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A recent proposal of the Lund group suggesting a multiplicity measure for e*e~ anni-
hilation is analyzed. It is shown that the results obtained for the multiplicity distributions
in full phase space do not change if one removes a questionable assumption of exact loca-
lization of branching products in rapiéity (thus avoiding troubles for small rapidity bins).
The predicted asymptotic form of fhe distribution is shown to differ from the negative bi-
nomial distribution.

PACS numbers: 15.65.+1

In a recent paper of the Lund group [1] a measure of multiplicity in ete~ annihilation
events has been proposed. Generalizing the available phase space from 2-jet events to
multigluon events one finds an infrared stable measure which is suggested to represent the
hadronic multiplicity. Its probability distribution may be found from a differential equa-
tion resulting from simple probabilistic considerations.

The authors present two results which may be obtained without solving numerically
the differential equation: |
a) For very large energies, the asymptotic formulae for average multiplicity and dispersion
are found. They reproduce (with a minor modification) the QCD results for gluon multi-
plicity [2] and the Malaza-Webber results for dispersion [3].

b) For small bins in rapidity, the scaled moments are shown to grow as negative powers
of the bin size, suggesting the “intermittent™ behaviour of the type considered by Bialas
and Peschanski [4].

However, one should note that the power-like growth of moments obtained in Ref.
[1] is in fact much too strong. The exponents for consecutive moments are negativ‘e in-
tegers, whereas all the existing data suggest values smaller by almost two orders of magni-
tude [5]. Thus the model in the presented version is not realistic for small rapidity bins.
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In this note we trace the origin of the unwanted result and show that it may be quite
easily removed without losing the promising results for multiplicities in full phase space.
We comment also on the asymptotic shape of the multiplicity distributions.

Let us repeat first the main assumptions adopted in Ref. [1]. Using for variables
CM rapidity y and the logarithm of transverse momentum

x = In (k3/4%) o))
and denoting by L the logarithmic energy measure
L = In(s/4%), )

we consider the approximate phase space for the gluon emission from a 33 colour dipole
as a triangular region given by

2iyl+xk <L, k=0 3)

If one gluon is emitted with rapidity y; and transverse momentum logarithm x;,,
the phase space for the second gluon is increased by an extra triangle of the vertical and
horizontal side length «,. For strong ordering of gluons in transverse momenta the rapid-
ity of a second gluon emitted from this extra part of phase space is approximately equal
to y,. Phase space available after the emission of further gluons will be similarly increased
by adding new triangular surfaces.

Now one notes that without any gluon emission one expects hadronic production
with flat rapidity distribution and average multiplicity proportional to L, the baseline of
the original triangular phase space. For one gluon emission one can split the system into
two 33 systems with energies given by

S1,2 = \/E kryexp(Lyy), (4)
thus the multiplicity should be proportional to
In (5,/4%) +1n (s,/A%) = L+x;,, )

the total baseline length of two triangles forming phase space. Thus in general one may
expect that the hadronic multiplicity from a state with n gluons should be related to a
measure

A=L+Y K (6)
1

which is the total baseline length of the multi-triangle phase space.

To specify the predictions one needs the probability distribution of A for given L.
In Ref. [1] this is done by considering first analoguous distribution of a piece of baseline
length within a limited region 4 in rapidity. One assumes here that any two regions are
completely independent, i.e.

Para,(B) = [ Py (AP (K )AN AN 'S(A~ 2 —A""). (7
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This assumptions is very strong and seems to be a rough approximation, as it requires
e.g. that all the “later” (softer) gluons emitted from the “earlier” (harder) gluon have
exactly the same value of rapidity. Moreover, this should also hold for the hadronization
products of these gluons.

Let us show now that it is exactly assumption (7) which leads to the power-like in-
crease of scaled moments for decreasing length of rapidity interval A. Let us first con-
sider two lowest moments

Ay = [APGi)A, 22 = [ A*P(R)dA. ®)
Dividing the region 4 into two of length 4" = 4/2 we find easily
hy=24y, 3 =215424, ©)
and for scaled moment we get
— 2 s
F3 = 1}li, = (FF+1))2. (10)
Inverting this relation we find
F{—1 = 2AFi-1) 68))

and repeating this division n times we may write for 6 = 27"4
F} = 2"(F4—1)+1. (12)
Thus for large n (small §) we find
In F} = —In (6/A)+In (F3—1)+0(S/A). (13)

Similarly, considering the third moments

— — 3
A3 ={i°P()di, F§= ijiy (14)

we find for small 6
In F} = —21n(6/A)+In (F§—3F3+2)+0(5/A) (15)
and in general, for the i-th scaled moment we find

In F? = —(i—1)1n (8/A)+c;+O0(8/A). (16)

As already noted, this behaviour is in strong disagreement with data from various
multiparticle production processes [S] (including e*te~ [6]), which seem to show indeed for
the rapidity bin length J between 1 and 0.1 the linear behaviour

InF! = —o;1n 6+ f, an

but the slopes «; are much smaller than i-1 (by almost two orders of magnitude). This
confirms our doubts concerning the validity of assumption (7). On the other hand, this
assumption seems to be in Ref. [1] a starting point for the subsequent derivation of the
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differential equation for P(4, L). Thus a question arises: can one derive the equation for
P(4, L) without assuming (7)?

To answer this, let us recall the derivation presented in Ref. [1]. One considers the
change in probability P,(A, /) (where 4 is a small bin around rapidity y and !/ denotes
the maximal value of x allowed for given L and y) induced by changing / to /+e. This
change allows for the emission of an extra gluon from the phase space region x € (/, I+¢),
y € (y, y+4). Since in the leading log approximation the gluon emission probability den-

sity is oy/k, we find
PGy 1+8) = (eAag/l) § dA'Py(2/, DdA PR, DB(2— 7' =2 ) +{1 —eAag /P (2, ), (18)

where P(;", [) corresponds to the phase space sector open by the extra gluon of x = [,
equivalent to an isolated 33 system with L = I

Subtracting P4(4, ) from both sides and taking the limit ¢ > 0, 4 — 0 and Laplace
transforms we find then the equation we are looking for

22

i P, Ly = [P, D= 1TwlL. s

where
P(B, L) = j die” P4, L). (20)
O

The boundary conditions supplementing (19) are

P(8,0) = 1, d/dL[P(B, )] -0 = —P- (21)

One should note the disappearance of interval 4 from the formulae. This is possible be-
cause assumption (7) implies the simple multiplication rule for Laplace transforms P,(8)
analoguous to (20), and additivity of In P,(B). Thus we can define the ratio

ROB, D) = lim [1n P8}/ @)
by which we can express both P(8, L) and P (8)
n P8, L) = f/ AR, 1 = L=21y) = [ dIRGE, D @)
In P§) = [ dyRIS. 107 @4
Thus we can write
lim [PB, I+5)— P8, ]jeA = dR(B, )/dl = d*In P8, D/dl>.  *(25)

40,60

However, the key element of the derivation was only the assumption that creating
an extra gluon opens a new sector of phase space, approximately independent of the
existing one. The ;apidity localization of this gluon and of its hadronization products
is irrelevant if we want to derive the equation for the full phase space.
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Thus instead of considering a small bin in rapidity we may start directly from full
phase space, calculating the change in probability P(4, L) induced by a small change in L.
We find

P(J, L+¢) = | P(X, LYP(A'', L)eo()dldX'di’"8(A—A' = A'")

L

+[1- | ee(DdI]P(2, L). (26)

0o

Here o(J) is the probability density for emitting a gluon with x = /. Taking the Laplace
transforms and subtracting P(B, L) we find

L L
P(B, L+¢&)—P(B, L) = P(B, L) [fol—’(ﬁ, De(Ddl— g o(Ddl]e, 27
and in the limit ¢ > 0
d[In P(B, L)]/dL = g o(Ddl[P(B, n—1], (28)
or
d*[In P(B, L)]/aL? = o(L) [P(8, L)—1]. 29

As already noted, for large L we take o(L) = o,/L. Thus we have recovered Eq. (19) without
any corrections.

We have shown that to obtain the probability distribution for the multiplicity measure
in full phase space we do not need the questionable assumption of the exact rapidity loca-
lization of all the branching and hadronization products of an initial hard gluon. It would
be very interesting to assume a more realistic distribution for the rapidity spread in the
consecutive branching processes and to see if there is a chance of reproducing experi-
mental data for small rapidity bins. This problem is, however, unlikely to be solved ana-
lytically and we will not consider it here.

Before concluding, let us comment shortly on the asymptotic properties of the so-
lutions of Eq. (19). We may easily calculate the moments of A distribution using

7 = | didip(, L) = ALPG, DY Blp-o. (30)

Thus expanding P(B, L) and its logarithm into powers of § we find first the equation con-
sidered in Ref. [1]
d*[=AL))dL = ao[ - AL)]/L GD
which has a solution
%ALY = Z (% LY Y[+ D] = VoL 1,2 JaoL) (32
with well-known asymptotic behaviour for large L

2o ML) = @oL)'* exp [2 \/aoL (1~ 0(1/L)]/y/3x. (33)
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Further terms of the expansion allow’ to calculate asymptotic values of scaled moments
F, =4[3, F;=29/4, F,=208/45 (34)

the first of which was already quoted in Ref. [1]. Here we may note that the values of F,
and F, do not agree with those we could deduce from F, if the distribution would be ne-
gative binomial (NBD). Indeed, for NBD we have

i-1

F; 1;10 (1+j/k), (35)

and for k = 1/3 corresponding to F, = 4/3 we find F; = 20/9, F, = 40/9.

We shall note here that the differences are numerically very small, suggesting that
NBD fit may be quite successful. This agrees with observation made in Ref. [1] from nu-
merical studies of solutions for finite energies. Nevertheless, choosing more sensitive
parameters, as e.g. the scaled Mueller correldtion coefficients

fz = Fz—l: f3 = F3—3f2_13 f4 = F4_4f3‘3f22-6f2‘1, (36)

we find 119 difference for f5 and 23 9 difference for f;. Thus, although our results confirm
the possibility of goad NBD fits to data up to the asymptotic energies, we find that the
asymptotic distiibution predicted by the model of Ref. [1] is significantly different from
NBD.

To summarize, we have reanalysed the predictions for multiplicity distributions in
ete~ collisions derived from a proposal to relate the hadronic multiplicity to a simple
measure on partonic states. We find that the unrealistic (and leading to wrong predictions)
assumption of the exact localization in rapidity of the branching and hadronization prod-
ucts of a hard gluon may be removed. This does not affect the predictions for the multi-
plicity distributions in full phase space. We show also that the asymptotic form of multi-
plicity distribution obtained is not NBD, although the differences in lowest moments are
not big. We conclude that the model looks very promising and deserves further studies
which should allow, in particular, to formulate reliable predictions also for multiplicity
distribution in small rapidity bins.
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