Vol. B20 (1989) ACTA PHYSICA POLONICA No 10

DIRAC EQUATION WITH HIDDEN EXTRA SPINS:
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It is observed that the Dirac anticommutation relations.admit some peculiar reducible
representations implying the existence of additional spins 1/2 commuting with the usual
spin 1/2 and being decoupled from the magnetic field in the Dirac equation. In the case
of the simplest representation of this class the Dirac equation becomes equivalent to the
Kihler equation. So, such a class of reducible representations gives a generalization of
Kihler equation, realizing the Dirac square-root procedure in the case of arbitrary total
spin. A possible relation of the generalized Kédhler equation to the problem of fermion
generations is sketched.

PACS numbers: 12.90.+b, 11.10.Qr, 11.30.Cp

1. Introduction

In this paper we would like to point out that the Dirac anticommutation relations
admit some peculiar reducible representations implying the existence of additional spin-1/2
operators commuting with the usual spin-1/2 operator and being decoupled. from the
magnetic field in the Dirac equation. So, these extraspins are hidden in the Dirac equa-
tion, unless the mass is dependent on them.

Let us start with the Dirac equation in an external electromagnetic field,

[I-(p—ed)—mly =0, n
where p, = id/dx*, [m, "] = 0 and
{re, rry = 2g*. @

Our observation is that for the Dirac anticommutation relations (2) there exists the fol-
lowing sequence of representations:
N

i=1
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where the matrices ¥}, i = 1,2, ..., N, span the sequence of Clifford algebras defined by
the anticommutation relations

s 73} = 26,8" O]

It can be seen that for N > 2 the representations (3) are reducible (cf. Egs. (13) and
(16)).

Using the usual 4x4 Dirac matrices y* and y® = i%'y?y3, the matrices y* and

)’ = iyly} Yl (where {y¥,7{} = 0) can be represented for N = 1 as
=9 9l =9 6]
for N=2 as
Yi=9"®1 y=9"®1,
=7 Q% =187, (6)
for N =13 as
H=7"®1Q1L =011,
B=yY el y=101"81,
A=7"07Y®% 1HB=10107" ™
for N =4 as

H=7re1e101 i =9"810181,
B=1r"0nYe181 $B=10y0111,
B=7"8rerel 1$=1010,°81,
=707 i, 13¥=19101®7° ®
and so on. Here, 1 is the 4 x 4 unit matrix. Note that for i # j [y%, y 21 = Oand [y}, y;] =0
though {y%, vy } = 0. In the van der Waerden representation of y* where 9% is dlagonal
all matrices y; get a diagonal structure.

In the representation (3) the Lorentz transformations of y(x) in the Dirac equation
(1) are generated by

N .
Jﬂv — Lln'+ iz _%_ o,gw, (9)
=1
where
i
LY = xp’—-x"p*, a}’ = 7 vt 7] (10)
Note that for i # j [y# 0%°] = 0 and [s" : a‘"’] =0 though Oy = 0.
Denoting ¢% = —‘~a"""a’"‘ and of = ic*® = 9%y = yc%, k = 1,2, 3, one gets
(o}, o}] = 2i6,8""a, (o}, o’i} = 254, an

[ok 9] = 0 = [o} 771
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and
{oral} = 26", {dy)} =0 (12)

2. Generalized Kiihler equation
Now, let us define for any N = 1,2, 3, ... the new matrices
Y=r" T%..,Ik (13)

by means of the Euler linear combinations of the previous matrices y%, v4, ..., y% For
instance, for N = 3 we get

Iﬂl‘ = \/— (71+72+y )s
r; = \/— &1=72), (14)

ry = \/6 —= @1 +y:—25)-

Then, the matrices (13) satisfy the anticommutation relations of the type (4):
{I‘:ls r:} = zaijg‘w’ (15)
So, after a proper change of the representations (5)-(8) (and so on) for y* and y;, the
matrices I'* and I'? = il'°T'}r2r} (where {I'¥,I'}} = 0) can be represented by means. of
¥*, v® and 1 through the equations of the type (5)-(8) (and so on). Notice that fori #j
(re, I‘]—Oand[r 5’]—Othough{F rj=0.
In particular, we have in this new representation

MN=y19..91 (16)
LR —
N-~1times
so that Eq. (1) takes the form
[y (p—ed)-m]y =0, an

where N-1 bispinor indices of p(x) (except for the first one) are free, unless m is an op-
erator acting on them. It is interesting to note that for N = 2 Eq. (17) is equivalent [1]
to the Kéhler equation {2, 3]. Thus, Eq. (1) together with Eqgs.(3) and (4) gives us a gen-
eralization. of the Kihler equation for an arbitrary N. It realizes the Dirac square-root
procedure in the case of arbitrary total spin.

- It can be shown that in Eq. (9) the equality

N N
Y rol’=Y 33" (13
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holds, where
i
= o [ 1l (19)
Thus, the Lorentz-group generators (9) can be rewritten as
N D
JU =D+ Y F I (20)
i=1

Notice that for i #j [I'f, Z¥] = 0 and [Z]", 2¢°] = O though {I'}, '}} = 0. Denoting

ir“j
Iv= LMmrimoand A% = iz = ¥ = riz¥ k= 1,2,3, one obtains

[Zfs Z;] = 2i5ij£“mz;-",

(24 2 = 28",

(25 rj]1=0=[2417] @n
and
{4, Ay =28, (4,17} =0. (22)

Since in the Dirac equation (1) the electromagnetic field is coupled only to the matrices
I'* = I'%, a particle satisfying such an equation can display in the magnetic field only the
usual spin 1/2 described by the operator L3 = 1¥,. It is true for.any N = 1,2,3, ...
The additional spins 1/2 described by the operators %fi, i=2,3,..N, are decoupled
from the magnetic ficld. So they remain hidden in the Dirac equation (1) unless the mass
m is an operator built up of the matrices I'#, i = 2, 3, ..., N. But then, m should be con-
structed in such a way that [m, I'{] = 0 and [m, J*'] = 0 and also [m, P] = 0, where
P =I5 ... [P, (with ny = &yi*™¥ =1 and &2 = 1) is the total parity of y(x);
P = P = P-!. Thus, in general, m may depend on I'# via I'JI'; and

iltr;, = irfry(1—4,- 4;) = irfr{({-ririz;-z,,
1208, =L, L+4 A; = W+TiT)E- 2, (23)

where i, j = 2,3,..., N and i # j.

3. Which is the physical Lorentz group?

The assumption of [m, J*'} = 0 telling us that m is a scalar under the Lorentz group
generated by J*, is very natural and consistent with our eonstruction of I'}, i = 1,2, ..., N.
However, there is a priori another option where the physical Lorentz group corresponding
to the theory of relativity is generated not by J*' but rather by

e;sible = EN'*'% E‘wa (24)
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with 2* = Z%”, Then m, being invariant under this restricted Lorentz group, is not obliged
by the theory of relativity to be invariant under the residual Lorentz group generated by

Jﬁ;dden = J¥- v;snble = Z Z‘w (25)

In this option, the additional spins 1/2 described by the operators %fi, i=23,.., N
are not connected in any way with the physical space-time and so they should correspond
to some other internal degrees of freedom [4]. So, if all matrices y#, i = 1,2, ..., N, are
connected with the physical space-time (as it is consistent with our construction of the
matrices I'¥, i = 1,2, ..., N), this second option is logically excluded.

From Eq. (1) and its Hermitian conjugate we readily deduce that

J
e (y'Tirty) =0 (26)
as well as

0
5 PTI02  Tally)
X
i 1
= T( Dytm, [I09 ... FYJp+ —i—[1+(—-1)N]1p"'l"1)l’g...l'gmtp. (1))
Note that the assumption of [m, P] = 0 implies that [m, I'SI'3...I'%] = 0 (if m is x-inde-
pendent). Thus, for N odd Eq. (27) gives

d
Pt (Y iny-1T2 - TRIY) = 0, (28)

where we introduced the previously defined phase factor ny_, in order to have to do
with a Hermitian operator. Note that Pygeen = fin—1I5 ... I'y is the residual parity,
while P pe = 1175 Porp;e gives us the restricted parity. Here, P = P p1ePhigaen if &n
=V (=D¥ Te,ey_, where 5, =&, €8 6 = 1. ey_; = 1 and ey = V(=D¥T. In the
representation of the type (5)-(8) (and so on) for I'f, i = 1,2, ..., N, we obtain in the
case of N odd

Phiagen = ev-11® P ® .09, (29
N et
N-~1 times
while
Poioe =67’ ®1® ... @1 Poryye. (30)
D
N~—1times
Thus, for N odd
P=tyy"®7°® ... ® ¥° Porvir- (31)
LN ~ 7

N times
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We can see that the current appearing in Eq. (26) is always conserved, but it is not
covariant under the Lorentz group generated by J** though it is covariant under the re-
stricted Lorentz group generated by J%..,,.. In contrast, the current in Eq. (28) is covar-
iant under the Lorentz group generated by J*' and for N odd it is conserved.

Thus, under the assumption that the physical Lorentz group corresponding to the
theory of relativity is generated by J**, the probability interpretation of y(x) is not per-
mitted for N even (in particular, it is not permitted for N = 2 i.e., when Eq. (17) is equi-
valent to the Kéhler equation). For N odd such an interpretation is allowed if

piny_ 3. My > 0, (32)

where the spatial integral of the left-hand side is constant in time due to Eq. (28). Then
for N odd the Dirac equation (1) may be interpreted as a wave equation describing the
probability amplitude. Of course, for N even or odd the total spin of (x) is integer or
half-integer, respectively (though in both cases the magnetically visible spin is 1/2, the rcst
of spin being magnetically hidden). However, the probability interpretation of y{x) coin-
cides with the half-integer total spin.

In order to guarantee the inequality (32) to be satisfied, we may impose the condition

Mx-d9 .. Ty =y (33)

or Pyadeny = v, which for N odd is consistent with the wave equation (1) since then
due to Eq. (28), Py;4¢.n 1S @ constant of motion. Of course, for N odd Py ;y4., COmmMutes
with the corresponding Hamiltonian

H=T, (p-cA)+Im+ed®, (34)

where m may depend on I'iI3, il'l;, and $ 2% X, , i, j=2,3, .., N.

Concluding, under the assumption that the physical Lorentz group corresponding
to the theory of relativity is generated by J**, the Dirac equation (1) together with Egs.
(3) and (4) may be interpreted for N = 1,3,5,... as a sequence of wave equations, if
only the sequence of conditions (33) is satisﬁed For any N=1,3.5, ... the wave func-
tion w(vc) has visible spin 1/2 described by 3 , and hidden spin 0, 1, ..., 4 (N —1) described

by Z 1 5. Thus, in particular, for N = 1 one gets one Dirac particle with hidden spin 0,
i=2

while for N = 3 one obtains two Dirac particles with hidden spin 0 and two Dirac par-

ticles with hidden spin 1 since in each of these cases there are two eigenvalues of the oper-

ator I'3I; commuting with Pyigqen = 1.1 51'5. They are equal to | and — 1, the eigen-

value of P, .44, being kept equal to | by the condition (33).

4. Possible interpretation in terms of fermion generations

The guestion of the possible physical interpretation of our generalized Kahler equa-
tion given by formulae (1), (3) and (4) is entirely open. However, it would be attractive
indeed to try to interpret the Dirac particles following from this equation as the experi-
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mentally observed generation replicas of basic leptons (v, or e”) or quarks (u or d). For
instance, in the case of the electron e, one may try to make the following tentative iden-
tification:

N visible spin hidden spin rirj 5,5,
e 1 12 0 0 0
W3 12 0 -1 -3
- 3 12 0 I _3
(M 3 12 1 -1 i
(M- 3 112 1 1 1

and so on (but with more and more quantum fumbers involved) for N = 5,7, ..., unless
a principle terminating the sequence N = 1,3, 5, ... exists.

Note that in the case when hidden-spin triplets ((?), and (?),) exist in the electron
family there should also exist the corresponding hidden-spin triplets (( ?)3 and (2)?) in the
neutrino family. Then, assuming that the hidden spin is conserved separately, the decay

rate for W~ — (), .+ (7). (if energetically allowed) should get no extra muitiplicity
factor and this is also true for (7),, - W~ -f-(?)ff‘_t - p‘“—l-f',l-k(?)ﬁ,,. This fact together
with the actual experimental data on 7~ [5] would not exclude an altecrnative iden-
tification of t~ with a hidden-spin triplet. .

After the second quantization is performed, the generalized Kahler fermions can be
formally included into the scheme of the standard model in place of the usual sequential
fermions. In this case m = 0 and fermion masses arise from Higgs mechanism and ra-
diative corrections.

For instance, in the case of leptons there are a weak isospin doublet

™
YL
= . 35)
YL <7l’§. )) {
and a singlet y{, where
Yl Wﬁll
'P(V) —

pwls | ¥ =¥k, (36)

denote the quantized (multicomponent) fields of the neutrino and electron families and
vir = + (1 £}y are the chiral components. Then, for the sake of a phenomenological
discussion, one may consider the following general lepton-higgs coupling:

yiv=1Tthdpan=1 +hec.
+W{N=3F?(hs¢s+hp¢x’r§r§+}1V¢vir‘2lrsy
+hA¢AiF§r§rgr3p +hepr 3 25 T3 Pry=3+he+ o, 37
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where

+ T
¢ = (20) H ¢S = (2(2) 4 etc., (38)

are six higgs weak-isospin doubles, while A, A, etc., stand for coupling constants. In Eq.
(37) the condition (33) was applied.

The coupling (37) is invariant under the total Lorentz group (if Eq. (33) is taken into
account) and conserves the total parity. It may happen that in the experiment a special
and simplified case of this general phenomenological coupling is realized.

Referring to our tentative identification of leptons and making use of Egs. (23) we
can rewrite Eq. (37) in the form

(V,, e”)Lheg +h.c.
+ (Ve o)1 (hsts— hpp—2hvdy + 2h5¢A)PE +h.c.
+ (Vo T )(hsps+ hpdp+ 4hyy +4h ¢, — 6hrdr)TR +hec.

+((DS, (D) lhsds — hodp+2hydy —2hada) (Dm+hec.

F(DC, (D)) (hsts+ hpdp+2hepr) (Dm+hc + ... . (39)

Here, for N = 3 the eigenvalue 1 of Py 4., = i3S was used in accordance with the
condition (33). In the tree approximation we obtain from Eq. (39) the following masses:

me = hv,
m, = hgvs— hpvp—2hyvy+2h,v,,

m, = hgvg+ hpvp+4hyvy +4h,vs —6hroy,

meay, - = hgtg— hptp+2hyoy —2h 504,
may - = hgvs+ hpvp+2hqvy, (40)
where
v=(¢%, vs=<(P), etc., (41)

are vacuum expectation values. Of course, all masses in the neutrino family are zero.
For example, if A, = 0 and A, = 0, Eqgs. (40) reduce to the form

m, = hv,
m, = hgos—2hyvy,
m, = hgvg—(2—e)hyvy,
Mmey, = hgvg+2hyvy,

My, = hevg+ 1 (6—e)hyvy, (42)
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where ¢ is defined as
(6 —e)hyvy = Ghvy. (43)
Formulae (42) show that
m, = my+¢ehyvy,
1 2 2 (¢
My = 3 My+5 Me+3 (6—¢&)hyry,
My = § my+3 m+5{(6—e)hyvy (44)
and predict the sum rules
m,,+3m(?)ﬁ = m.+3me,
(4—&:)m“+sm(?):l = 4m,. 45)
They also determine Agpg, vty and ¢ in terms of three mass combinations
hets = 3 (meay;+my) > 0,
}I\,'L'V = '}; (m(?);——m“) > 0,
shyty = m —m, > 0. (46)

The second sum rule (45) leads to
My, = :(m,—m,,)-i-m“ 47

and then the first one implies
4 1
My, = — (m,—m)—13 (m,—4m,). (48)

Here, ¢ > 0 is expected to be small in order to give large M) - and M, - (then /gug > 0
and hyvy > 0 are large).

At present we cannot say more about the Higgs mechanism for our generalized Ki-
hler leptons since 1, g, etc., as well as A, hg. etc., are a priori arbitrary. The experimentum
crucis for generalized Kahler leptons as discussed in this paper would be, of course, the
existence of leptonic hidden-spin triplets.

Summarizing, if the generalized Kahler equatifon provided a correct description of
the problem of fermion generations, then the Dirac square-root procedure would turn
out equally adequate for the structure of electron family as it has been proved to be for
the electron itself.

A part of this work was done during the author’s happy visit to the Theoretical Di-
vision of CERN, Geneva, in March 1989,
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