM interaction, we relate H to the properties of normal NM, i.e., NM in its
ground state.

We consider normal NM of the same density ¢ as the local density of our system of
colliding nuclei. In this normal NM, the momentum distribution is

no(kyn) = O(kg—ky), (2.6)
where the Fermi momentum
ke = (3n%¢/2)', @7
and the energy density is
Hy = (Exw/4)e = f(0)o, (2.8)

where f(¢) = Eyw/4 is the energy per nucleon in normal NM.

Expressions (2.6)-(2.8) are of course valid only in the rest frame of NM (in which the
total momentum vanishes), which we shall call the local center of mass (cm) frame. From
now on, we shall denote by ky nucleon momenta, and by H the energy density of NM in

this cm frame.
For the difference between H and H,, we use the approximate relation

H—Hy = H—fo = [4/21)°] | dkn[n(kn)—no(kn)]eo(ky) (2.9

(e, is the s.p. energy in normal NM), which is valid when the difference n-n, is small
[Neglected in (2.9) is the change in the effective two-body interaction induced by the
change in the momentum distribution.]

For the s.p. energy e,, we assume the effective mass approximation:

eo(ky) = e(kn) + Vo(kn) = e(kn)/v+C, (2.10)

where e(ky) = h2kZ]2m, V,, is the s.p. potential, and v = m*/m is the ratio of the effective
to the real nucleon mass. Inserting (2.10) into (2.9) gives

H = fo+(t—1o)/v. 2.11)
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where t and t, are the kinetic energy densities (in the cm frame) in our system and in
normal NM:

© = [4/(2n)*] § dkyn(ky)e(ky), (2.12)
To = [4/(27‘)3] j dkyno(ky)e(ky) = (3/5)e(kg)e-

For the semi-empirical function f(g), we use the form:

5
f(@) = (3/5)e(ke) + Iz'a a;(kelkgo)', (2.13)

where kg is the Fermi momentum at the equilibrium density g¢, and the coefficients a; are
determined by kgq, by the volume energy of NM, &,,; = f(go), and by the compressibility
K. = kio(d*fldkg)o.

To fix the value of v, we notice that Eq. (2.10) implies that dV,/de, = 1—v. Since
the empirical energy dependence of ¥, (i.e., of the depth of the real optical potential) is
dVofde, = 0.3 (see p. 237 of [3]), we get vy = v(g,) = 0.7. For the dependence of v on ¢, we
use the form [4]

v =we) = 1/[1+(1/vo—1)e/eo). 2149
2.2, The imaginary part of ¥

In the case of the nucleon-nucleus optical potential, one may express the imaginary
part of the potential directly through the NN cross section. The procedure, known as the
frivolous model, is extended here to the case of the nucleus-nucleus optical potential.
In I, the frivolous model expression for ¥, was derived from the equation for the effective
NN interaction (the " matrix) by applying the optical theorem. Here, we restrict ourselves
to an intuitive motivation of this expression.

The absorption in the nucleus-nucleus scattering is caused by NN collisions which
carry the system out of the elastic channel. These collisions may take place in all volume
elements, and thus

Y(E,R) = S dro(Kggy, R; 1), (2.15)

where the absorptive potential density r, is the contribution to ¥, of the NN collisions
in the unit volume at r. In our local density approximation, we consider the unit volume
at r as a piece of NM of density ¢ and momentum distribution n(ky). In this unit volume,
the probability per unit time of a collision between a nucleon with an arbitrary momentum
k, and another nucleon with an arbitrary momentum k, is

wo = (1/2) [4/(2r)°]? | dk,n(k,) | dk,n(k,)ve, (2.16)

where o is the total NN cross section, and v = 2kk/m is the relative velocity of the two
nucleons, where k is their relative momentum,

k = (k, —k,)/2. 2.17)
The factor 1/2 in (2.16) prevents double counting.
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The most important many-body effect which has to be incorporated into semi-classical
expression (2.16) is the Pauli blocking of the occupied final states in the NN scattering
in NM. We denote the final momenta in the NN scattering by k] and k3, and the final
relative momentum by k' = (k}—k3)/2. Notice that the total momentum 2K = &k, + &,
= ki +k; is conserved in the scattering. Let us write the total NN cross section ¢ in terms
of the differential cross section: o = [ dk’da/dk’. If the final state k) or k is occupied by
other nucleons of NM, the Pauli principle prevents the scattering into these states. To
take it into account, we make the replacement:

o - [ dk' Q(K, K')do|dk’ = | dk'Q(K, K'a/4n = D(K, K)o, (2.18)
where the Pauli blocking operator
K, k') = [1—n(k))] [1—n(k3)] = [1-n(K+Kk)] [1-n(K—-Kk"], (2.19)
and the angle-averaged operator
O(K, k) = (1/4n) | dkQ(K, k). (2.20)

In the first step in (2.18) we approximate do/dk’ by o/4r, and in the second step we assume
that k' = k.

Another important many-body effect is the dispersion, i.e., the momentum dependence
of the s.p. potential [see Eq. (2.10)], which leads to the appearance of the factor v = m*/m
in the expression for the collision probability. This may be easily understood because
the probability is proportional to the density of final states (the number of momentum
states per unit energy), which in turn is proportional to the effective mass. Of course,
using for v the value determined in normal NM involves an approximation discussed in L

Thus the Pauli blocking and dispersive effects modify expression (2.16) to

w = (1/2)v[4/2n)*]? § dkyn(k,) { dk,n(k,)O(K, k) 2hkjm)o. 2.21)
For the absorptive potential density v, connected with w by the relation v, = —hw/2,

we get
o = —v(h*2m) [4](27)*T* | dkn(k,) | dk,n(k)Q(K, k)ko(k). (2.22)

3. The frozen density approximation

In this Section, we present a simple way of determining the local density ¢ and mo-
mentum distribution, known as the frozen density approximation. In this approximation
all degrees of freedom are frozen, except for R. The density of each of the two nuclei
does not relax during the collision. The instantaneous velocity of each point of the nucleus
1(2) is the same [in CMS it is equal —hKgg /M, (hKge /M>)]

The total local density of the combined system at r is equal to the sum of the original
densities of nuclei 1 and 2 (see Fig. 1):

e(r) = 0:(r)+a.(jr—RY)). 3.D



66

As far as the momentum distribution is concerned, it should be reminded that » is the
momentum distribution in the noninteracting system (in particular, in normal NM it is
represented by the Fermi sphere n = ny).

In the rest frame of nucleus 1 (the frame with the origin in O, — see Fig. 2), the
local momentum distribution at r of nucleons in nucleus 1 is the Fermi sphere (surface F,)
center in O,, with the local Fermi momentum

keio = kerolr) = [37‘291(")[2]1/3- 3.2)
R F
£ - N
= 5
01 2
{a} Kr > kF10+kF20 ) KT< kmo*’szO

Fig. 2. The local momentum distribution in two colliding nuclei

In the rest frame of nucleus 1, nucleus 2 moves with velocity #iKgg; /i, and at each
point r the average momentum K, of nucleons in nucleus 2 is

K, = (m/p)Kgg,- (3.3)

Hence the local momentum distribution at r of nucleons in nucleus 2 is a Fermi sphere
(surface F,) centered in O, (with 01(32 = K,), with a local Fermi momentum (see Fig. 1)

kezo = kgao(r) = [3n%ey(Jr—RD2]. 3.4

Of course, we may define K rzindependently of any reference frame, as the difference
between the average momenta of nucleons in nucleus 2 and of nucleons in nucleus 1. Thus
we may call K, (twice) the average relative NN momentum.

For the combined system of nuclei 1 and 2, we obtain the local momentum distribu-
tion n consisting of two Fermi spheres with surfaces F; and F,: all s.p. momentum states
within the Fermi surface F = F, +F, are occupied, and the states outside of F are empty.

The situation when K, > kp;o+kga20, shown in Fig, 2(a), presents no problem. If
however k, < kgyo+kgaio [Fig. 2(b)], the two Fermi surfaces overlap, and the problem
arises of a double occupancy within the overlap region. In resolving this problem, we apply
the prescription of [5]: we increase both Fermi momenta kg,y and kg,o by the same
amount 4,

key = kgro+9, kg = kgyo+9, 3.5)
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and determine J from condition (2.5) with ¢ given by Eq. (3.1):
0 = o1+e; = [4/2n)° 1%, (3.6)

where ¥y is the volume within F = F, + F,. In the extreme case when F, lies within F,
(or F; within F,), i.e., when K, < |kg;9—Kkg20l, Only one Fermi surface F, (or F,) remains,
with the radius equal to [3n2¢/2]"/>.

In conclusion, the frozen density approximation (plus the prescription to avoid a double
occupancy) leads to the local density g, Eq. (3.1), and to the two-sphere momentum distri-
bution of Fig. 2 specified by the parameters K,, kg,(r) and kg (r), determined by Kpgp,
Eq. (3.3), and by 0,(r) and g,(lr—R}), Egs. (3.4)-(3.6).

With the two-sphere momentum distribution », one may obtain analytical expressions
for the kinetic energy density 7, Eq. (2.12), and for the angle-averaged Pauli blocking
operator @, Eq. (2.20) [see Appendix in IJ.

4. Results for two slabs of NM

In all our calculations, we use the following parameters of normal NM:
kyo = 1.35fm~! (go = 0.166 fm3), &, = —15.8MeV, K, = 235MeV, and v, = .7.

For the total NN cross se¢tion o for the NN scattering with the laboratory energy
E, > 20 MeV, we use the parametrization [6]:

0 = (Oan+0,p)/2 = (2.2356/8% — 5.606/ 5+ 6.255)fm”, 4.1
where f§ is the relative NN velocity in units of ¢,
B = v/c = QE/mc*)'? = 2hk/me. 4.2)

For E; < 20 MeV, we use the effective range approximation with the following values
(in fm) of the respective singlet (s) and triplet (t) scattering lengths (a) and effective ranges
(2 Qe = —16.1, rgn = 3.2, a,,, = —23.714, r,,, = 2.704, Qap = 5.4, and r,, = 1.73.

We consider two slabs of equal density ¢, = ¢, = ¢/2, moving against each other
with relative velocity K,/m. For the momentum distribution n, we assume the two-sphere
distribution of Fig. 2. In this homogeneous system, the energy &cy = H x(volum of the
system) is infinite, and we introduce the energy per nucleon &cy/4 = Hfg, and similarly
V|4, where A is the total number of nucleons in the two slabs. Notice that in the two
slab system, the cm frame coincides with CMS, and Hq, = H. For the intrinsic energies,
we have &,,(1)/(4/2) = €,.(2)((A/2) = f(e/2).

In the homogeneous system of two slabs, K, is constant [for two equal slabs
K, = 4Kyg1 /A — see Eq. (3.3)], and we present in Fig. 3 our results for ¥°/4 as functions
of K, for the total density ¢ = go/2 (A), ¢ = 0o (B), and ¢ = 2¢, (C).

The potential energy contribution to ¥'g/4 increases with K, (which may be traced
back to the short range NN repulsion) and the kinetic energy contribution (the increase
in the kinetic energy caused by the Pauli blocking when the two Fermi spheres overlap)
decreases with K,. The net result is the initial decrease in ¥z/4 and the appearance of
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Fig. 3. ¥'r/A and ¥7{/4 for two colliding slabs of NM of the same density as functions of X, for the total
density ¢ = go/2 (A), ¢ = go (B), and g = 2g, (O

a “window” of a minimum in #73/4 at K, = 1.5fm™1, If the densities of the isolated
slabs are less than half of the saturation density g, (cases A and B), one gains energy by
merging the two slabs, and thus #;/4 < 0. In case C the densities of the isolated slabs
are equal g4, and to merge the two slabs to a combined system of density ¢ = 2¢,, we
have to supply energy, and thus ¥ > 0.

The depth of the imaginary potential ¥",/4 increases with K, because more and more
phase space allowed by the exclusion principle is available for the final states of the NN
scattering. Whereas at large values of K, (here § = 1) the absorption increases with o, at
small values of X, it decreases with increasing ¢. Namely, the dominant factor in determin-
ing the density dependence of ¥7/4 at small values of K| is the reduction of |¥7|/4 by the
exclusion principle which is the more effective the higher the density.

Our way of calculating ¥7/4 may be regarded as an approximation to the work of
Faessler and his collaborators [7-9]. These authors start with the Reid soft core NN
potential [10], solve self-consistently the equations for the complex effective NN interaction
(the Brueckner " matrix) for two slabs of NM, and use this interaction in calculating the
complex energy density. We apply approximations which allow us to bypass the problem
of determining " from a potential model. As it was shown in I, our results for ¥"z/4 agree
nicely with those of the Faessler group, especially if we replace our empirical NM parameters
by the parameters of the “‘Reid soft core NM”, i.e., the parameters calculated by the Faessler
group with the Reid soft core potential.

The situation with ¥7/A, discussed in detail in I, is less satysfactory. In Fig. 4, we show
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our results for ¥7,/4 as functions of the total density ¢ for K, = 1, 2, and 3 fm~!, together
with the same ‘“‘exact” results of the Faessler group, taken from the paper by Ohtsuka et al,
[9]. In general, our absorptive potential is weaker than the “exact” one. Our frivolous
model is expected to work best at high energies and low densities. The behaviour of the
curves in Fig. 4 appears to agree with this expectation {except for the lowest densities
considered, where the “exact” absorptive potential for K, = 2, and 3 fm-! becomes weaker

0 T 1 i
"U,/‘ﬁ
L
[HeV]
-5 I )
/ 1:8 AP /
, Ke [fm-1) = {2 : B T~
o ! 3:¢C T
present work
- - - - Ohtsuka et al.
i L 1
-10
0 1 0/ 8 2

Fig. 4. ¥'{/A for two colliding slabs of NM of the same density as function of the ratio of the total density
o to the saturation density g, = 0.166 fm—3

than ours). Most serious is the discrepancy between our and the “exact” results for
K, = 1fm! and 0.1 < g/go < 0.5 (curve A).

The high density behaviour of our results is sensitive to the value of the effective
mass v = m*/m (at low densities v 2¢' 1) which we assume not to depend on the momentum,
In fact, with increasing momentum the effective mass is expected to increase. Taking it into
account would increase the depth of our absorptive potential at larger values of K, and
higher densities, and thus reduce there the discrepancy with the “exact” results.

On the other hand, the convergence of the Brueckner theory deteriorates at high
densities. Furthermore, the ‘“‘exact™ theory requires approximations for its execution,
that may affect the reliability of the “exact” results in an uncontrolled way.

No doubt, the accuracy of our frivolous model of ¥ should be investigated more
carefully in spite of the fact that the model appears to work in the case of the nucleon-
-nucleus optical potential [11, 12).



5. Inhomogeneity corrections

Variations of the density, especially at the surface of the nuclar system where the
effects of the finite range of the nuclear forces are important, lead to density gradient
corrections to the energy density H. We take them into account in the same way as it was
done by Brueckner et al. [2]. Namely, we add to the energy density the gradient correction

HV = Ty + Ry. (5.1)
The gradient correction 7., to the kinetic energy density, known as the Weizsicker

_correction, is

7y = (h*[12m) (Vo)’/e. (5-2)

(Notice the additional factor 1/9 compared to the original form of the Weizsicker correc-
tion.)
For the gradient correction 7 to the potential density, we use the form

My = n(Ve)’, (5.3)

and treat 5 as a free parameter which we fix by requiring that the intrinsic nuclear energies
&;. (plus the Coulomb energies) calculated for °O and #°Ca agree with the experimental
energies.

We calculate &;, for O and #°Ca according to the expression

Ein = [ Ar{f(@a+(1*[72m) (V8)’[d+n(VE)’}, (5.4

where § is the density in 160 and “°Ca respectively.
For § we use the density distributions determined by electron scattering [13]. For
16 we use the modified harmonic oscillator distribution

a(*°0; r) = do[1+a(r/c)*] exp {—(r/c)*}, (5.5)
with o = 1.544, ¢ = 1.833 fm (g, = 0.1407 fm3, \/<r2> = 2718 fm), and for “°Ca the
three-parameter Fermi distribution

8(*°Ca; ) = Go[1+w(r/c)’J/[1 +exp {(r—c)/z}], (5:6)

with w = —0.161, ¢ = 3.766 fm, z = 0.586 fm (g, = 0.1698 fm~3, v {r?> = 3.482 fm).
For r/c > 1/\/—w, we put § = 0. These densities were used in drawing Fig. 1 in which
0; = 0(*°Ca), 0, = @(*¢0), and ¢ = ¢, +0,.

For the Coulomb energy of %0 and *°Ca, we use the expression

Ecou = 3Z%¢*[5Rc, 6.7

where Rc = [5(r?)/3]"* [RL*°0) = 3.51 fm, R.(*°Ca) = 4.49 fm]. Expression (5.7)
represents the Coulomb energy of a uniform charge distribution with the same r.m.s.
as § (following [14], we use Z? instead Z(Z—1), and neglect the exchange part).
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TABLE 1
Ground state energies (MeV) for 'O and *°Ca

160 40Ca
Kinetic energy 2174 604.7
Weizsdcker term 119 19.2
Potential energy —387.2 —1071.2
7(ve)? term? 16.1 28.5
Coulomb energy 15.8 76.9
Total —126.0 —341.9
Experimental —127.6 —-342.1

2y = 22 MeV fm®,

Table I shows the energies obtained for !°0 and 4°Ca with n = 22 MeV fm®. The nice
agreement with the experimental energies of both nuclei obtained with the empirical
densities and with the same value of » indicates that the form of our energy density is basi-
cally correct. This value of n will be used in all our calculations.

6. Calculational procedure

To calculate the optical potential ¥~ for the scattering of nucleus 2 (projectile) on
nucleus 1 (target), we apply the local density approximation (plus inhomogeneity correc-
tions) and the frozen density model. This means that locally (at each point r — see Fig. 1)
the system is approximated by two slabs of NM with the total density ¢(r) given by Eq.
(3.1), and with the two-sphere momentum distribution of Fig. 2.

As in Sect. 2.1, we calculate the energy density H in the cm frame of the two slabs.
Now, the cm frame depends on r (is local). Thus before calculating the energy &, we go
over to the rest frame of slab 1, which we call the “laboratory” (lab) frame. This frame —
in our frozen density approximation — coincides with the rest frame of nucleus 1 and does
not depend on r. [Of course, it depends on R; at R = oo it coincides with the laboratory
(LAB) frame of nuclei 1 and 2 with nucleus 1 being the target.]

In the lab frame, we have

Eu(Kreps R) = § dr{Hyy(Kper, R; 1)+ Hy} (6.1)
where
Hy, = H+(h?*[2m)kge. 6.2)
By kg we denote the momentum per nucleon in the local two slabs of NM in the lab
system:
kg = ; dkyky/Ve, (6.3)

where ky = ky+Kg is the nucleon momentum in the lab frame. The integration in (6.3)
over momenta inside the Fermi surface F may be easily performed, which leads to a simple
expression for kg in terms of K,, kg, and kg, [see Eq. (3.1) of I].
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To determine ¥ 75, we use Eq. (2.1), and the relation
Sy = Ecm+ (MK 2(M,+ M)), (6.4)
where K, = (M,/u)Kgg is the momentum of nucleus 2 in the lab frame. We get:
YR(E, R) = S1(Kger, R)—(hMKegr [1)[2M, — 8;,(1) — 8:0(2)- (6.5)

For a given CM energy E, we know only Ky, (o0) = (2uE)"/?/h, whereas expression
(6.5) for ¥"4(E, R) depends on Kgg; = Ky (R), connected with Kgg; (o0) by energy con-
servation Eq. (2.3) which in turn contains ¥ (£, R). We solve this problem by iteration
which we start by calculating ¥'Y with the help of expression (6.5) with Kggy = Kggs(00).
In the next step, we calculate ¥'{¥; by applying expression (6.5) with Kgg, = K{P(R),
obtained from Eq. (2.3) with ¥ g = 7. After a few steps, we obtain ¥ = ¥ {1 = ¥7.

To calculate ¥7;, we apply expressions (2.15) and (2.22). Notice that expression (2.22)
for the absorptive potential density v, contains the local two-sphere momentum distribu-
tion n of Fig. 2, which depends on Ky (R). This presents no problem, because after deter-
mining ¥y, we know Kpp (R) from energy conservation Eq. (2.3).

The connection between E;,p/4, (the kinetic energy of the projectile nucleus per
projectile nucleon in the LAB system) and K (o0) [in fm~'] is:

Epan/d, = (h*/2m)K(0)* = 20.7 K (0)* MeV. (6.6)

For the r-integration in (6.1) and (2.15), we use cylindrical coordinates with the z-axis
along R. We assume that K, is parallel to R, which reduces the r-integration to a twofold
integration. Whereas we have analytical expressions for H, expression (2.22) for v, involves
integrations over k; and k,. These integrations, in cylindrical coordinates along K,, lead
to a five-dimensional integration. All the integrations have been performed by means of
the Gauss formula.

7. Results for **O and *°Ca and discussion

In all our calculations, we use the density distributions of 0 and 4°Ca described
in Sect. 5, and the NM parameters and the parametrization of the NN cross section ¢
described in Sect. 6. The inhomogeneity corrections described in Sect. 5 are included in
our calculations.

To obtain ¥ (R) we approximate charge distributions in nuclei 1 and 2 by equivalent
uniform charge distributions (see Sect. 5) and calculate ¥"(R) as the Coulomb interaction
between these two uniform charge distributions. Results obtained for ¥"((R) are shown
in Fig. 5.

The role of the dependence of K, on R is illustrated in Fig. 6 in the case of the potential
¥ between two '°O nuclei at K,(c0) = | fm-!. Results for ¥"; and ¥7, obtained with K,
= K(o0) are drawn as broken curves, whereas those obtained with K, = K (R) [connected
with K,(c0) by Eq. (2.3)] as solid curves. Both curves for ¥ represent an attractive poten-
tial. Also the total potential ¥ .., = ¥ g +¥ ¢ (see Fig. 5) is attractive [only for R 2 6 fm
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Fig. 6. #'r and ¥} for 20160 at K (o) = 1 fm calculated with and without the R dependence of K,
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is ¥'g o Tepulsive but small, and the change in 77 introduced by the dependence of KX, on
R is here very small] and thus we have K,(R) > K,(co) [see Eq. (2.3)]). Looking at Fig. 3, we
notice that ¥ decreases with increasing K, at K, = 1 fm~* (we are here below the “window”
at K, = 1.5 fm-1). Consequently ¥ r(K,(R), R) < ¥ j(K,(0), R) as is seen in Fig. 6.

Situations different from that shown in Fig. 6 may also occur. For an attractive
¥ r. at K, above the “window”, we have ¥ (K, (R), R) > ¥x(K, (), R). For a repulsive
¥ r.o the situation is reversed: ¥ g(K(R), R) > ¥ (K, (), R) at K, below the “window”
(X, £ 1.5fm™"), and ¥ (K (R), R) < ¥'g(K(0), R) at K, above the “window” (K,
2 1.5fm™1).

The behaviour of ¥7, is simpler, since ¥"; decreases monotonically with increasing
K,. Consequently, ¥(K(R), R) < ¥'(K(), R) for an attractive ¥y, (the situation
in Fig. 6), and ¥"(K,(R), R) > ¥ |(K(o0), R) for a repulsive ¥y .

The dependence of K, on R, Eq. (2.3), has been considered also by Miiller [15], and
partly {with the Coulomb potential neglected in Eq. (2.3)] by Ohtsuka et al. [9].

‘The importance of the inhomogeneity correction is illustrated in Fig. 7. To explain
the R dependence of this correction, let us start from a large distance R, at which the two
16O nuclei are spatially separated. When we decrease R, the two nuclei begin overlapping
and the surface of the combined system (originally equal twice the surface of 1°0) decreases.
Since it is the surface region in which (Vg)? # 0, the (positive) inhomogeneity correction
to the energy of the combined system decreases, and thus the inhomogeneity correction
to ¥’ is negative (attractive). When the two nuclei overlap completely (R — 0), the surface
of the combined system becomes minimal (equal to the surface of !0). Here, however,
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Fig. 7. Contribution of the inhomogeneity correction to ¥'g for 10-'%0 at K{o0) = 2 fm™!
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o(r) = 23(*°0; r), and (Vg)? = 4(V@)>. Thus the increase in (Vg)* by a factor 4 compared
to (V3)? becomes more important than the decrease in the surface (by a factor 2 compared
to the surface of two separated 'O nuclei). Consequently, the inhomogeneity contribu-
tion to ¥y at small distances R is positive (repulsive). [The above reasoning applies to the
inhomogeneity correction ny ~ (V@)®. A similar reasoning applied to the Weizsicker
term 7, ~ (Vg)*/¢ shows that its contribution to ¥’y vanishes at R = 0, and is attractive
for R # 0.]

We use the frozen density model, and a rough criterion for its applicability is that
E; ,5/Ap should be larger than the intrinsic kinetic energy per nucleon in the colliding
nuclei, i.e., about 30 MeV. This implies the condition K(o0) 2 1.2 fm™* [see Eq. (6.6)].
On the other hand, an upper limit on X, is imposed by our use of the nonrelativistic theory:
for K(w) = 3.4 fm~!, we already have Ej,p/dp = § mc2.

Our final results for ¥°(R) for K{(0) = 1, 1.5, 2, and 2.5 fm~! (i.e., for Ep ,5/4p = 21,
47, 83, and 130 MeV) are shown in Fig. 8 for 150-1¢Q, in Fig. 9 for 1°0-*°Ca, and in
Fig. 10 for *°Ca-*°Ca.

The most striking feature of our results is the strong dependence of both ¥y and ¥7; on
K (), i.e. on the energy E. It reflects the dependence of ¥'g/4 and ¥"}/4on K, for two slabs
of NM, discussed in Sect. 4. The increase in |¥";]/4 with increasing K, (see Fig. 3) leads
to the fast increase in the depth of ¥, with increasing X, (co) seen in Figs 8-10. The fact
that ¥ in Figs 8-10 is most attractive for K, (c0) = 1.5 fm~! is caused by the “window”
of a minimum in ¥/4 at K, = 1.5fm™! in Fig. 3.

At small- distances R the potential ¥ x(R) is less atractive, and becomes repulsive
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Fig. 8. g and ¥"{ for '0-1°Q at the indicated values (in fm™*) of KX,
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Fig. 9. ¥'r and ¥ for *°Ca-'°0 at the indicated values (in fm™?) of K,
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at large values of K (c0) and also at small values of K,(o0) [see 4°Ca—*°Ca at K,(0)
= 1 fm~]. This repulsion at small distances R is caused by the following factors:

— At R = 0 a substantial part of the combined system has the density g > g,
which gives a repulsive contribution to ¥y.

— In the region where kg;o(r)+kg20(r) = (37%/2)*{0,(r)'* + 02(Ir— RD?} > K,
the increase in the kinetic energy caused by the Pauli blocking gives a repulsive contribu-
tion to ¥"g. With increasing K, the region shrinks and the contribution decreases. It disap-
pears completely for K, R kg1o(0)+Kkg20(0) = 2(3n200/2)"* = 2.7 fm-2.

— The potential énergy contribution to ¥7; increases (algebraically) with increasing
K,. It may be traced back to the short range NN repuision.

— Our inhomogeneity correction is repulsive at R & 0 (it does not depend on K,).

The absorptive potential ¥ is concentrated at small distances R. Its range is short
compared with the range of ¥",. It should be stressed that our absorptive potential arises
entirely from the two-body mechanism of incoherent NN collisions. However, the damping
of the elastic channel in the heavy-ion scattering may arise also from coherent excitations
of collective states. These genuine surface effects, disregarded in our NM approach, are
expected to increase the range of the imaginary potential [16].

OQur results for ¥R(R) and ¥ (R) for the !%0-'%0 system at K, (o0) = 1 fm~! are
compared in Fig. 11 with the same results of Ohtsuka et al. [9], calculated in the frozen
density approximation with the “exact’ energy density H obtained by solving the )" matrix
equations with the Reid soft core NN potential.

The agreement of the results for ¥ (R) is quite satisfactory, in spite of some differences
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Fig. 11. Present result for ¥ g(R) for 1°0-10 at K, = 1 fm~! compared with the result of Ohtsuka etal. [9]
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in the two calculations. Ohtsuka et al. have an equation of state of NM (calculated with
the Reid soft core potential) softer than ours, which however is balanced by their neglect
of the dependence of K, on R (see Fig. 6). They do not consider 7, and instead of our
expression (5.1), they use the inhomogeneity correction H, = 7 with a correspondingly
bigger value of n. Furthermore, their density §(*°0;r) differs from ours. Also their
prescription to avoid the double occupancy when the two Fermi spheres overlap [17],
differs (for kgio # kypao) from our prescription (3.5).

On the other hand, our absorptive potential ¥"(R) is much weaker than that calcu-
lated by Ohtsuka et al. This discrepancy [which is actually diminished by our use
of K, = K,(R), whereas Ohtsuka et al. use K, = K,(c0)] simply reflects the similar discrep-
ancy in ¥°/4 in Fig. 4, which is particularly big for K, = 1 fm~!. Looking at Fig. 4,
one would expect the discrepancy in ¥ (R) to become smaller at higher values of K {c0),
where in fact also the frozen density approximation is more reliable.

8. Conclusion

Our method of calculating ¥"x(R) is principally identical — except for one essential
difference — with the energy density formalism, applied by Brueckner et al. [2]. (A newer
version of Brueckner’s method is the work of Ngd et al. [18).) It is based on definition (2.1)
of ¥y and on the local density approximation, Eq. (2.4), with the energy density equal
to that of the local NM. The essential difference is that whereas in the Brueckner method
the system of colliding nuclei is represented locally by a piece of normal NM (with the
corresponding energy density H,), in the present work it is represented locally by two
pieces of NM flowing through each other with the relative velocity K,/m (with the cor-
responding energy density H). In other words, we take into account that the local mo-
mentum distribution # in the system of colliding nuclei differs from the distribution n, in
normal NM. The dependence of our energy density H on K, leads to the strong energy
dependence of the resulting ¥ 3(R), whereas the potential ¥ g(R) calculated with H, does
not depend on energy.

For the local momentum distribution n, we use the two Fermi sphere model, used
before by Saloner et al. [19-20], Beck et al. [5], Miiller [15], Peng et al. [21-22], and by the
Faessler group [7-9, 16-17, 23]. Whereas in all these papers (except for [21-22]) the
“exact” energy density H was calculated with the Brueckner )¢ matrix, determined by
solving the X" matrix equations with a given NN interaction, we use for H, a simple form,
Egs. (2.8) and (2.13), fitted to known properties of NM, and use relation (2.9) to determine
the difference H-H,. Our results for ¥"p(R) are in a reasonable agreement with the results
of the most extensive “‘exact” calculations of the Faessler group.

For the imaginary potential ¥";, we use the frivolous model (which may be linked
to the “exact” theory through the optical theorem — see I). In this way we express ¥
directly through the NN cross section. This approach was applied before in [20] (with
an incomplete treatment of the Pauli blocking) and in [21-22] (for calculating the heavy-ion
total and reaction cross section — without taking into account dispersive effects). Our
resulting ¥"; appears too weak compared with the “exact” results of the Faessler group.
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The strong point of our approach is that the input for calculating¥” consists of empirical
parameters of NM and the NN cross section. Furthermore, the calculation is straight-
forward and its execution does not require any approximations.

The following weak points of our procedure should be mentioned.

— To determine H-H,, we use relation (2.9) valid for small values of K,. On the
other hand, the frozen density model favours large values of K.

— To construct the local momentum distribution when the two Fermi spheres overlap,
we use an ad hoc prescription, Egs. (3.5) and (3.6).

— In calculating ¥7;, we apply the frivolous model whose accuracy is hard to assess.

All these points require further investigation.

It is the pleasure of the author to acknowledge several discussions with H. S. Koéhler.
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