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GRAVITY AND THE CONCEPT OF ENERGY

By M. N. TENTYUKOV
Joint Institute for Nuclear Research, Dubna*
( Received March 15, 1989)

The hypothesis is justified that the gravitational field does not carry energy like the
electromagnetic field transferring the interaction between the electric charges does not carry
charge. It is shown that the pseudotensor approach is inapplicable to the problem of localiza-
tion of the energy-momentum characteristics of the gravitational field. The results are obtained
by embedding the metric tensor describing the gravitation in the affinely connected space.
Hence, it is evident that the formal field approach to the General Relativity is invalid for
the gravitational energy-momentum problem,

PACS numbers 04.20.Me

1. Introduction

The problem of energy-momentum of the gravitational field attracts attention since
the early days of General Relativity theory (GR). In spite of considerable progress in this
direction connected mainly with the definition of the integral energy of the isolated system,
the question of localization of the energy-momentum characteristic is still unsolved [1]
although a certain advance is observed in recent years [2-5].

In the present paper it is shown that the gravitational field does not transfer energy
just as the electromagnetic field transferring the interaction between the charges carries
no charge. Moreover, it will be shown that the pseudotensor approach is inapplicable to the
problem of localization of the gravitational energy-momentum characteristics.

Now we shali briefly sketch the content of this paper. At first, we shall see that a correct
Lagrangian approach requires introduction of the background affine connection without
torsion. It is intuitively clear that the existence of the integral conservation laws must
be closely connected with the mobility of the background object. If it permits the r-param-
eter group of motions, there must exist r conservation laws. This is really so, but these
laws degenerate into the trivial form and do not describe the local dynamics of the gravita-
tional field. The triviality here means that conserved Noether’s currents have a specific
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structure. The physical meaning of this structure is that the field being the force carrier
has no corresponding charge, i.e., the gravitational field which transfers the interaction
between different energy-momentum characteristics of the external (nongravity) matter
has not these characteristics.

2. The gravitation action functional

Let us consider vacuum Einstein’s equations
Gy = 0, 1)

where G, = R,—(1/2)Rg, is the Einstein tensor, R = g”R,, is the curvature scalar,
R; = R}, is the Ricci tensor, Rf, = 0,/ §—0;I P +TEI%,—TPI3, is the Riemann tensor»
I'% = (1/2)g"(0,8.4+ 0184 — 0.8x;) is Christoffel’s symbol.

Usually, these equations are derived by varying the Hilbert action [6]:

Su = [V —gRd%, 0]
where g = det (g,). Equations (1) are of the second order, and the Hilbert Lagrangian

Ly=+—gR, 3)

contains the second-order derivatives too. This leads to the known difficulties [7] because
the variational problem for (2) is inconsistent with the order of the Euler-Lagrange equations.
When we begin to vary (2), the surface term is produced. In order that the surface term
vanishes, it is necessary to set values of the functions g, and their first derivatives at the
boundary of the integration range, which results in overdetermination of the boundary-
-value problem for the Euler-Lagrange equations.

Instead of (3) the noncovariant Einstein Lagrangian is often used

Ly = v =g g (sl tu =Tl b, @
which differs from L, by the divergence term
Ly—Lg = 8,00 )
where
@' = v —g (g g""Thu)- ©)

Noncovariance of Lg in fact means that the background object is present in the theory
[4, 5]. 1t is the affine connection without torsion. We shall denote the background connection
coefficients by I,.

The difference between the connection coefficients

P:‘nn = I\:‘ftm—rﬁm (7)
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is a tensor. It is named the affine-deformation tensor. Let us consider a Lagrangian
L = Vg g"(PrsPin—PiPr). ®

"For the action functional

S = fLd*x )
the variational derivative
. 88
mn . 2
08mn
has been calculated in [4]:
¥ =/~ g g™ g™ (Rop+ Rpa— Riy880~2G.0), (10)

where R, = R¥, is the Ricci- tensor; Rfy = 8,I'%—9,F'h+ I'8I5,— 2% is the Riemann.
tensor for the background connection. If R, = 0, then the equations

gm =0 1)

coincide with the Einstein equations (1), and
Ly—L = V,F, 12)
where ﬁi is a covariant derivative with respect to the background connection and
F' =N =g (¢"Phy—g"Ppy) (13)

is the vector density of weight one.

If R}, = 0 one can choose the coordinate map in which all I}, = 0. Then, P!, turns:
into — I, L turns into Ly, F'into ' and (12) is transformed into (5). Converting Ly, into
Ly by formula (5) is in fact converting Ly, into I, with the fixation of the background con=
nection whose coefficients in this map are assumed to be zero. Hence, it follows that in this
theory it is necessary to use Lagrangian L.

3. The generally covariant representation of the energy-momentum pseudotensor of the
gravitation field

A number- of pseudotensor objects were proposed for determining the gravitational
energy [8, 9]. Their tensor representations can be found by this method [4, 5, 10, 12].
The geometrical meaning of pseudotensors is that these objects are the tensor functionals.
of the background connection.
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Let us consider a-general Lagrangian

L = L8} 0uZmms TEn)- (14)

It is supposed that the background connection is symmetric. Let the following terms be
defined as

oL .
t: = vagnm_m:: (15)
agmmk
i oL
aik = —-—(gmaéil:'*' gané:t L (16)
agmn,j
oS L oL
g~ 3 2 o — —9,—], 1
5gmn (agmn ! agmn,j) ( 7)
oS 6L
@mn =y = I 18
k 5f’;:m ar:"m ( )
where
S = [ Ld* (19)

is the action functional; comma before index means the partial derivative. All the defined
terms are the tensor densities of weight one. (1/\/ —g)t* may be assumed as a canonical

energy-momentum tensor, the term (l/\/ ——g) O;" was first introduced in [10] and named
the pre-energy tensor.
The number of identities can be proved by the variational method {11]. In particular,

4V, o+ Prmg, = 0, (20)
~Vitt = OFRE+(1/2)7" Ry + (1) Y™V o G s (21)
VoV 05"+ O Ry = V(™" g, (22)

where V, is the covariant derivative with respect to Christoffel’s symbol;
ol = — @, 23)

Terms (15)(18) are defined for the general Lagrangian (14). Let the terms correspond-
ing to the concrete Lagrangian (8) be marked by the tilde ~ above the letter. After simple
calculations we get the known relation (10)

grn = —g g™ (R, + Iiba -R, 88— 2G o).

If I‘i{,,,, = 0 then the coordinate map in which I, = 0, can be chosen. As it has been shown
in [12], in this map the value (1/5/ —g)i* coincides with the Einstein pseudotensor [13].
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4. Noether’s theorem and the structure of conserved currents

Let us consider a system described by the fields ¢* where A is the collective index.
Let equations for ¢* follow from the condition of the action functional

S = [ Ld*x, (24)

where L is the Lagrangian, being stationary.

The statement known as the first Noether theorem was formulated in the first section
of the famous Noether paper [14]: If the action is invariant under the r-parameter Lie
group G,, then r linearly independent combinations of the variational derivatives turn
into divergences, i.e.

a]‘,{l) = ; TAX&)a A=1,..,r, 25)

. LAY - .
where JU_, are expressions named the Noether currents, ¥, = 5o are variational deriv-
¥

atives, X(l) are the representation generators corresponding to the transformations of
¢* under G,.

Let the action be invariant under a continuous group which may be parametrized by
p arbitrary functions of the coordinates. We shall denote this group as G, If one singles
out a subgroup G, from the group G, then according to the first Noether theorem, r local
conservation laws will take place.

In Sect. 6 of paper [14] it has been formulated and proved that if G, is a subgroup of
the group G, all currents J{ ) may be represented in the form:

Iy = Aly+ B, (26)

where 4], = 0if ¥, = 0, and B}, satisfies the condition 0,B;, = 0. We shall call the cur-
rents satisfying (26) the trivial currents.

5. The conservations laws

If the background object is a metric, then the solution of the problem of integral
conservation laws is well known. The metric energy-momentum tensor satisfies the local
conservation laws, and if the Killing vector the background metric is present, then the inte-
gral conservation law can be obtained by integrating the local conservation law. In the
present case, the metric energy-momentum tensor cannot be defined because the back-
ground metric is absent. Moreover, in the general case the canonical energy-momentum
tensor does not satisfy the local conservation law (see (21)). Therefore, we use the Noether
algorithm. The general form of the action variation can be written as [11]

y 88 oL .
88 = orx, 8gmn+0 O+ L%’ ) | d*x. 27
I [ar" * Sam ot ’(agm,, & ")] * @n
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Now we substitute the’definitions (15)-(18) into (27) and demand that S vanish under Lie
variations

ox! = g¥d, (28)

6k, = —(V,V (e8)+RE,(e£7); (29)
08mn = —(ZmsV (68" + 8n V(L)) + 68V, 8,); (30)

where ¢ is an infinitesimal parameter, & is an arbitrary vector field. Then, we obtain
§ [OF™V,V (e£") + OF Rk, .68 +(1/2)et U™V, g,,,
+ P8,V () + 0,(0 1V, (e8%) + tet) ]d*x = 0. 31

Since the range of integration is arbitrary, it follows from (31) that the integrand is zero.
By reduction of £ one can obtain

B[O VE +15E) + ¥™(1/2)EV g

+8naVnl?) = —OF (V8" + RE,,E). (32)
Until now the vector field ¢ was arbitrary. Further, the background connection will be
assumed to permit some group of motions and £° will generate the one-parameter sub-

group of this group; consequently, the Lie derivative in the direction &° of the background
connection is equal to zero. It means that £° satisfies the equation

VoVl + RE,, & = 0. (33)

Under this condition the right-hand side of (32) vanishes. Using (33) we write down (32)
in the form

0" = X, (34)

where |
J = ah Ve idee, (35)
X = ~(12)EV oZu— EunaV " (36)

Formula (34) has the same form as (25); therefore, the energy-momentum problem seems
to be solved. Indeed, let us condiser the integral

A = [Jlds;, 37

where the integration is over any infinite hypersurface including the whole three-space.
Relation (34) means that A is conserved if the equations of motion hold. Formula (34)
is invariant because J is a vector density of weight one.

However, a more careful analysis shows that the problem is still unsolved. For the
concrete Lagrangian L defined by (8) the conservation laws following from (34) appear to
be trivial.
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It is easy to verify that the right-hand side of (34) can be identically presented in the
form

X e = EVLPE—V(PRED, (38)
where Y% = ¥*"g___ But if the equations
™ =0 39
coincide with the Einstein equations, then
V¥ =0 (40)
because of the Bianchi identities. If L is used as L, then (34) is
o = —VFig). (41)

Hence, it follows that the current J/ can be presented in the form of (26) and, therefore,
it is trivial.

The triviality of J is easily seen if its structure is investigated in more detail. Let us
consider (35). We have

R AR A AR “2)
Hence, using (20) we can get
V= H+ -l 43)
where
Ji = V,(6iMge), (44)
jf = GUOY g i“V; &, (45)

6,.]’ = 0 independently of assumptions about & since for any antlsymmetrxcal thce
contravariant tensor density of weight one the relation V,V,S"™ = 0 is true; ¢ J 3=0
by virtue of (33) and (40). Indeed, if 6J* is replaced by 9"‘ (see (23)), then we obtain

J = EV,0F - 61v, e, (46)
As J} is the vector density of weight one, §,J4 =V Ji, and
8,05 = &V VO~ 61V VL 47
According to (33) V ﬁ,,éé in (47) can be replaced by —Rﬁ,ﬁé"‘.
0,05 = £V V, &% 1 R, 6%, (48)
By virtue of (22)
T = &V, P (49)

Since (40) holds for ¥, the relation
6_,(.7{-{-.7 5) =0

is true and the triviality of Noether’s current is evident,



918

Physical content of the triviality of Noether’s current is that the field has no proper
charge. For instance, let us consider the complex scalar field ¢ interacting with the electro-
magnetic field 4™ The Lagrangian

L, = 0,9*0"p (50)
is invariant under the group U(1)

P(x) = ™ p(x),

PH(x) = €Cp*(x), (51)

According to the first Noether theorem this results in conservation of the electromagnetic
current

J" = ie(@*d"p— pd"p*). (52)

If the electromagnetic interaction is switched on, the invariance (51) is extended to the local
U(1) one and the conservation law following from the invariance of the complete Lagrangian

Ly = (0, +ieA)9p* (0" +ieA™yp—(1/4)F™F,, (33)
under (51) becomes trivial since the conserved current
Jg = j"=2A"p* g (54)
is identically presented in the form
J4 = 0,F"—¥", (55)
where F?™ = gPA™—0" A" is the tensor of the electromagnetic field,

04, ‘oA,

4 (56)
is the variational derivative of Ly with respect to 4,,.

The electromagnetic charge of the field ¢ is conserved “accidentally” because the
Lagrangian

L¢+L¢A = am¢*am¢—‘4m im+ezAmAm<p*(P (57)

is invariant under (51) with any arbitrary backgroung field 4™. If the field 4™ is dynamical
it has no charge and the identically conserved current J7, = 8,F" describes the asymptot-
ics of A™ at the spatial infinity. The asymptotics must satisfy the condition under which
the surface integral | F°*do, over the infinitely remote surface is equal to the total charge
of ¢.

In the case of gravitation such an “accidental” symmetry of the material Lagrangian
with the arbitrary background metric tensor is absent since the Poincaré group does not
permit deviation of the metric from the Euclidean form. Therefore, the energy of the mater
system is nonconserved and the gravitational field has no energy at all.
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6. Concluding remarks

Many attempts were made to solve the problem of localization of the gravitational
energy by introducing the nondynamical (background) object [15, 16]. Usually it was
a background metric (bimetric theories) and the gravitation was considered as a usual
matter field alongside with other fields [17]. The theory remained generally covariant but
the dynamical invariance under the diffeomorphism group

x™ = x" -+ E7(x),
Pun(X) = Bo(x+E) + By x +E)E,
+ ha(x + O+ hap(x + 0L,
FA(x) » X3F(x+8), (58)

where k,,, is a gravitational field, F* are the other fields, was violated. In the general case,
when the background object is arbitrary the invariance is completely violated, i.e., any
residual symmetry is absent. However, if the background object permits the group of
motions, the theory is invariant under this group. Usually, the background object is a met-
ric permitting a Poincaré group, and thus the energy-momentum problem seems to be
solved. As it has been shown, this is not right. The absence of the concept of gravitation
energy is not connected with the physical interpretation of the mathematical terms. It is
a consequence of the properties of the Einstein equations. The main source of the difficul-
ties in the classical GR is the invariance of the Einstein equations under the diffeomorphism
group. The absence of the physical interpretation of the noncovariant objects such as
psudotensors or integrals of spatial components of the tensor densities produced in the
process of analysing makes it impossible to correctly close the statement of the mathe-
matical problem by boundary or initial conditions. In the present paper, these difficulties
were avoided by defining the suitable (invariant) Lagrangian and replacing the boundary-
-value problem by the variational one. As a result, we have succeeded in solving the group
analysis problem by applying the simple and well-elaborated Noether algorithm. It is
important to emphasize that it is classical GR that has been considered in this paper
and not any generalization of GR such as bimetric theories.

The author is very grateful to prof. N. A. Chernikov for his permanent attention
and to A. B. Pestov for helpful discussions.
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