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The behaviour of two-dimensional kinks under constant forces is fully analyzed in
this paper. The most general solution is found and shown to be equivalent to the two-dimen-
sional **bounce” in asymmetric potentials.'The conditions under which the solution hereby
presented behaves as an oscillating elliptic kink are also discussed.

PACS numbers: 03.50.Kk, 11.10.Lm, 11.30.Qc

After the large development that soliton physics has experienced in the last decade,
several authors have now turned their attention to the problem of perturbed solitons.
Since many soliton solutions (either of topological character on not) have already been
discovered for scalar, spinor or gauge fields (or combination of these), one of the main
questions now is to look at the problem of solitonic solutions perturbed in various ways.
For topological solitons this is an interesting question since we do not know ““a priori”
whether the topological invariants that ensure stability for the soliton are strong enough
to mantain solitonic behaviour with the same stable properties, when external forces are
included in the physical system.

One of the first problems solved along this line has been the behaviour of kinks under
velocity-dependent forces or “friction”. The kink-friction system has been siudied by
several authors (see Refs [1-2]) and finally exactly solved by the author and collaborator
([31). Also, a sort of friction arising from internal degrees of freedom for scalar fields has
been studied recently and the energies and invariant charges have also been calculated
exactly [4].

In this paper we shall turn our attention to a system formed by a kink-like soliton
under perturbation caused by a constant force F. This problem is in a way essentially equiv-
alent to the problem of the “bounce” already discussed recently by the author but with
some differences. The specific problem of the constant force has also been partially discussed
in the recent literature ([5, 6 and 71), buth the full analysis and discussion has not yet been
presented. It is the aim of this paper to develop the total solution of this problem as well
as fully analyse the correspondent physical consequences. Our attention is mainly focused
on the conditions under which the solution is of oscillatory nature. This is done by using
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the general form of the solution in terms of elliptic functions and the limiting and particular
cases are studied separately. We also find in the course of our work, several other interesting
properties in regard to the critical nature of the external force applied and also some
constraints for the case of the oscillating solution which have not yet been discussed before.

In Section 1 we analyse the critical behaviour of the non-linear scalar potential includ-
ing a constant force F. Section 2 is entirely devoted to the exact solution of the correspond-
ent non-linear ordinary differential equation. The Section 3 is a full discussion of the
oscillatory nature of the solution for various ranges of external forces and energies. We
close with a Section of Conclusions.

1. The physical system

We start with the field equation for the kink when a constant force is included in the
dynamical evolution equation.

o ,d'Q
dr? dx?

K,Q0+K,Q*~F =0, | 1)

where K, and K, are coupling constants and F is the constant force applied to the system,
As always ([3-4]) we use dimensionless variables defining:

K. \1/? K\'/? —t K. 1/2
(k—:) o(x, 1) = g(x,1); z= <;§) W ;oa= (k—i) F @
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Fig. 1. a) Graphical solution of the equation «*—x = a for a = 0. b) The potential V(g) for this case
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and, indeed, v < c¢. Using (2), the field equation (i) transforms to:

2

g
o ~g’+g+a=0. 3)

There exists an obvious first integral of (3), namely the energy, given by:

dg\?
g = %(:17) ~-tgt+3 g +ag @
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Fig. 2. a) Graphical solution of the equation @>—a = a for 0 < a < [4%]"/%. b) The potential V(g) for
this case

Equation (3) can easily be interpreted as the one representing the motion of a particle
moving in the potential:

V(g) = -5 g*+3 8 +ag %)

We can restrict ourselves trivially to the case a > 0 (the a < 0 is just the same as the
above for g - —g).

We first note that there is a critical value of a for which the potential drastically changes
its form. The maxima and minima of ¥(g) correspond to those constant values o of g satisfy-
ing the algebraic equation

a = a(a’-1). (6)
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Fig. 3. a) Graphical solution of the equation«®*—~« = gfora = {7“7}” Z, b) The potential ¥(g) for this case

But (6) has three real solutions (¢, § o, € ;) if @ < [45]"/? = a, and only one real
solution if @ > a,. As it is shown in Figs 1, 2 and 3, the potential has two maxima and one
minimum if @ < a, and only one maximum if a 2 a,. Therefore the range in which oscilla-
tory solutions can be found is 0 § a < ¢,. The corresponding range of energies is V(a,) < ¢
S W(ay) for V() = § o*(3a*>—2). We shall restrict ourselves to these ranges of a and
V(%) henceforth. The roots (x,, «,, a3) are restricted within this range to the intervals

~1€a € -7 (72)
~(3) " <, <0 (7b)
1S, € 23)7 (7¢)

as can easily be deduced from the Figs 1 to 3.

2. The solution

The general solution of equation (3) can be written in terms of elliptic functions (see
Ref. [8]) as:
sn (D(z —z,) |m?)
1+Csn (D(z—zy) Im?)’

g(z) = A+B ®

where z, is an arbitrary integration constant and 4, B and D can be expressed in terms of
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C and m as:

A= —?—[l+:n2—2C2], (9a)
2 st 2 s
B = ; [t=C][m"-C"], (9b)
el 2 -
D* = 5[1-C*[m*~C?], (9¢)
/.
= +[2m*(1 +m*)+[(1 + m?)* - 12m*]C* + 2(1 + m*)C*]' /2. (9d)

Finally, C and m can be expressed in terms of 2 and ¢ through the expressions

2C 292 2
a=-5 [1-m’P[C*—-m?], (10a)

1
6= 3 [(1=m?2C?—4m*(1 = CH?]} [(1 —mHCr —d(m* — C?)*]. (10b)
/.
Thus, the arbitrary integration constants appearing in the solution (8) are only € and z,.
Since we are interested in the oscillatory case, the allowed range for C must be
m'?gCgl §3))

Notice C = m'/? yields @ = 0 and C = 1 yields @ = a, in (10a). For this range D> < 0
and sn(D(z~ z,) Im?) oscillates between the values | and m~'. Therefore, as can easily be

as0

Fig. 4. The potential ¥(g) for 0 § a € [5%]"/* wherc the turning points #. and §-, corresponding to the
oscillatory solution are displayed
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seen from Fig. 4, the solution g(z) oscillates between the values B. and f. given by

B 2m? +(1 —-mHC+2C?

= A = s
B+ ARTYS A .

(122)

B 2m—(1—-m*)C—-2mcC?

- = A+ =
B m+C A

(12b)

A particular case of interest is the limiting case in which ¥V(a,) = e. This represents
the behaviour for m = 0. In this case we can express through (10a) C as a function of &, as:
a, = —[1+2C*]712 13)
with the help of (13) we can write down the solution just in terms of ;. This solution is
1-2a? B [1-af]1{2. [3a§—1] ~ cosh [(3a} —1)"/3(z~z¢)]
1

3 2 1o ]2
aody - [——ﬂ cosh [(3a} —1)"3(z - z,)]
3

g(z) =
1
(14)

and the energy corresponding to this solution is £ = W(x,) = % 2}(3a}-2).

3. The oscillating kink

We address now ourselves the question as to whether the conditions for an oscillating
kink have to be somehow restricted. For an oscillating kink whithout external force applied

to it, the field equation is
d281
-7 TETE =0 (15)

whose oscillatory solution is well known

2m? 2 . )
g.(2) = [1+m2] sn ([1 ‘*‘mf]—llz(z“zx) im?) (16)
1
and energy given by
dg, |’ m;
- 20 1 4,1 ,2 =t 17
€y T[dz:l 3 gi+38: AFmi2 an

so that 0 S ¢; € §.

If z = z, is the space-time point in which the force is applied, then (15), (16) and (17)
hold for z < z,. Therefore, for z = z, the field configuration is in a state g, = g(z,) with
energy &,.

Now, the force is applied from z > z,. The dimensionless “‘force” has been called
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a throughout the paper.. Thus, the field equation is now:

d*g
:172 —g+g+a=0 (18)

whose solution has already been described in Section 2 (8, 9 and 10)and the energy
is given by

dg,\* dg,\’
o=t () e+t dran = $(22) +vie 19

such that V(a,) € ¢, € V(a,), where o, § o, and (o, ;) are the two smallest roots of the
algebraic equation a®*—oa = a.

Let us now analyze the conditions under which if g, is an oscillating solution, g,
could also be an oscillating solution. Firstly, we note that the dimensionless force must
verify

0<as[H]”

becguse otherwise the effective potential (Fig. 4) does not exhibit oscillating ranges. Addition-
ally, we can ask also the question of whether the system is in a state, where g(z,) and
g'(z,) are arbitrary. In other words. Let a kink-like system be with energy ¢, taking the
value g, = g,(z,) at the space-time point z, in which the force is applied. Now we ask
about the conditions that must be fulfilled by g, and ¢, in order the system would continue
to be oscillating after the force is applied. For continuity and smoothness of the solution
we know that

go = &,(z0) = g2(20)

(&) _ (i&.)
dz z=29 dz z= zo'

Using these conditions in (17) and (19) we find easily the relationship between &, and
£;, given by

€, = £,+ag, (20)
or, for the potential V(g;) in (19)
V(ez)—ey § ago § Vi(ay)—é;. (2D

On the other hand, it is trivial to note that (Fig. 4) «; < go. Using this inequality
in (21) we find

81 § V(al)-aa, (22)
or, equivalently, using 0 € &, € %, we obtain

0< e < 4od2-dd). (23)



Notice that this range is smaller as the applied force increases. Furthermore, as soon
as £, has been fixed within the range (23) we easily obtain the range of validity for g,
through (21). This is given by:

| T )
== (V(a)—¢&) € 8o & — (V(?‘l)_ax)- (24)
a a

To summarize. For a kink-like system, with encrgy «,, to which at the point z, an

external constant force is applicd, would be an oscillating system, the following conditions
must hold:

0Sag M= ~1ge € ~[3]7'7 (25a)
0S¢ €3af2-ad), (25b)

i l )
;(V(az)—ﬁa) L8 € ”;(V(ai)“gn)- (25¢)

As was first pointed out (see Refs. [5-7]), anotheri nteresting question would be whether
a non-linear kink-like non-oscillating solution would become an oscillating onc under
the action of a constant force. We shall show now that this possibility cannot be attained
under the conditions analyzed in this paper. To see this, we first note that a non-oscillating
kink before the action of the force, should be such thate, > f or go < — 1. Butifg; > %,
then (25b) would fail to hold since JaZ(2—a}) < L. Furthermore if g, < —1 then since
o, § g would yield «; < — 1, against the inequality (25a). Therefore, the kink-like system
here analyzed cannot oscillate under the action of the applied force unless it were already
oscillating before the force were applied. Even in this case the conditions (252, b, ¢) must
hold.

4. Conclusions

We have presented in this paper a full account of the solution of the kink-constant
force system. Three different features can be emphasized: 2) The critical nature of the force.
Outside some ranges there is no kink neither topological oscillations. This tact is in sharp
constrast with results in linear field theory in which no such constraint exists. b) The condi-
tions for oscillating kinks are much stronger than it was expected and a delicate balance
of parameters such as energies and initial conditions is needed in order to have solutions
with the required properties. ¢) Also, the system is closely related to that of the bounce
which we expect to be classicaly unstable. Therefore this is a case in which external pertur-
bations (constant force) induce instabilities on the unperturbed soliton. On the contrary,
systems as kink-friction studied previously ([3]) are stable and the topological charge
is conserved. In the case under consideration in this paper, the physical features are closer
to those of non-topological solitons on Q-balls, which do not exhibit conserved topological
currents ([4]). Some other results concerning different (non-constant) forces that might
exhibit topological properties are now under study and will be the subject of a forthcoming
paper.
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