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EVOLUTION OF A SYSTEM OF CLOSED COSMIC STRINGS

By T. BuLik*
Institute of Theoretical Physics, Warsaw University, Poland
( Received June 8, 1989)

A system of closed cosmic strings is studied. We present a brief discussion of dynamics
of strings. We find self intersections of a family of cosmic strings and investigate the distribu-
tion of daughter loops. A numerical model of evolution of a system of cosmic strings (low
density gas of strings) is proposed and discussed. 1t is found that the energy spectrum of
strings is not affected by the evolution and remains scale invariant.

PACS numbers: 98.80.Cq

1. Introduction

Strings and other topological defects are predicted by many grand unification models.
Such objects are formed during phase transitions in the early Universe. Domain walls
should decay very rapidly lest they dominate the energy density of the Universe. Since
this is not the case they are not relevant for cosmology. A domain wall within the present
horizon would, moreover, produce a very high anisotropy in the background radiation.
The experimental bounds on this anisotropy allow to conclude that there are no massive
domain walls at present. The problem of evolution of strings, however, is being widely
investigated as strings may solve some important cosmological problems.

Several mechanisms of loosing energy by strings have been found. These are gravita-
tional radiation, electromagnetic radiation (Witten, 1985) in the case of superconducting
strings and intercommuting of strings. These processes have been recently reviewed by
Vilenkin (1985). The intercommuting is the less known of all the above mentioned processes.
Answers to the following questions are still unknown: what impact intercommutings have
on the evolution of a system of cosmic strings?, how probable is a self-intersection and
whether it leads to a decay of the string?

Strings may give rise to matter density perturbations needed to form the presently
observed large scale structure of the Universe (Vilenkin, 1985). The perturbations could
be caused by gravitational attraction of matter by strings. Another scenario predicts
that electromagnetic radiation from superconducting strings would blow up huge voids in
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the primeval plasma and condensate matter on the borders of such bubbles (Ostriker,
Thompson, Witten, 1986). The value of matter density fluctuations predicted by these
scenarios is:

de ~ 1073, (1.9
g

This happens to be the upper bound (imposed by the isotropy of the microwave back-
ground) on the value of the initial matter density perturbations. The spectrum of this
fluctuations is scale invariant, since the energy distribution of strings is scale invariant,
unless this property is disturbed during the evolution of a system of cosmic strings.

There still remains the problem of evolution of a system of cosmic strings. The motion
of a string is described by an oscillator-like law with nonlinear constraints. Only a few
families of exact solutions of string equations of motion have been found (Turok, 1984;
Kibble, Turok, 1982}). The numerical simulations on the other hand have met many diffi-
culties (Smith, Vilenkin, 1987, Bennet, and Bouchet, 1987). These are: the above mentioned
nonlinearities, the fact that velocity of a string is not continuous at certain points called
kinks, the difficulties with numerical detection of intersections of strings and the fact that
tracing strings motion is hardly possible if its size is comparable to the lattice. In the
numerical models mentioned above a fraction of strings fragment into smallest possible
loops.

First we discuss the dynamics of strings and present different families of exact solu-
tions of the equations of motion. The intersections of a certain family of strings are found.
We compare these intersections with the results of Shellard (1987) and Matzner (1987).
A conclusion can be drawn that most of the self-intersections lead to production of daughter
loops. We propose other model of evolution of a system of cosmic strings. In this model
it is assumed that self-intersections of strings are similar to the self-intersections of the
discussed family of solutions. The intercommuting of different strings is neglected.

A general discussion of formation and properties of different topelogical defects can
be found in the review article by Vilenkin (1985).

2. Dynamics of strings

Strings motion can be described by a parametrization of world-sheet just like the
motion of a material point is described by a world-line:

X, = %,(¢y5 §2)- 2.1

The space like coordinate &, (£, is the time like coordinate) is usually the linear energy
density of the string. We shall, however, call it length of a string, although the physical
length is different and changes with time.

The dynamics of strings is determined by the action. The string lagrangian, first
proposed by Nambu, (Nielsen, Olesen, 1973) is:

L = u[x*x"?—(xx")1]"3, (22)
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where dots and comas represent derivatives with respect to time-like and space-like coordi-
nates respectively. The equations of motion can be obtained in the standard way:

2 (ar.) L _, 23
0, \9x", ox, '

n

These equations can be simplified by the appropriate choice of coordinates. A two-dimen-
sional surface (i.e. the world-sheet) can be parametrized by the so called normal coordinates.
Tangent vectors corresponding to the coordinates are perpendicular:

xx'=0 (2.4)
and normalized:
2 +x'?=0. (2.5)

This choice of parameters allows to simplify the lagrangian and the equations of mo-
tions. These two conditions are constraints to the motion of the string. The equations
of motion after having taken the above constraints into account become:

X=-x"=0. (2.6)
It is easy to check that the constraints are preserved by the equations of motion:

(3x) = Ex'+%%" = 3 (2 +x'%) =0,

(X +x'?) = 28x4+2x%" = 2(xx") = 0. 2.7
Equations of motion are solved generally by two arbitrary functions a anb b:

X, = 3 [a¢1+E)+b(E—E)]. (2.8)

The constraints applied to the above equation mean that squares of tangent vectors of these
functions vanish:

a'?=>b%=0. (2.9)
A general method of finding such functions, called zero curves, was found by Hughston,

Shaw (1988).
In the case when the string is closed:

x,(¢15 €2) = x,(&y, S+ L) (2.10}

its motion is periodic and the period is L/2 (Kibble, Turok, 1982).

Conditions (2.4) and (2.5) do not determine the parametrization uniquely. Two most
commonly used parametrizations are: the standard and the light-cone one.

In the standard parametrization the time axis is chosen as ¢, parameter, and the energy
along string as the ¢, parameter. The equations of motion can be written in the three
dimensional form:

'—% =0, Q.11
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The solution may of course be written in terms of three dimensional functions @ and b, and
the constraints become:

at=p*=1 (2.12)

which means that the tangent vectors lie on a unit sphere.

In the case of a closed string these functions must also satisfy the following condi-
tion:

fa'+ b =pfa'—[b =0, (2.13)

where p is the total momentum of the string.

Minkowski space (7, x;, x5, X3) can be parametrized by light-cone coordinates (x, = ¢
+Xx1, X = t—Xy, X5, X3). In the light-cone parametrization (Goddard, Goldstone, Rebbi,
Thorn, 1973) of strings motion the timelike parameter is x, and the spacelike one is the
energy along the string as in the above example. This choice of coordinates allows to simplify
and, in fact, solve the constraints:

X_ = X%, (2.14)

2

.2 2
X =Xx1+x;,.

where the coordinates x;, x; are denoted by x,. The transformation back to the rest frame,
however, is hardly possible so this solution has little importance if the properties of motion
of string are considered. This parametrization is very convenient, for example, to count
string states.

As it has been shown above the solution of the equations of motion in the case of
standard parametrization can be reduced to finding two functions @’ and &’ lying on the
sphere with the radius of unity. These functions can be thought of as the functions on the
surface of such sphere. A solution of the equations of motion is determined by two such
curves (satisfying conditions 2.13) with an initial point chosen on each of them. The sim-
plest continuous functions (or curves) on a sphere are large circles:

sin &
ay =|cosé|. (2.15)
0

It can be easily proved that there exists only one family of such functions (curves) with
two modes, if the curves which can be transformed onto each other by rotation or choice
of initial point of parametrization, are identified. The ratio of frequency of this two modes
must be 1:3 and the family is: ‘

@ sin £+ (1 —a) sin 3¢
a5, = |ocos E+{1—a)cos 3. (2.16)
Z(a(1 —a))!? cos &
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We are now ready to write down explicitly several simple string trajectories. The
simplest one is:

sino, +sino.

%(o,7) = 3| cosa, +cospcoso_ |, 2170
sin ¢ cos o
where we have introduced new variables 6. = (¢+1)/L and 6_ = (¢—1)/L. A little more

complicated family of solutions, consisting of single and double mode functions, is (Chen,
DiCarlo, Hotes, 1988):

%(0,7) = 1 [a@,(04)+R(O, $)ax(c)]. (2.18)

Combining two double-mode solutions of the type (2.17) one obtains a five parameter
family of solutions of equations (2.11) and (2.12):

X(0, 1) = 7 [d@:(6,)+R(0, ¢, D)dx(0-)]. (2.19)
In this paper a two-parameter sub-family of (2.18) will be investigated:
™~ " =]
(1—-2)cos o, 3cos 36, +sino.

Xoy1) =% : (2.20)
@0 =1 —({l—x)— gsiu 3o0,.sin¢pcoso.

—2[a2(1—«)]"/? sin 6, +cos ¢ cos o_

We will call this family of strings the Kibble family of strings.

3. Self intersections of the Kibble family of strings

We will consider solutions of the equation:

X(61,7) = X(02,7) 3.1

since they represent self-intersections of a string.

Daughter loops produced in a decay of a string satisfy the constraints (2.4) and (2.5)
and thus they are “good” solutions of the equations of motion. This can be checked by
introducing appropriate parametrizations of the daughter loops and taking into account
the fact that the constraints are preserved by the initial string during its motion.

The intersections of the family (2.20) were found. New variables (Turok, 1984) were
introduced:

oy +0o, o,+o, Gyt 0,

oo o= s b f S = — T — ¢ 3.2
3 7 5 + 5 3.2)

and the following system of equations has been obtained:

2[a(1 —a)]"/? sin y+sin g cos 6 = 0
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2 (cos x+cos 8) = a cos y(—4 cos? y cos? ¥+3 cos® ¥ cos® §),
(3—20) sin y+3 cos ¢ sin § = 4a sin y(—cos® ¥ cos® y+cos ). 3.3

This system of equations was solved numerically for 14400 pairs of parameters (2, ¢).
The map of intersection in the space of parameters is shown in Fig. 1. The intersections
region constitutes only about 2 percent of the parameter space. These results are consistent
with (Zembowicz, 1988) and (Chen, DiCarlo, S. A. Hotes, 1988). Their resuits indicate
however that self intersections fill approximately half of the parameter space if more
general families of solutions are considered.

It is important from the cosmological point of view whether a self intersection of a string
leads to decay and production of two daughter loops. The question of the result of inter-
section of two strings was analyzed numerically by Shellard (1987) for global U(1) strings
and Matzner (1987) for local strings. The results of these two papers are consistent, although
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Fig. 1. Map of self intersections of the Kibble string in the parameter space. F = 60 cos (fi). There are
no self interactions for cos (fi) < 0
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in the second one string intercommutings were calculated only in a few points in the (veloc-
ity, angle) plane. Map of possible outcomes of intercommuting of straight strings as a func-
tion of velocity and angle of collision is shown in Fig. 2 from the article by Shellard (1987).
The intersections of the Kibble string in the same (velocity, angle of collision) coordinates
are presented in Fig. 3. The curvature of strings can be neglected since the diameter of
a string is much smaller than its macroscopic size. One can see that most of the intersections
fall in the decay region of the diagram in Fig. 2. One can thus assume that most of the
intersections lead to production of two daughter loops. The distribution of iength of shorter
daughter loops in the decays of the Kibble string is presented in Fig. 4.
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Fig. 4. Length distribution of the produccd strings

4. Model of evolution of a system of closed cosmic loops

4.1. Numerical technique

A system of non interacting strings was considered. This can be understood as the
gas of strings in the limit of low density. The initial distribution of string energies was the
scale invariant distribution:

dn ~ 1731241, @.1

Such distribution was obtained in the numerical analysis of cosmological phase transi-
tions and formation of strings (Vachaspati, Vilenkin, 1984). Upper and lower cut-offs
of the string length had to be introduced in the numerical calculations. The lower cut-off
may be regarded as the smallest relevant length of a string while the upper cne corresponds
to the fact that there are very few long strings according to the distribution law (4.1).

The probability of a self intersection of a string during its period of motion was assumed
to be 0.5. A string was considered stable if it has not intersected during one pericd of mo-
tion. If, however, a self-intersection of a string occurred then it was assumed to decay
(see Sect. 3). Decay of a smallest string was considered as its disappearing and no daughter
loops were created. The length of produced daughter loops was chosen randomly from
the set of previously found decays of the Kibble string. The time step was the period of
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motion of the shortest string. The probabilities of decay of longer strings in one time step
were accordingly smaller since the period of motion of a string of length equal to » lengths
of smallest string was n times longer.

4.2. Results of the simulation

The system of strings consisted initially of 20 different lengths of strings and their
numbers followed formula (4.1). There were 10000 smallest strings initially. The calcula-
tions were performed until the moment when all the strings have become stable. After
every time step the exponential formula:

dn ~ 177l 4.2)
was fitted to the distribution.

The time dependance of the coefficient « is shown in Fig. 5. One can see that the
scale invariant distribution is not affected by the decays of strings. The relaxation time
of the system of strings depends on the probability of self intersection and is in our case
about 25 time steps. The initial and the final distribution of strings is shown in Fig. 6 in
order to illustrate the dispersion from the ideal ¢xponential curve. The behavior of the
system of strings in this model does not vary substantially with the change of cut-off.
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5. Conclusions

The model shown above describes the behavior of gas of strings in the low density
limit, since no interactions between different strings are considered. The system of strings
evolves very quickly. The final state which we believe is the equilibrium state of the strings
gas in the scale invariant energy distribution. In the cosmological case this leads to scale
invariant initial density fluctuations. There is, however, another difficulty in this model.
About haif of the number of strings are those produced in decays. Such strings move
with the relative velocities of the order of magnitude about the speed of light. On the other
hand the presently observed velocities of galaxies are much smaller. We are left with the
question whether the model is completely wrong or there exists a very effective mechanism
of friction which slows down relativistic strings.

I would like to thank Prof. Marek Demianski for having encouraged me to start this
work and for many helpful comments on this manuscript.
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