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The scalar quantum field theory with A@*+ g®* interaction in four dimensional space-
-time is studied to the first order of the optimized expansion. The results are very similar
as for A®* theory studied in the same approximation. Renormalization can be explicitly
performed; however, the renormalized theory is noninteracting or precarious. The autono-
mous phase of the theory, suggested recently by variational methods, is nonrenormalizable
in the considered approximation.

PACS numbers: 11.10.Ef, 11.10.Gh

We consider a theory of the real scalar field in # = 4 dimensional Euclidean space-time
with a classical action given by

S[{®] = | ax[§ ®(x) (—&* + mP)D(x) + P(D)], ¢))

where the self-interaction P(®) = A®*+g®°. The full information on Quantum Field
Theory (QFT) is contained in the effective action I'(¢). The quantum action, as a functional
of the background field ¢, generates one-particle-irreducible (1P1) Green’s functions [1].
Renormalization of the theory consists in reparametrization of the effective action in terms
of renormalized fields

pr(x) = Z7V2g(x) ()

and renormalized parameters instead of bare ones. It is convenient to define a renormalized
mass and coupling constants as 1PI vertices at vanishing external momenta. Such vertices
can be obtained as derivatives of the effective potential (EP), defined as

I_If] ‘w=const

Vip) = — SW— . )
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Usually, the effective action is calculated in the loop expansion [1] and used to derive
proper vertices (if the vacuum expectation value of the quantum fields vanishes, it is equiv-
alent to the Feynman perturbation theory). The scalar QFT is perturbatively renormal-
izable, only if P(®) = Ad*. Higher powers lead to nonrenormalizability, which shows up
already in one loop approximation. However, a conjecture that perturbatively nonrenormal-
izable theories are meaningful when studied nonperturbatively has been considered since
a long time [2]. A rigorous realization of the program “to renormalize nonrenormalizable”
has been done for Fermi theory in 2+¢ dimensions [3]. Many theories have been claimed
equivalent to renormalizable ones [4], among them a scalar theory with ¢ interaction [5].
Further doubts on the reliability of the perturbative approach, which gives the renormalized
parameters in A9* theory completely arbitrary, were raised after almost rigorous proofs
that the renormalized coupling constant vanishes [6]. It is interesting to note that some
nonperturbative methods point on triviality — the problem of “zero charge” in the leading
logarithmic approximation [7], in the large N expansion [8], and in the Gaussian
Effective Potential (GEP) approach [9]. In these approximations it is possible to escape
triviality, choosing a bare coupling negative and infinitesimal, which makes the theory
asymptotically free. This phase has been called precarious, since it becomes stable only
after sending cutoff to infinity. The result hides an intrinsic instability, which shows up,
if the temperature effects [8], or corrections to the GEP are taken into account [10]. Re-
cently, an autonomous phase of A¢* theory, which does not appear in the large N expansion,
has been found in the GEP approach [11]. For an infinitesimal, but positive bare coupling,
an infinite field renormalization has been performed in such a way that the renormalized
GEP is finite [11] and stable [10]. The autonomous phase has been also found in the renor-
malized @¢ theory [12]. However, as for 2¢* theory, only the finiteness of the EP has been
shown, which guarantees only that 1PI vertices at vanishing momenta are finite. We would
like to point out that the theory is renormalized in some approximation, if the vertices at
nonvanishing external momenta remain finite. Such vertices can be obtained only from
the effective action. In the variational approach the effective action could be calculated
using time dependent variational principle [13] for functional Schrédinger equation. Such
an approach was applied to A¢* theory [14], but corrections have been calculated only to
the EP; therefore the discussion of the autonomous phase was still incomplete. Moreover,
the Schridinger representation is not convenient to study renormalization, since it needs
the rigorous construction given recently by Symanzik [15]. In the Lagrangian formulation
renormalization procedure becomes more clear; therefore we propose to calculate the
effective action in a covariant way, using the optimized expansion (OE) [16]. The expansion
for a scalar theory with polynomial interaction can be generated, modifying a clasical
action (1) to

S.[@] = | d'x[5 @[ - 0°+ Q*]P +¢[§ (m* — Q))D* + P(P)]] @

and applying the steepest descent method to the path integral representation for Green’s
function generating functional. The effective action is calculated as a series in the formal
parameter ¢, which is set ¢qual to one at the end. The exact effective action does not depend
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on an arbitrary field Q2(x), but to any finite order the dependence on Q2 appears. The OF
consists in choosing Q2 as the stationary point of the given order approximant for the
effective action, which makes the approximation as insensitive as possible to small varia-
tions of the unphysical field.

The k-th order effective action can be obtained as a sum of 1PI vacuum Feynman
diagrams with k interactions in the theory with propagator and vertices read off from the
modified action (4) upon shifting a field ¢ — ¢+ ¢. We obtain the inverse propagator

G™l(x, y) = (= +Q%(x)3(x, y), &)

two-particle vertex [Q2—m?—P"(¢)] and r-particle vertex given by the r-th derivative
P"(g). In the theory with P(P) = id*+gPC interaction, the first order effective action
is given by diagrams shown in Fig. 1 and we have

I'(p, Q%) = [ d"x{— p(x) (= &*+m*)p(x)— Ag*(x) — g¢°(x)
=3 §d"y[6(x—») Ln [G™(x, )] +3 [Q%(x) —m* —12.9°(x) — 30g¢* (x)]G(x, x)
~[37+45g¢%(x)]G*(x, x)—15gG3(x, x)}. 6)

l‘(t,p):—12—m2 npz+}\ep"+—1i- O

1 1 1
+2O+88+48(%

Fig. 1. The Feynman diagrams, which contribute to the effective action in A®9*+ g®°® QFT to the first order
in the optimized expansion

The stationarity requirement

%I(;) = f d"x{% [Q%(x)—m® — 124¢*(x) ~ 30g¢* (x)]G*(x, y)
—(6/+90gp*(x))G(x, x)G*(x, y) —45gG*(x, x)G*(x, )} = 0 (7

will be satisfied, if we choose Q%(x) to fulfil the gap equation
QY (x) = m* —124¢%(x) = 30g¢*(x) — (124 4 180g0*(x))G(x, x) —90gG*(x, x) = 0. (8)

As in the Ag* theory, this result is a covariant form of the effective action obtained in the
time dependent Hartree approximation [13] and coincides with the result obtained by
explicit summation of diagrams with nonoverlapping divergencies in Dyson-Schwinger
equations [17}].

It will be convenient to introduce a notation

— 1 d'k -2 Z_J_fiv_kg‘
1(Q) =4 f G KD = | 555 3 (92)
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Q) — fak 1 Tdk b
o) = Qn) K2+Q* J n) 20, (9b)
"k
1.2, p) = 2f AL (%)
n)Y' (p—k) + ) (K" +Q°)
d"k { &k 1
I () =1_4(Q,0)=2 (9d)

where v = n—1 and o, = Q2+k>+k3+ ... +kZ The integrals I(Q) in four dimensional

space-time are divergent and are understood as regularized with momentum cutoff; the
relations between them are quoted in Table 1.

TABLE I

Relations between Iy integrals in four dimensions: x = 2%/mg

1
L(Q) = I(mg) = 1(Q2— mR)Io(mg) — +(Q2% — mR)*1-,(mg) - Ez—r'rliLs(X),
2 -

1 2
I~ I(mp) = (mg =0 (mp)+ ot mgL,(x),

I (Q)—1_,(mg) =

L,

where
Li(x) = In(x),
L,(x)=xIn(x)—(x—1),

L) =3x*Inx@~ L~ 2(x—- 1~

Taking the effective action for constant ¢, the EP is calculated to be
Vg, @) = L mP¢? +0¢* + g’ + [(Q+5 (m* + 124¢° — Q1) o(Q)
+3A[To(DF + 15g{ ¢ To() + 3¢ [1o(D]* + [1o(D]’} (10)
with Q7 fixed by the gap equation, which becomes
Q= m* —122[¢* +1o(2)] = 30g{g* + 60 1o(Q) + 3[I,(D)]*} = 0. (11)

The result coincides with the GEP obtained in the variational approach [18]. This can
be used to argue that objections [19] to renormalization of the GEP are unjustified. In the
Lagrangian approach, used in the OE, the standard renormalization [20] is performed.
One avoids problems of the renormalization in the Schrddinger representation [15), which
could make results of the variational approach ill-defined [19].

The covariant formulation of the OE enables us to study the QFT at finite temperature
in the same approximation. The EP at temperature T in the imaginary time formalism of
statistical field theory is obtained by compactification of the time dimension with a lenght
1/T [21]. Therefore, the finite temperature EP in the given order of the OE [22] can
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be obtained replacing momentum integrals by their finite temperature counterparts; for
the integrals (9a and b) we have

T aer 2 2
Q) = ZJO 5 In (k? + Q%)

d'k
@2n)’

1ol = = |G o | s | = @ sk
0( ) (27() k2+92 o (27()" w, 2 ewk/T_l — 10 0( )’

where ko=2rjT. JT(Q) and JJ(Q) are finite in any space dimensions v and vanish for
T = 0. The first order OE result

[ +TIn(1— "”"‘T)]—II(Q)+JT(Q) (12a)

Vg, @) = 1 m*¢? +5¢* +g® + 11(Q) + 3 (m* +12)¢7 — QDI H(Q)
+35D] +158{g*15(D) +3¢°[IHD]* + [15(D]*} (13)
with Q% fixed by
Q2 —m* —12i[@* +I5(D] —30g{¢* + 60 I3+ 3[IH(D])*} = 0 (14)

can be regarded as a justification of the finite temperature GEP, obtained by Roditi [23].
A justification of such replacing in the Hamiltonian approach has been done only recently,
but the derivation is quite lenghty [24].

Now, we will discuss renormalization of the theory in the first order of the OE. The
effective action (6), expressed in terms of renormalized fields (2) becomes

I(gr, @) = [ d"x{—Zgp(x) (=0 +m*)a(x) = AZ gr(x) — gZ° pr(%)
—5 [ dy[8(x—y) Ln [G™'(x, »)]]+5 [Q*(x) —m® — 12AZ giz(x) — 308 Z> pa(x)]G(x, x)
—[32+45gZ¢*(x)]G*(x, x)—158G>(x, x)}, (15
and the gap equation (8) turns into
Q2(x)— m? — 124Z pa(x) — 308 Z2 p(x) — (122 + 1808Z pi(x))G(x, x)— 90gG2(x, x) = 0. (16)

This implicit expression enables us to calculate functional derivatives of the effective action
with respect to the renormalized background ficld. When taken at constant field and Fourier
transformed, they give 1PI vertices for arbitrary external momenta, expressed in terms of
ordinary integrals in momentum space.

The true vacuum expectation value of the renormalized field ¢y should be constant
and has to make the effective action stationary. To the first order OE, after using the gap
equation (16), we obtain

or -1 ; \ 2.3 . 5 2 , RS
gf—giﬁ = —ZG 7 Y{x, )gp{ )+ 8Z ga(x) [~ + 3gZ gp{x) + 158G(x, x)]. (7N
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Therefore, the vacuum expectation value gy either vanishes and the reflection symmetry
is unbroken, or ¢y fulfils equality

= 8Z a4 +38Zgr+158G(x, x)] (18)

and the symmetry is broken spontaneously.
The second derivative of the effective action becomes equal to
_or —ZG N (x, y)+12Zgp(x) [A+5gZepa(x)
Opr(x)0@r()) ’ Ry
5Q%(2)
der(y) ’

+15gG(x, x)] Jd"sz(x, z) (19)

8Q2%(x)
or(y)

where fulfils an equality obtained by differentiation of the gap equation:

SQ3(x)
5 — —24Z@g(y) [A+58ZpR(x)+158G(x, x)]o(x, y)

Pr(y

2
—24[A+158Z pd(x)+15gG(x, x)]Jd"zGZ(x )59 EZ; 0. (20)
ey

For constant gy the gap equation is satisfied by the constant Q and the Fourier trans-
form of the self-energy (19) is found to be
8'r

1—' (p’ @ ) = f ,Ce!p(x y)
: Spr(x)37R( ¢

_ Z[pz L r_ HZR0+ 582+ 15el0)'T (2, p)] a1
[14+6(A+15gZ¢a+15gI)]1- (L, p)
If the symmetry in unbroken, the self-energy becomes
r*(p) = =Z[p* +Q%|pe=0l; (22)

and is finite at arbitrary external momentum, only if the field renormalization constant
is finite. It is convenient to take Q?|, _, as the renormalized mass.

If the symmetry is broken, expanding the self-energy (21) into Taylor series for sall
momenta and taking (18) into account, we obtain

18[A+5gZ g2 +15g1 ()] - (2
P g = ~7 {02 [ 1- L S Bl I(L]
[1+6(A+bg2<pg+15g]0(‘g))1_1(g)]

3~ +5gl¢R-r ngI,)(Q)_]

21+ 6( A | P+ 00" - 23
i [H 87°[1+6(7.+ 158Z g2 + 158l Q) ()] ]P +0(p )} (23)
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The autonomous phase has been obtained [12], choosing renormalization flows

Z=1_,(w (24a)
, 1
= o (24b)
2
2 _ Mo (24¢)
21w
g = ! (244)

udI2 ()’
where m,, 1 and p, are finite parameters with mass dimensions. This choice makes the EP
finite, ensuring the finiteness of 1PI vertices at vanishing momenta. However, in the self-
-energy (23) only the momentum independent term becomes finite, but the coefficient at
p? remains infinite. It is not possible to make both terms finite with infinite field renormali-
zation. In A9* theory (g = 0) the conclusion remains the same and infinities appear in the
self-energy at non-vanishing momentum in the autonomous phase, as observed by Kovner
and Rosenstein [17]. The autonomous phase has been also criticized from different points
of view by Soto [25]. Our result does not prove that the autonomous theory cannot be
renormalized at all, it shows only that this is impossible in the first order OE, which is a co-
variant extension of the GEP on space-time dependent fields. We cannot exclude a possibil-
ity that renormalization could be done in a different approach; however, it is crucial to
show that 1PI vertices remain finite at non-vanishing momenta.

In the discussed approximation the only way of renormalization is to take a field
renormalization Z finite. In this case it is sufficient to find bare mass and coupling, which
make the EP finite. It has been shown [9] that in the Ad* theory reparametrization of the
GEP for finite Z can be done in two ways, resulting in the renormalized theory which is
either trivial or precarious. Now, we will show that in the first order OE the Ad*+ g¢S
theory renormalized with finite Z is very similar. For simplicity, we take Z = 1 (g(x)
= @g(x)) and define renormalized parameters as derivatives of the EP at ¢ = 0. The
second derivative

avy L Avl Ve @+90g[I( @] =9} (5
d‘PZ ¢=0 d(‘PZ) ¢=0 a(‘Pz) ¢=0 ° ° ¢=0 ¢=0
can be used to define the renormalized mass as
2 dZV 2 . 2
My = —; = m*+ 12 y(mg) +90g[Io(ma)]". 26)
=0

To obtain higher derivatives, the implicit dependence Q3(¢) has to be taken into
account. Differentiation of the gap equation (11) gives
aQ? _ 124,
om0 14640 (mp)

3 @n
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and

il & 15g1_ ,(mg) b 1sgr

— — - _ m p— —_——

AT om0~ T 6L (T (g |8 1) | gz 19812000

364, 14941 (mg) 362
X + | 45813 (mp)+ - s ‘f 2 - 5 (28)
1+6A1_(mg) 4dn*mg [14+641_,(mg)]

where

Ao = 2+ 15g1(ing). (29)

After some calculation we obtain the renormalized four-vertex

. 1 d*v L diV 1-1251_ (my)
R = T T4 =32 5 29 = T T (30)
4! do” p=o d(@°) p=0 1+64l - (img)
and the renormalized six-vertex
1 d% L 4V
8R = 4 =%
N 61 d(])6 =0 ° d(¢2)3 ¢=0
(1—-90g,+1620g% —3240g>) + O (31)
= - r 2 T s
8 & & & [+ 621 (mg)]Pmi
where
Ad i (m
8 = ““*A—R)_ . (32)
14641 _,(mg)
Eq. (30) has two solutions, which in the limit of an infinite cutoff become
A= =7 I, (33)
or
1 1
Ay = (34

T 6I_(my)  12A[I- (mJ)T

Similarily as in A¢* theory [22], it can be shown that the finite solution (33) is patho-
logical. It gives finite EP, suggesting that the renormalized theory is interacting. However,
the EP at finite temperature bears no sign of interaction, since a temperature contribution
does not depend on the background field and is the same as for free particle with a mass my.

If the infinitesimal solution (34) for the bare four-vertex is taken, the bare six-vertex
has to be equal

8G

a 15[1_(mp) ]’ (339

g =
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where
gr 1
= - 36
6413  1927*m} (36)
The precarious EP can be written as
1 1
V(p, Q%) = G —md) + = miLy(x)+5 Q¢ — ~— (mg—2)’, 37
32xn 1624
with Q fulfilling the gap equation
1 1
G(@*—md)*+ — mELy(x)+% ¢~ — (@*—md) = 0, (38)

16n 82g

where x = Q%/mg and the relations from Table I have been used.

The gap equation has solutions for arbitrary ¢, if G < 0. However, the theory is
unstable, since the absolute minimum V — —oo is at the end point @ — co. A nontrivial
theory is obtained only for G > 0. The gap equation has a real solution only for
@ < @madAr, G) and the EP is determined only in this range. For G = 0 we obtain the
precarious A®* theory, discussed by Stevenson [9]. For comparison, discussing the precar-
ious A9*+gd® theory, we take the same value of the parameter x = —4n?/l; = 1.25.
For /Ay < 0 according to (36) the bare six-coupling g is negative, i.e. the theory is asymptot-
ically free. For G = 0.1 the range of definiteness of the EP shrinks to the point ¢ = 0 and
the precarious theory disappears, but even for smaller G it becomes metastable at
G, = 0.0012, since the value of the EP at the endpoint € = 0 becomes lower than the value
obtained with the use of the gap equation. In the range of G in which the renormalized
EP exists it has a minimum at origin, therefore the theory is symmetric.

At finite temperature the renormalized EP in the first order OE is given by

1 1
Vi(p, Q%) = G(@*~mp)*+ ——— myLy(x)+5 @9’ — — (mg—Q)*+J,(Q), (39
32z 164,
where Q2 satisfies temperature dependent gap equation

C(@ =M+ g ML)+ o (P —mD -3 @ =0 (40)
16n 84z

In Fig. 2 we compare the EP in the units of my at temperature T = 0 and T = 0.3
for k = 1.25 and G = 0.001. The figure can be compared with Fig. 2 of Ref. [9] obtained
in A@* theory (G = 0). At T = 0 the critical value ¢,,,, = 0.041, beyond which there is no
solution to the gap equation, is smaller than ¢, = 0.058, obtained for G = 0. The
temperature behavior is qualitatively the same as in A¢* theory [22]. For increasing tempera-
ture ¢, decreases and becomes equal to zero for T, = 0.38. The critical temperature
is even lower, since for T, = 0.21 the value of the EP at the end point becomes lower than
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the value obtained using the gap equation. These values have to be compared with T, = 0.41
and T, = 0.35, obtained for G = 0 [22]. The second derivative of the EP, which plays
a role of the order parameter, jumps from a finite value to zero at critical temperature
T, and the phase transition is of the first order. Beyond 7, the EP is a constant potential
of massless free theory. However, the conclusion is drawn using the endpoint behavior
of the EP when the OE becomes unreliable. The lack of the solution to the gap equation,
can be only a signal that the method breaks down for ¢ > ¢,,,,, and is unapplicable beyond

4
VT ‘/
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........... /
| e / .
/7 T=00
i / -
/
/ -
L / /
.//
// 1203 |
!
o0 e 3]
""""" 0.01 // 0.02 0.03 0.04
- / =
~
—
" o
- 0.0005 i~ -1
¢

Fig. 2. The effective potential for A&*+g®° QFT for x = 1.25 and G = 0.001 at the temperature T = 0
and T = 0.3. The critical temperature 7, = 0.21. All variables are in the units of renormalized mass mg

the critical temperature. In A®* theory such strange behavior above the critical temperature
was atributed to internal instability due to negative bare four-coupling [8], which can be
related to the perturbative instability. In the A®*+ g®*® theory the instability is due to the
negative bare six-coupling. In this case perturbative nonrenormalizability appears already
in one loop approximation — bare parameters can be chosen in such a way that the self-
-energy, the four- and six-vertex are finite at arbitrary external momenta, but the eight-
-vertex remains divergent. It has been claimed that the eight-vertex causes nonrenormaliza-
bility in the leading order of the large N expansion [26]. This is in disagreement with our
results, since the first order of the OE for N-component scalar field with O(N) symmetric
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interaction becomes exact in the limit of large N. Renormalization can be performed,
choosing a bare mass, four- and six-couplings in a similar way as for one field. The six-
-coupling is infinitesimal, which makes the EP (and the eight-vertex) finite. Therefore, the
theory is renormalizable in the large N limit. For finite N the discussion of higher orders
of the OE is necessary to check renormalizability and stability of the precarious phase
of the theory.

I would like to thank Krzysztof Gawedzki for a critical reading of the manuscript.
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