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Higher order moments of multiplicity distributions in rapidity intervals are calculated
from lowest order moments for few simple distributions used commonly to describe the data.
It is shown that systematical small deviations of data from the fitting curves may lead to
significant discrepancies between the values of moments determined directly from data
and values calculated using the fits. Additional tests for models which seem of fit well the
multiplicity distributions are thus strongly recommended.

PACS numbers: 13.85.-t

The multiplicity distributions in (pseudo-) rapidity intervals became recently a subject
of vigorous experimental and theoretical investigations. The ncgative binomial distribu-
tions (NBD), proposed originally to describe data for full phase-space [1] were found
to fit as well data for rapidity bins of changing size in various processes [2-3-4]. This has
prompted many people to look for the possible physical interpretation of NBD and its
parameter values [5-6]. In particular, conditions for NBD to hold in all subdomains of the
considered part of phase-space were investigatcd [7] and found experimentally not always
valid [3], although it did not spoil too much reasonable NBD fits. On the other hand, many
competing distributions were proposed and claimed similar successes {6]. Morecover,
moments of distributions in very small bins were found recently to bz of special interest,
exhibiting power-like increase [8-9] predicted earlier in analogy with turbulent phenomena
(“intermittency”) [10].

Thus, although obviously any model “explaining” NBD or other simple fits should
be developed to give predictions for many other measurable quantities, the first step should
be to check if the multiplicity distributions are really well described by the proposed for-
mula. The aim of this note is to show that it is not enough to find reasonable y?/ND ratios
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in fits to multiplicity distributions. Systematical small over- and underestimation of data
in various ranges of multiplicities may lead to significant discrepancies between values of
higher moments in fits and data even when y? value is close to ND. Thus fits to multiplicity
distributions should be always supplemented by calculation of few moments, preferably
those most sensitive to the detailed shape of the distribution.

The first example we will consider are the EMC data [4] on multiplicity distribution
on up interactions at 280 GeV/e. They were shown to fit well the NBD
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For 48 distributions of charged hadrons for energy bins between 4 and 20 GeV and central
rapidity bin widths between 1 and 7 units in rapidity, only in 7 cases y2/ND is uncomfort-
ably high. Similar results are found for negative particles and for bins shifted to one CM
hemisphere. Recently, similarly good agreement was found for so-called Poisson-type
distributions. in which Poisson distribution is assumed for clusters with narrow decay
multiplicity distributions [11].

Fortunately, published EMC data include not only # and k values, but also values
of average multiplicity (n), dispersion D? = {(n?—{(n))*>, skewness y; = {((n—<{nd)*>
J(D??* and kurtosis 7, = {(n—<{n))*>(D*)?~3 for central rapidity bin [y! < 1 for 8
energy bins [4] (see Erratum!). It is easy to check that first two moments agree perfectly
well with values calculated from NBD parameter values

> =i, D= fj(kzﬁ) . Q)

For Poisson-type distributions D? and {(») are simply used to determine average cluster
multiplicity 7, and cluster decay multiplicity k from formulae [11]
_ 1+nyk
() = ki, D? = .l , (3

i,

where 5 = 0 if dispersion of cluster decay distributions is neglected (case marked PDD),
and n = 1 if Poisson distribution is assumed also for decay (case marked PPD in what
follows).

Now, however, we can easily calculate also values of y; and y, from known values
of i1, k for NBD and from (x>, D*? for PDD and PPD. We find for NBD

ys = (Ui+2/R)N 1+ 1(k, 0
ve = (1/A24+6/ik +6/k3)/(1ja+1/k), (5)

for PDD
73 =D, (6)

7s = D<), Q)
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and for PPD

s = N D>+ 1\ D= 1/<n> (D?)P2, )

D*[{ny2+3j<n>=2/D* -

Va ®)

1
3ny(D?)*’
The results are compared with measured values in Fig. 1. We see that formula (5) overesti-
mates systematically the experimental values, yielding y* above 20 for 8 data points (confi-
dence level below 19]). On the other hand, formulae (6), (7) underestimate data with simi-
larly poor y?. Only formulae (8), (9) agree with data within errors.

These results show that investigating higher moments we may indeed find systematical
deviations overlooked in simple fits to multiplicity distributions. The NBD fits were in fact
good for the discussed data, yielding y2 below NP in six cases and 16.5/10, 13/11 in two
worst cases for eight energy bins [4]. For PDD z? values were not quoted, but the visual
agreement for P(n) was equally good [11]. Our results indicate, however, that neither NBD
nor PDD can be regarded as really good description of data, unless unknown systematical
errors are present in experiment or data processing, Only PPD passes this test. Unfortu-
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Fig. 1a. Skewness y; and b. Kurtosis v, of multiplicity distributions in CM rapidity bins |y} < 1 for up
collisions as functions of hadronic CM energy W. Crosses denote data of Ref. [4] with error bars, crosses
result from NBD (4), (5), dots from PDD (6), (7) and circles from PPD (8), (9), respectively
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nately, no reliable data for higher moments exist for other 1h or ete- experiments, and
PPD is not supposed to hold for hadronic reactions. Thus we cannot check how universal
is this success.

Our second example concerns the compatibility of NBD with the increase of factorial
moments for small rapidity bins. We will discuss here the NA22 data from 250 GeV/c
7tp collisions [8]. It is obvious from formula (1) that for NBD following relations should
hold

- q-1
nlj(n=)Ya' = F, = Y, [L(F,-1)+1]. (10)
L=1

The increase of moments is usually parametrized by slopes ¢, in the relation
InF, = a,—@,1né, (11)

where ¢ is the rapidity interval length. If J is so small that the increase resulted in F, signifi-
cantly bigger than one, the leading term in (10) will be that proportional to F; *, and we
expect

Q2 = q—1. (12)

In real data experimental resolution does not altow to go below § =~ 0.1, where the increase
of moments must stop [12] and F, is never bigger than 1.5. Then relations (10) are obviously
incompatible with exact linearity (11) for more than one value of g. However, in the finite
range of o characterized by

Y= In (5ma\/5min)5 (13)

we can always define the effective slope ¢, as

1
0= — N TF ) Fy O] ()

It is easy to check that for F, changing as prescribed by (11) linearity for ¢ > 2 is also
quite well preserved (¢, depends only weakly on 7) if we have

q[FZ(dmin)_FZ(émnx)] < q[FZ(émax)_ 1] +1. (15)

This condition is well fulfilled in all existing data, and in particular in [8]. The values of
effective @ /¢, resulting from (10) are, however, systematically above ¢—1. For F, close
to one

(i—=1) [Fy(0mn)—1] < 1 (16)
one gets from relations (10) simple upper limit

rigr s 180 (n
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It is interesting to note that this limit corresponds to the relation obtained for Gaussian
approximation of the random cascade models [13] and recently, for Bose-Einstein inter-
ference effects [14].

If the multiplicity distributions are well described by NBD, the ratios of effective slopes
¢,/¢> should be always between the limiting value (12) and (17). This is the case for data
from nuclear collisions [9], but not for =*p data considered here [8] where one finds

@l = 394.3,11.6+.8,258+£2.0 for ¢ =3,4,5, (18)
whereas upper limits for NBD allowed by (17) are

?/92 S 3,6, 10. (19)

The disagreement is obvious. It looks strange, since the same data for central rapidity
intervals of width down to § = 0.5 were successfully fitted to NBD [3]. To see more clearly
what happens, we show in Fig. 2 the values of F; and F, calculated from (10) and compare
them with values calculated directly from data [8]. We do not show F values, for which
errors are very large. For transparency, the errors of values calculated from (10) are omitted;
they are always smaller than errors of moments shown. We see that discrepancies are never
really big. In fact, they do not exceed three standard deviations for any point. Thus reason-
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Fig. 2. Left-hand-side (points with error tars) and righi-hand-side (crosses) of Eq. (10) for a—g = 3
and b— g = 4 from the data of Ref. {8] as functions of interval width 8 on double logarithmic scale
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able NBD fits are always possible. However, the d-dependence is indeed quite different
for two sides of equation (10) (which should be equal, if NBD holds). We can expect
that NBD fits will become much worse for very small (accessible for improved rapidity
resolution), if this trend holds.

Very similar results may be obtained for Poisson-type distributions (PPD) although,
as noted above, they are not really expected to hold for hadron-hadron collisions. In this
case relations between scaled factorial moments are

Fy=Fi4+F,~1, F,=F3+4F3-5F,+1, F5=Fi+11F}—14F}4+F,+2. (20)

We can see immediately that limiting values for ¢ /¢, ratios for F, > 1 and F,—1 <1
are again the same as for NBD, i.e. (12) and (17), respectively. F, are not so sensitive to
change of parametrization as y,. Thus RHS of Eq. (20) agrees within errors with RHS
of Eq. (10) for ¢ = 3, 4. We do not show it to keep Fig. 2 transparent.

In fact, it is not very surprising that simple two-parameter distributions fail to describe
in detail the experimental data. It is well known that the effects of energy-momentum and
charge conservation, resonance decays and possible other short-range correlation effects
may change significantly the distribution assumed for directly produced particles neglecting
conservation laws and short-range correlations. It is difficult to imagine that all these com-
plicated effects cancel somehow, yielding again a simple formula for the distribution of
observed charged stable hadrons. It is certainly worthwhile to look for physical picture
which gives NBD or other simple distribution, but it may be dangerous to disqualify models
which do not yield them in a “natural” way.

It should be stressed, however, that the agreement of limits (17) with nuclear data [9]
for which the linear formula (11) holds best, is quite intriguing. It may suggest that NBD
holds down to very small bins in rapidity when short-range effects are suppressed by super-
posing the production from many nucleon-nucleon collisions. It would be interesting to
investigate this behaviour in more detail.

To conclude, we have shown that models fitting quite well the multiplicity distribu-
tion in rapidity intervals may fail to reproduce the values of higher moments and/or their
dependence on energy and interval length. We recommend that all the tests of models for
multiplicity distributions should not be restricted to fitting the distribution, but should
check also the agreement at least for few moments (preferably most sensitive to the shape
of distribution). Only the models which agree with data in all representations can be
regarded as describing them well.

1 would like to thank A. Capella and J. Tran Thanh Van for their warm hospitality
in Orsay, which enabled me to prepare these remarks, Special thanks are due to W. Kittel
for supplying the data [8] in numerical form and to P. Malecki for drawing my attention
to Erratum of Ref. [4].
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