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The hydrogen atom is considered at the level of traditional quantum mechanics.
Starting from a two-component Hamilton operator describing the atomic electron in the
presence of an external gravitational field we are evaluating explicit expressions for the
perturbations (i.e. splitting) of the energy levels. We restrict our considerations to geodesics
on which @ = n/2 and to “conical spiral” trajectories. It is shown that the perturbations
can reach observable values for a sufficiently high initial velocity at inifinity.

PACS numbers: 04.20.Qr

1. Introduction

Contrary to the situation in quantum field theory only a few papers deal with quantum
mechanics in general relativity (see e.g. [1-6]). Most of them start from the generally co-
variant Dirac equation and rewrite it as a Schroedinger-type equation!:

ih oF HY

in— = ,
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where 7 is a parameter which represents the time (often proper time) and the operator H is
interpreted as the energy operator, assuming that both time-evolution and energy are
given by H. Such a procedure leads, in general, to a non-hermitean operator and other
difficulties, which do not allow a simple physical interpretation of equation (1) (cf. e.g.
[2-4, 7]). A detailed discussion of these problems by one of the authors (see [3, 5, 8] and
references cited there) showed that it is always possible to treat the generally covariant
Dirac equation as a special representation of the usual quantum evolution equation in

1 Latin indices run from 1 to 4, Greek ones from 1 to 3. The signature of space-time is (+, +, +, —).
We will use (except of some starting equations and final results) units ¢ = 4 = 1.
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a certain Hilbert space, and with a certain Hamilton operator, if one uses non-orthogonal
basis vectors. A correct procedure was given to evaluate the Hamilton operator (whose
expectation value in a quasistationary state is the energy corresponding to this state)
for an electron of an (arbitrary moving) atom in an external gravitational and electromagnet-
ic field. The atom is considered in the “frame of the single observer” (see e.g. [9]), which
is given by the world line ¢'(r) of a point particle (“observer”) — in the case considered
here — the nucleus. Along this world line a comoving, i.e.

N
by, = u's = ii’) A @

and orthonormal vierbein hf ; is introduced. This leaves three parameters free, which can
be expressed for example in terms of the (three-) angular velocity of the vierbein:

. 1 k
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By introduction of three scalars X® (a generalization of the Fermi coordinates to the
case Q # 0) and restriction to a certain neighbourhood of the world line ¢'(t) of the nucleus
one can get an explicit expression for the Hamilton operator H (For more details see [7, 8]).

In this paper we consider the freely falling hydrogen atom in the gravitational field
of a rotating black hole, described by the Kerr metric (see Sect. 3). First we introduce the
explicit expression for the two-component Hamilton operator, which is derived from the
generally relativistic Dirac equation, then we summarize some properties of geodesics,
which will be useful in the discussion of the Hamilton operator of an hydrogen atom in the
Kerr space-time. -

2. Explicit expression for the Hamilton operator

The two-component formulation of the generally covariant Dirac equation yields
(in the absence of external electromagnetic fields) the following expression for the Hamilton
operator of the atomic electron [3]:

H = Hy+Hyz+Hy+Hgs. @)

This will be the basic equation for our analysis of quantum mechanics of the hydrogen
atom in the Kerr space-time. H, is the operator of the non-perturbed hydrogen atom
P, e’

2m,  4meoR

0 + Hp, &)

where R = (X“X,,))'/?, and Hj being the operator that gives the fine-structure splitting.
The operators Hy,, Hy and Hgg represent additional terms, which we assume to be small
perturbations compared with H,.

The operator Hy, is due to the acceleration w® of the frame. It was shown by one
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of the authors that for a freely falling atom the motion is indeed geodesic in a very good
approximation [10], so that in this case we have w® = 0. Therefore we will not discuss
the term Hy,. An example of effects in the hydrogen atom, caused by acceleration of the
atom is discussed in detail in [11].

The operator Hy,

HRZ = —Q(G)J(a) (6)

describes the influence of the rotation of the frame on the atomic electron. J,, = L,
+#/26,, is the total momentum operator. The operator Hy, has some analogy to the
operator, which causes the (magnetic) Zeeman effect. Note that a rotation of the frame
is in general necessary to guarantee the existence of quasistationary states of the electron.
The operator Hy, leads to a shift of the energy:

AERZ = - Q(m, + ms), (7)

where m; and m, are the quantum numbers of the projections of the operators of the orbital
momentum and spin of the electron to 2@, Q is the module of 2 (Q = (2Q,)"'?).
The shift AEg, yields a splitting of spectral lines into three components (in full analogy
to the so-called “normal” Zeeman effect).

The operator

1 2
Hgs = 7 M’ RiyaapX OX® 8]

describes the direct influence of the external gravitational field to the atomic electron.
R4y ayp are vierbein components of the curvature tensor.

The operator Hgg is on one hand a generalization of the classical tidal forces, which
are represented by the tensor R, ;u's’ in the equation for the geodesic deviation, and on the
other hand a generalization of the usual electric Stark effect to the spin-two gravitational
field, i.e. the latter depends quadratically on the “position operator” X,

A similar formulation for the Hamilton operator of the electron in a gravitational
ficld was given by L. Parker, although he assumed nonrotating frames (2 = 0) and geodesic
motion of the atom only. In contrast, the power of the formalism, described in [7, 8]
lies in the rigorous solution of the problems with the non-hermitean Hamilton operator
and the definition of the scalar product of the wave function of the electron, while in the
papers [1, 2, 4] the generally covariant Dirac equation is used only in a formal sense as
a purely “mathematical equation™.

We note that it is easy to include external electromagnetic fields into the formalism,
so that it is possible e.g. to study the hydrogen atom in the field of a magnetic massive
dipole (see [6]).

We will now summarize some features of certain geodesic trajectories in the Kerrs
space-time, which will play a central role in the following discussion.
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3. Geodesics with 0 = const in the Kerr space-time

Let us first give a brief review of some notations for the Kerr metric. We consider
the Kerr metric in Boyer-Lindquist coordinates (r, 0, ¢, 1):

dr? 1
ds? = o (—AL +d82) + (rz_kaz_*_ 7 a? sin® 6) sin? dg*

4M ra

2Mr
Slll Od(pdt— (1— —z“) dt (9)

where

¢’ =r’+a’cos’0, 4 =r*-2Mr+a’. (10)

One determines the first integrals of the geodesic equation easily from the Hamilton-
-Jacobi equation (cf. [12]). In Boyer-Lindquist coordinates we get

Q%) = PP—A(K+r),

(0*u®)? = K—(D*+a?cos?9),

2% = ip_ _9__
e = "o’
2, 2
+
o’u' = r Aa P—asin 6, 11)
with
1 2 2 1 . Lz
P(r) = - [E(r*+a”)—~L,a], D) = —|Easinf- ——]|. (12)
u n sin @

Here p is the mass of the point mass (in our case the nucleus), E and L, are the two well-
-known integrals of motion, corresponding to stationarity and axisymmetry of the Kerr
solution of the Einstein equations. The quantity K is an integral of motion, which arises
from the separation of variables in the Hamilton-Jacobi equation.

Furthermore we restrict our considerations to geodesics on the “cone” § = const.
This includes two important and interesting subcases:

(f) the motion in the equatorial plane (8 = =/2), and

(ii) the motion along conical spirals (8 # n/2),
and simplifies the calculations sufficiently.

The assumption 0 = const has as a consequence the following condition (see [13]):

Du’° ctg 0
—=- T8 (0%a’sin®0~2asin ODP+(r*+a +a’sin DY) = 0. (13)
¢°
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For an atom moving in the equatorial plane Eq. (13) is fulfilled identically. On conical
spirals, it can be rewritten as follows

5 ) Lz A2
B = i+ (o) a4y
asin” 0

As we consider only infinite motion of the atom, we introduce the velocity at infinity v, and
a generalized impact parameter /, by

E
— =y =(1-v,)""% L, = py,lysin0. 15)
U

‘Then condition (10) reads
lo = tasin® (16)

50 that I, is (up to the sign) determined by a and 6. According to the sign of L, (we assume
a > 0), we have to distinguish two principally different cases of motion:

(i) L, < 0Q: retrograde motion, and

(iiy L, > 0: prograde motion.

It is favourable to express the quantity D (Eq. (12)) in terms of v, and 8, which
yields [7]

1—- 1/2
D, = asin 9( +U°°) = const, (17
140

e ¥ GO

where upper signs belong to prograde motion. From Eq. (17) it follows immediately that
the motion on conical spirals is essentially asymmetric, accordings to the sign of L,. This
asymmetry is marked out by the fact that it is complete in the sense that the ranges for
D (v,) do not intersect for different signs of L,:

0< D, <asinf<D_ < . (18)

An important conclusion from this fact is discussed later. Note that the conical spiral
trajectories are stable for small variations 6F and éL, [13].

Along the atoms trajectory we choose the comoving (cf. Eq. (2)) arthonormal vierbein
&f,,) in that way that it reflects maximally the symmetry of both the trajectory and the given
‘motion, e.g. in our case hf,, will be parallel to the vector d, and A3, has only one spacelike
coordinate component (along 8,). These conditions define the vierbein Af,, completely
and allow to calculate explicit expressions for Q and Ry iiyioa [7). We will not write
down these explicit expressions and mention only that no singularities occur outside the
‘horizon.

4. Hamilton operator in the Kerr field. Observable effects

In what follows, we give explicit expressions for the shift and the splitting of the energy
levels. It will be shown that large effects occur only for ultrarelativistically moving atoms, i.e

y> 1, (19)
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where y is the.so-called Lorentz factor, introduced by Eq. (15). This allows us to express
the results in a power series of y and take into account only the highest order of the Lorentz
factor. Hereby special attention is paid to those effects which are (at least in principle)
accessible to modern experimental technique. It can be shown that although the Hamilton
operator explicitly depends on 7, practically for all of the interesting trajecttories (including
those regarded in the present paper) the gravitational field does not disturb the existence
of quasistationary energy levels, i.e. the following inequality holds:

1 d

— — [ilH(2) )] < hag. (20)

oy dt
Herei and f indicate the initial and the final states correspondingly. Therefore the operators
Hpgg and Hyj, are regarded as corrections in the framework of Schroedinger’s perturbation
theory. We assume that the perturbations caused by these operators are greater than the
fine-structure splitting, in order to simplify calculations. This consideration is not of prin-
ciple importance. Explicit expressions for the energy splitting in the case of perturbations
smaller than the fine-structure splitting (but greater than the hyperfine-splitting) are also
easily obtained.

4.1. Motion in the equatorial planev

For motion in the equatorial plane the angular velocity has only one non-zero com-
ponent:

1

Q=0%= yor

((r* =3Mr+2a*)DP —a(P*+ 4D?), 21

where A2 := 1/o(P>—4D?"'? has no singularities outside the horizon. The discussion
of Eq. (21) and the explicit expression of the vierbein components R 4(,(4)(s) (most favour-
ably calculated in the Newman-Penrose formalism) shows that sufficiently large effects
occur only for

—I»1, 22)
r
ie.
a—vylyl > 1 (23)
and
Iy, # a. 29

This means that important effects occur if the atom is nearby the black hole and is moving
ultrarelativistically.” In the ultrarelativistic limit we get:

M
Hgs = 5 pcy (Io—a)’[(X®)? —(X)*]m, cy? (25)
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and
0 =‘l_' (r*—aly+a*) (l,—a) (r2—3Mr+2a2)
r? (r? —aly+a®)?*—A(l,—a)*
2_g41 2y L A(L—a)?
a("2 a o+a2)+ (lo a)z 26)
(r°—aly+a“)—A(ly—~a)
This yields
(Hgs) 3 -1 M ly—a Ry 42
= 5 —_—— == 6,
Hao 2% 77 7 @7

where o =~ 1/137 is Sommerfeld’s fine-structure constant and Rp = 5.29 - 10’“m, the
Bohr radius of the hydrogen atom. Eq. (27) allows us to consider two hmmng cases, for
which we can give explicit results in a simple form:

(i) Dominance of gravitation: é > 1

If we suppose that M, a and r have the same order of magnitude, this case is equi-
valent to

r < n*y’Ry. (28)
The explicit expressions for the energy level shift for levels n =1 and n = 2 are

AEgs(n = 1) = 0,

AEgn = 2) = M (’0““> (i") m cy*m,. (29)

r r.

The expressions for higher n are much more complicated (cf. the results of Parker [4]).

| (ii) Dominance of rotational effects: 6 <1
This case holds if

r>n yzRB (30)
and the shifts of the energy levels are given by
AEgz = hQ(my+m,), (1)

with the angular velocity given by Eq. (26). Note that the first order contribution to AEgzz
does not -depend on the Lorentz factor. The Schwarzschild limit of Eq. (26) leads to:

AESS™ o heml, r

(32)
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“This expression vanishes for radial trajectories (/, = 0) and on the photon sphere (r = 3M).
‘The latter is obviously connected with our use of the ultrarelativistic approximation (Eq.
(19)). The results (31) and (32) agree with [3, 5] where the atom in the field of a Schwarz-
schild black hole was considered (cf. also the expressions for AE for radially falling atoms
in [1, 4)).

-4.2. Motion on conical spirals

As in the case of motion in the equatorial plane, large effects occur only if condition
(22) holds. This together with Eq. (18) suggests what we have to suppose to get sufficiently
large perturbations:

(i) The atom is sufficiently nearby the Kerr black hole.

(ii) The atom moves ultrarelativistically: y » 1.

(iif) The motion of the atom is retrograde, ie. L, < 0.
Note that according to Eq. (18) large effects, even for ultrarelativistically moving atoms,
-do not occur for prograde motion. This is caused by the (complete) asymmetry, discussed
in Sect. 3.

Using the explicit expressions for Q,, and the vierbein components of the curvature
tensor, we get:

(Hes> _
(Hgz?
50 that we can omit the operator Hgg when considering atoms falling along conical spirals.

Schroedinger’s perturbation theory yields (in the ultrarelativistic approximation)
‘the following expression for the shift of the energy levels:

‘MR
3071 — TBtg on* < 1, (33)

AERZ = hc

a” sin 20 8Mr a’sin® 6\ ,
1+ —5 3 Y (my+my). 34
de o e

Note that the quantity AE,, does not depend on the parameters characterizing the atom
and does not vanish on the ergosphere ro, = M+(M?~a? cos? )'/%.

6. Conclusions

To give a more obvious representation of our results, let us make some numerical
estimations. We will use M as a free parameter, characterizing the scale of the system,
and set for definitness r = 3M, a = 1/2M. For motion in the equatorial plane we set
Jo = 3M and consider conical spirals with 6 = n/4.

Thus we obtain the following values for the energy shift AE: For conical spirals the
rotational Zeeman effect gives a splitting of order 101! eV(Mg/M)y?, where Mg is the mass
of the Sun. That means that y has to be of order 10° (M/M{)~! to obtain effects of the order
of the fine structure splitting. For motion in the equatorial plane we have 3 - 10-22 eV
(M|Mg)~* y? for high y and 2 - 10-'1 eV (M/M;)-* for low 7.

It seems to be possible, that near black holes or compact objects there are such atoms
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which have very large Lorentz factors so that the effects considered in this paper (especially
those for conical spirals) really could be observed by astronomers. Actually, we should
not forget that in addition to the splitting of energy levels and spéctral lines, we have
a systematic red-shift of the spectrum (in the ultrarelativistic approximation of order
{1..10) ), possibly up into the radio range. The obtained results let us hope contrary
to. the results of earlier papers, which dealt with non-moving atoms [1] that our results
are not only of theoretical interest. Of course the established model is only a rough first
approximation of more realistic ones, which should include an analysis of the mechanism
of emission of photons (using QED), as well as ensembles of hydrogen atoms.
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