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Fundamental aspects of the gentilionic theory are reanalyzed and significant modi-
fications are introduced in this approach. We show that the state vector of three gentileons
has a spinor character and that its basic symmetry properties are described by the inter-
mediate, S; and SU(3) groups. As an intermegiate and natural result of our theoretical
analysis, we show how essential observed properties of composed hadrons can be predicted
from first principles assuming quarks as gentileons.

PACS numbers: 02.20.+b, 05.20.—y.

1. Introduction

In recent papers [1-3] we have proposed, according to the postulates of quantum
mechanics and the principle of indistinguishability, that three kinds of particles could
exist in nature: bosons, fermions and gentileons. In our theory [1-3] the following state-
ment is taken as a principle (Statistical Principle): “Bosons, fermions and gentileons
are represented by horizontal, vertical and intermediate Young shapes, respectively”.
Bosonic and fermionic systems are described by one-dimensional totally symmetric (%)
and totally anti-symmetric (¥,) wavefunctions, respectively. Gentilionic systems are
described by wavefunctions (Y) with mixed symmetries. Since they are represented by
intermediate Young shapes only three or more identical gentileons can form a system of
indistinguishable particles. This means that two identical gentileons are prohibited for a
system of indistinguishable particles.

Let us indicate by YD(n,j) all possible different intermediate Young diagrams (5
= 1, 2,3, ...) that can be constructed for n-particle systems. For instance, for n = 3 there
is only one possibility YD(3, 1) and for » = 4 there are three possibilites YD(4, j), where
J =1, 2 and 3. As is well known [4-7] there is a one-to-one correspondence between the
Young diagrams YD(n,j) and the irreducible representations ¥Y(n,j) of the permutation
group in Hilbert space. The state functions Y(3,7), Y(4,1), Y(5, k)... have completely
different symmetry properties that are defined by the permutations and by the algebraic
invariants [2-7] assaciated with the symmetric groups S;, S, Ss, .... In a n-particle system
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represented by Y(n, j) sub-systems with m particles do not have a Y(m, i) symmetry. From
the above properties very important consequences are deduced:

({) There is an infinite number of different gentileons. Indeed, if there were only one
kind of gentileon, 3,4, 5... particles would form systems represented by Y(3,j), Y(4, 1),
Y(5, k), ..., respectively. Thus, let us consider a given system composed of n gentileons
and let us divide it into sub-systems with m particles (m = »-1, -2, ..., 5, 4, 3). Since
these m particles are indistinguishable these sub-systems would be necessarily represented
by Y(m, i), which is impossible. Consequently, there must be an infinite number of different
gentileons g, (k = 1, 2,3, ...). Gentileons g, would be associated with YD(3, 1) = EF,

g with YD(4, 1) = 55, g; with YD(4, 2) = 557, g, with YD(4, 3) = 57, and so on. In

o
other words, gentileons g, would form only 3-particle systems represented by Y(3, 1),
g2 would form only 4-particle systems represented by ¥(4, 1) and so on.

(2) Gentilionic systems cannot coalesce. Two systems of »n identical gentileons with
each one represented by Y(n,j) cannot form a system with 2n indistinguishable entities
that would be described by Y(2n, i). Indeed, if coalescence were possible it would be pos-
sible to obtain from Y(2n, i) sub-systems with n particles described by Y(n,;), which is
pro hibited. Thus, system A and B, {gg...g], and [gg...g]y cannot coalesce into a system
of indistinguishable particles [gggg...g]. Only bound states [gg...g],-[gg...g]lg could be
formed. Then, gentileons from different systems must be distinguishable which means
that gentileon wavefunctions from different systems must be non-overlapping.

(3) Gentileons are confined entities. To see this we must note that a system composed
of n gentileons [gggg...g] cannot be created step by step from vacuum because the sys-
tems [g), [gg], [gggl, ..., [ggg...2), with 1,2,3, ..., n-1 particles, respectively, are not
allowed. By the same argument we see also that this system cannot be annihilated by
steps. This means that gentilionic systems must be created or annihilated at once. Con-
sequently, no gentileon can escape from the system and no gentileon can enter the system.

Taking into account non-coalescence and confinement properties we see that no gen-
tileons can be subtracted or added to a gentilionic system and that it must have sharp
boundaries outside of which gentilionic wavefunctions vanish.

In the above quoted paper [1] only systems of identical gentileons have been con-
sidered. Let us now consider systems composed of two different kinds of gentileons, g
and G. Taking into account the Statistical Principle we must expect that systems like
[gG] are allowed. On the other hand, systems like [ggG]), [gGG] and [ggGG] are prohib-
ited because [gg] and [GG] are not allowed. Of course, non-coalescence and confinement
properties are also valid for mixed systems, as can be easily verified.

Confinement and non-coalescence are intrinsic properties of gentileons, deduced
from the Statistical Principle and from the symmetry properties of the intermediate states
Y(n, /), not depending on their physical interpretation. Thus, they could correspond to
real particles or to dynamical entities as quantum collective excitations. However if gen-
tileons were real particies there must be some kind of mechanism to explain these prop-
erties: a very peculiar interaction potential, an impermeable bag or something else.
But any acceptable mechanism must be conceived under the imposition of agreeing exactly
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with the intermediate symmetry. It is difficult to understand gentileons as real particles;
they seem to be some kind of quantum collective excitation.

In Section 2 we present a detailed study of the symmetry properties of the state vector
Y(3, 1) representing [g,g,g,] systems. It is shown that Y(3, 1) has a spinor character.

As well known, half-odd-integral and integral spin particies are described, from the
point of view of the Lorentz group, by spinorial and tensorial irreducible representations,
respectively. According to the celebrated Pauli theorem [8-10] if creation and annihilation
particle operators obey bilinear commutative (anti-commutative) relations these particles
have integral (half-odd-integral) spin. By using bi-linear commutative or anti-commu-
tative relations, consistent local, Lorentz invariant quantum field theories are developed.
In Section 3 commutations relations for gentileons g, are analysed in order to establish
a connection between spin and statistics. It is seen, in Pauli’s context, that gentileons g,
are half-odd-integral spin particles.

In Section 4 we show that the fundamental symmetry properties <f the state vector
Y(3, 1) are described by the S; and SU(3) groups. In Section 5 we summarize the basic
features predicted for the [g,g,g;] systems. In Section 6, assuming quarks as g, gentileons,
our theoretical approach is applied to investigate some aspects of hadronic physics. Fi-
nally, in Section 7 a quantum chromodynamics is proposed where, instead of fermions,
g, gentileons interact with gluons.

2. Symmetry properties of the gentilionic state vector Y(3, 1)

We present in this Section a detailed study of the symmetry properties of the state
vector Y(3, 1) of a system composed of three first kind gentileons g,. Thus, according to
our general results [1] the symmetry propertiss of Y(3, 1), also indicated by Y(123), is
completely described in terms o three quantum states «, ff and y. In terms of &, f and y
the g, system will be represented by Y.(3, 1) or Y_(3, 1), two equivalent irreducible repre-
sentations of the symmetric group [3-6, 11] S,,

1 /Y, (123
Y.(3. 1) = Yi(apy) = Y, (123) = \"/_5,(;2123;)’
2

1
Y_(3,1) = Y_(ofy) = Y_(123) = 72(

1'3(123)> @1

Y,(123)

where
Y,(123) = (aByd +iBay) — lyafd = 17Be))/\/4,
Ya(123) = (fy)+2jayf) — Payd + lyaBd —21Byxy — [yfa)) /12
Y3(123) = (—jaBy) +2lafy) — Bayd — lyafd + 21 B> — 1fyad)/y/ 12,
and Y,(123) = (laBy) — |Bay) — [yap) + {7Bad)/y /4.
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In preceding papers {3, 12] the state function Y(3, 1) was taken as a “bi-spinor” in
Y.
Y.
Y(3, 1) it has no rigorous support within the framework ot group theory. Thus, in what
follows, the g, system will be represented by Y..(123) or Y_(123), indicated simply by ¥Y(123).
It is worthwhile to note that, in this context, our theory differs drastically [3] from para-
statistics.

Our inteution in this Section is to show explicitly the spinor character of Y(123) and
to establish fundamental properties of the g, system that can be deduced from this spinor
character. In this way we remember that, due to the six permutaticn operators P; of the
group S;, the Y.(123) are transformed to [1]:

Dirac’s sense Y(3,1) = ) Although it is a possible interpretation for the state function

Y' = Yj,: = PjYi = r]jYi (2.2)

where n; (j = 1,2,3,...,6) are 2x2 matrices given by,

123) _ (10} _ . 13\ (=12 J3n2
123/ Vo) =0 T Ma3) T 32 12
oo n(123) 2 —12 =32\, _ (I3 _ (1 o
= M3 )T\ -2 ) T M) T o -1

_ (123 _ (=12 32 {123\ [(-12 =32 |
"5"”<132) "(\/‘3’/2 1/2) and ”6“”(321)"(_¢§;z i )@

The spinor character of Y(123), as seen in Egs. (2.3), is obvious since the matrices
11, 11, and n; have det = +1 and 754, 75 and n¢, det = — 1. We will show that it is correct
interpreting the transformation of Y in terms of rotations of an equilateral triangle in an
Euclidean space E;. That is, we assume E; as a space where the quantum states that can
be occupied by g, are defined by three orthogonal coordinates (X, Y, Z). It is also assumed
that, in E,, the states a, # and y occupy the vertices of an equilateral triangle taken in the
(X, Z) plane, as seen in Fig. 1. The unit vectors along the X, Y and Z axes are indicated,
as usual, by 7, j and &. In Fig. 1, the unit vectors n, ns and g are given by, m, = —k,
ms = —(/3/2)i +(1/Dk and ne = (V32T +(1/2k, respectively.

We represent by Y(123) the state whose particles 1, 2 and 3 occupy the vertices «, f
and y, respectively. Thvs, we see that the true permutations, (312) and (231), are obtained
from (123) under rotations by angles 0 = +27/3 around the unit vector j. As one can
easily verify, the matrices n, and 73, that correspond to these permutations are represent-
ed by:

n =

-

Hy = —I1/2+i(/3/2)6, = exp {:f . 5(0/2)] and
ny = —1/2—i(\/3/2)a, = exp [ij - 6(0/2)], 2.4)

where o,, 0, aad ¢, are Pauli matrices.
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Fig. 1. The equilateral triangle in the Euclidean space (X, ¥, Z) with vertices occupied by the states, Sandy

Similarly, the transpositions (213), (132) and (321) are cbtained under rotations by
angles ® = +n around the axis my, ms and m,, respectively. The corresponding matrices
are given by:

Ne = 0, = iexp [imy - a(9/2)],
15 = (y3/2)0.—(1/2)o, = iexp [ims - 6(#/2)] and
ne = —(y3/2)o,~(1/2)a, = iexp [img - a(P[2)]. (2.5)

According to our preceding papers [2, 3] there is an algebraic invariant, K!3'}],
with a zero eigenvalue, associated with the S; gentilionic states. In analogy with continuous
groups, this invariant will be named “AS; Casimir”. For pcrmutations represented by
matrices with det = +1, the invariant is given by K,,, = , +#,+n;. For transpositions
for which matrices have det = — 1, it is given by K, = n,+ns+1s. Taking into account
m,, ms and mg and Egs. (2.5) we see that, K, , = n.+9s+1s = (Ms+ms+mg) -8 = 0.
This means that the invariant K, can be represented geometrically, in the plane (X, Z),
by M = my+ms+mg = 0, and that the equilateral symmetry of the S, representation
is an intrinsic property of X, ,, = 0.

Egs. (2.4) and (2.5) permit us to interpret Y. and Y. as spinors. Here, by using another
arguments [3, 12], we show that this interpretation is correct. It is well known that the non-
-relativistic spinor can be introduced in several ways [13]. The interrelation of the various
approaches is not obvious and can lead to misconceptions. In order to overcome the ne-
cessity of enumerating several approaches, let us stick to a geometrical image, recalling
the very fundamental result of group isomorphism [14]: S; ~ PSL,(F},), where PSL.(F,)
is the projective group associated with the special group SL, defined over a field F, with
only two elements. Obviously, PSL,(F,) ~ SL,(F,)/SL.(F,) n Z,, where the group in the
denominator is the centre of SL, and corresponds to the central homotheties, since Z,
is the intersection of the collineation group with SL,.
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If we consider the matrices (2.3) as representing transformations in a two-dimensional
complex space characterized by homogeneous coordinates ¥, and Y,,

Y; _i a b\(Y,
(=2 G o

where o is an arbitrary complex constant and the latin letters substitute the coefficients
taken from (2.3), it is clear that (2.3) constitute a homographic (or projective) group.

Making use of definition (2.6) we can see from (2.3) that, apart from the identity »,,
the two matrices 5, and 5;, which have det = +1, are elliptic homographies with fixed
points +i. If we translate these values to the variables of E;, we see that 5, and n; cor-
respond to finite rotations around the j axis by an angle § = +2n/3, agreeing thus with
Egs. (2.4). The remaining matrices #,, s and 5, are elliptic involutions, with det = ~1.
They correspond to space inversions in E;, considered as rotations of £ x around the three
axes my, ms and mg, respectively. These matrices completely define the axis of inversion
and the angle +m, as is seen from Egs. (2.5). It is an elementary task to establish the cor-
respondence, via stereographic projection, between the transformations in the two spaces
Y.(Y.) and E,.

A topological image can help us to see the 4z invariance of Y. and Y_. If we consider
the rotation angle 6(®) as the variable describing an Euclidean disc, the covering space
associated with this disc is a Moebius strip [15]. Adjusting correctly the position of the
triangles we have a vivid picture of the rotation properties for each axis. This construction
allow us to visualize the double covering of the transformation in E; and is a convincing
demonstration of the spinor link between E; and Y.

We observe that the same transformation properties of Y, and Y. can be obtained
if, instead of the equilateral triangle shown in Fig. 1, we consider the triangle drawn in
Fig. 2.

z

B o

Fig. 2. The equilateral triangle in the Euclidean space (X, Y, Z) with vertices occupied by the states a*, §*
and y*
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In the vertices of the equilateral triangle of Fig. 2 we have the states «*, §* and y*,
The unit vectors mj, ms and mg are given by mj = —m,, mt = —ms and mi = —m,.
This means that, in this case, K;,, is represented geometrically by M* = m}+mi+m} = 0.
This two-fold possibility for depicting the triangle corresponds, as will be seen in Section
4, to the 3 and 3* representations, respectively, of the SU(3) group.

When two particles occupy the same state as o = f, for instance, we verify [I, 7]
that there is only one 2-dimensional irreducible sub-space associated with gentileons that
are now represented by 3(123),

1 }’1(123)>
123) = v) = — , 2.7
y(123) = y(oay \/2(}'2(123) 2.7

where, y,(123) = (oo — [yaa))/y/2 and p;(123) = (2 jayay — |aay) — jyaa))/|/6.

Since the y(123) transformations due to the permutation operator P; are given by the
same matrices ,(j = 1,2, ..., 6) defined by Eqgs. (2.3) we can conclude that: (a) y(123)
is a spinor and (b) Y(123) and y(123) are associated with the same AS; Casimir.

In this degenerate case (x = fi} it is not possible to represent permutations as rota-
tions in E;. Consequently it is not possible to get a geometrical interpretation for the
AS; Casimir as was seen for gentileons occupying three different states «, f§ and y.

In a preceding paper [16] we have shown that gentilionic, bosonic and fermionuic
states have completely different topological properties. In particular it was shown that the
topological properties of the ¥(3, 1) = ¥(123) symmetries are clearly exhibited by a T?
torus generated by two angular variables ¢ and 0 that appear in discrete rotations, R(¢)

- - 0 .
R(0) = iexp [im - d g] exp [ij X 5] , given by Eqs. (2.4) and (2.5). From this work

[16] we can see that different state vectors Y(n, j) present different topological properties.

3. Spin and statistics

In this Section the commutation relations for creation (a}) and annihilation (a,)
operators for g; gentileons are analysed in order to establish a connection between spin
and statistics in Pauli’s context [8-10]. It is very important to remark that, according
to the Statistical Principle, the number of particles in the [g;g,¢,] system is constant.
Thus, commutation relations for a; and a, and matrix elements involving gentilionic
states are calculated [1] taking into account this fundamental property. We show that
when gentileons occupy three different quantum states, @} and a, obey bilinear anti-
-commutative relations. Indeed, when two gentilecons do not occupy the same quantum
state, that is, when o # 8 # y # «, we see that the gentilionic commutation relations
are given by [I]:

[ai*, aj]+ = 5;‘,‘, [a?, a:‘k:}+ = [ai’ ai]+ =0,

. kji % % % 17 W /
aa;a, = a,azan (yﬁzx) and  a;aja, =y iik a,aga., 3.1
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where the indices i, j and & can assume the values «, f and y and #(...) are the 2 x 2 matrices
shown in Egs. (2.3). From the above tri-linear relations one can deduce the bilinear re-
lations seen below applied on gentilionic states ¥,

a0, Y () = Y(O0),  a,a,Y(aBy) = n (f;) Y(00y),

a5, Y(yf) = n( ff) Y(00y), a,a,¥(ayp) = n( V’j) ¥(00),

aza,Y(Boy) = (ﬁ”) Y(00y),  a,a,Y(Bxy) = Y(0Oy),

o4

~€
h

aga,Y(yef) = 5 ( By

Y(00y), au,Y(yap) = 1 <”°‘”> ¥(00y),

) Y(00y),  aa,Y(Bye) = (’”“) ¥(00y),

aa,Y(Byz) = < b oy
aga,Y( = vBo ! = vhocy
B ’Yﬂa) U ﬁ Y(00y)7 aaaﬂ)(‘yﬁa) =1 ,BYOC Y(OO)})’
pas Y(00y) = n( ) Y(«By), aza;Y(00y) = Y(apy),
aga; Y(0y0) = n( zﬂ) Y(«By), aya;¥(0y0) =g (ﬁ Z, ) Y(aBy),

v

aBa*Y(yOO) = r]( 5y ) Y(xfy) and a a,, FY(y00) = g (yﬂ

B;

remembering that there are six intermediate states Y(«f7), Y(Bay), Y(yapB), Y(Bya), Y(ayfS)
and Y(yfa) that can be assumed by the g, system. The above bi-linear relations have been
written in order to calculate the non-null matrix elements of the operators A% = [a], af;]s,
and 4 = [a,, aﬂ]+

Since the six different state vectors Y are eqmvalent for representing the system, all
them must be taken into account to calculate the 4* and A matrix elements. Thus using
Egs. (3.2) the 5(...) matrices and remembering that Y,, Y,, ¥, and Y, are orthonormal
functions [1], we verify that the expected values {4*)> and {A4) are equal to zero. That
is, for « # B, <[a}, a;1.> = <la,, asl+> = 0. As only the expected values {A*> and {4)
have a physical meaning we see, according to the above results and to the bilinear terms
of Eqs. (3.1), that the following bilinear commutation relations can be taken as valid for
g, gentileons in the framework of a quantum field theory,

[af, ajle =9d; and [daf,a}), =[asa;], =0, (3.3)

where the indices i, j and k can assume the values «, f and 7.

) Y(afy),  (3.2)
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As g, gentileons obey bilinear anti-commutative relations defined by Eqgs. (3.3) it is
possible to construct for these gentileons a consistent local, Lorentz-invariant quantum
field theory. Moreover, we conclude from Egs. (3.3) and the use of Pauli’s theorem [8-10]
that g, gentileons must be half-odd-integral spin particles.

It is important to note that the above results have been obtained assuming that gen-
tileons occupy three different quantum states, x % f§ # y # x. When two gentileons
occupy the same quantum state, as one can easily verify [1], the operators a; and a, do
not obey bilinear anti-commutative or commutative relations. Thus, integral or half-
-odd-integral spin gentileons could not be represented, by state vectors ¥Y(nnm). where
n,m = o, § and y. Consequently these states are prohibited in Pauli’s context.

4. The Sy symmetry and the SU(3) eigenstates

In Section 2 we have shown that it was possible to interpret the ¥(123) = Y(afy)
in terms of rotations, in an Euclidean space E;, of only two equilateral triangles with ver-
tices occupied by three privileged states afx™®), S(A*) and y(y*). ¥ must constitute sym-
metry adapted kets for S;. In other words, their disposition in the plane of the triangle
must agree with the imposition made by the AS; Casimir. According to Fig. I, these
states arc defined by, o= ms = (—3/2,1/2), B =me=(/32.1/2) and 7 = m,
= (0, — 1), and according to Fig. 2, a* = m} = —n1s, f* = mi = —mg and y* = nry
= —m,. The equilateral triangle symmetry for S; plays a fundamental role in E,, al-
lowing us to obtain a very simple and elegant geometrical interpretation for the invariant
Ki.v = 0. Indeed, since the S; symmetry, according to Section 2, implies that M =my,
+ms+mg =0 (M* = 1§f+ﬁ1§+ﬁ12‘ = 0), we conclude that A7 = 0 (M* = 0), pictured
in E,, is a null constant of motion.

At this point we compare our states «, § and y with the SU(3) eigenstates [17-19]
'ny, :p) and | A). These states are eigenstates of the hypercharge Y and of the isospin
I, both diagonal generators or the algebra of the SU(3). The cigenstates |n), !p)
and !A) are written as ‘n) = | —1/2, 1/3>, p> = '1/2,1/3) and {A) = {0, —=2/3).

- Remembering that the SU(3) and the intermediate S; fundamental symmetries are
defined by equilateral triangles, it is quite apparent that the states |«), | > and |y)
can be represented by eigenstates of 7, and Y. Indeed, assuming that the axes X and Z
(sce Fig. 1) correspond to the axes /; and Y, respectively, and adopting the units along
these axes as the side and the height of the triangle [18] we verify that | &), | f) and
ty> would be given by, a) = (nd =1-1/2,1/3>, (B> = p>=11/2,1/3) and 7>
= (A ) =10, -2/3>. If we have considered the states : »*>, | #*> and |7*), seen in
Fig. 2, we should verify that these states would correspond to the states |n*), | p*)
and | A*) of the 3* representation.

Thus, if we assume that the states | «), | > and |y) correspond to {n), | p) and
" A), respectively, each unit vector m ; (j=4,5 and 6) is represented, in the plane
(I3, Y) by the operator ¢ = I,+ ¥/2. This mecans that the vector M will be represented
by the operator M = g, + ¢, + g3, where the indices 1, 2 and 3 refer to the three gentileons
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of the system. Thus, adopting the SU(3) eigenvalues we see that the expected values (M
= 0, for the 3 and 3* representations, must be a constant of motion.

We conclude that the fundamental symmetry properties of the state function Y(xfy)
are described by the intermediate S; and SU(3) groups.

We intend to analyse in a forthcoming paper systems composed of four indentical
gentileons. Our intention is to determine what kind of groups, besides the intermediate
S,, are necessary to describe the fundamental symmetry properties of these systems. It
will be shown, for instance, that the [g,g,8,g,] state vector symmetries are described by
the intermediate S, and SU(4) groups.

5. Fundamental properties of g, systems

Let us summarize the fundamental properties predicted for the g, systems:

(1) Gentileons g, are not permitted to form systems with more than three entities.
Only [g:8.g,] systems can be formed.

(2) Two systems [g,g,8,] and [g,2,g,] cannot coalesce, that is, cannot form a system
composed by six indistinguishable particles [g,g,2,2.8:8:]

(3) The state function Y(3, 1) = Y(123) has a spinor character.

(4) Gentileons g, are half-odd-integral entities represented by the state vector Y(123)
= Y(afy), where «, § and y are three different quantum states.

(5) The fundamental symmetry properties of Y(xBy) are described by the interme-
diate S; and SU(3) groups.

(6) There must exist some conserved physical quantity associated with the AS,
Casimir (M) = 0.

As pointed out before, confinement and non-coalescence are intrinsic properties of
gentileons: they could correspond to real particles or to dynamical entities as quantum
collective excitations. If gentileons g, were real particles there must be some kind of mech-
anism to explain these properties: a very peculiar interaction potential, an impermeable
bag or something else. It seems reasonable to expect that this mechanism is intimately
related to, or is a consequence of the local SU(3) symmetry. If these astonishing predic-
tions had been done about 30 years ago probably the gentilionic states would be taken
as non-physical representations of the permutation group in quantum mechanics and
promptly discarded. Today, however, this situation is somewhat modified since, as will
be shown in next Section, basic hadronic properties will be explained assuming quarks
as g, gentileons.

6. The gentilionic hadrons

Since g, gentileons are spin 1/2 confined entities that cannot form systems with more
than three indistinguishable particles and their systems, with symmetry properties de-
scribed by the SU(3) group, are non-coalescent it seems natural to think quarks g as g,
gentileons. With this hypothesis we can show that baryons [ggq], that are composed of
three indistinguishable gentileons in color space, are represented by wavefunctions [2, 3]
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p = g - Y(brg). The state ¢ = (SU(6)x O;),mmewic COrresponds, according to the
symmetric quark model of baryons, to a totally symmetric state. The state function Y(brg)
corresponds to the intermediate state Y(123) written in terms of the SU(3),,., €igenstates
blue (b), red (r) and green (g). This function that can be taken as ¥ (brg) or Y_(brg), shown
in Section 2, will be named “colorspinor™ {3].

From the above resuits and observing Section 4 we see that in the gentilionic formal-
ism one possibility is to define the individual quark charge as,

g =q+q. =Us+Y)+iI,+Y/2), (6.1)

where g, = I;+Y/2 refers to flavor charge g, = I+ f’/Z) refers to color charge and
4 is a constant parameter. With this definition, the total color bayron charge ¢ is given
by @ = i{(M), where M = §,+¢.+q,, following Section 4. Remembering that the
expected value (M) is a constant of motion equal to zero, that is, (il) = constant = 0,
as shown in Section 4 for the state Y(brg), we see that the generalized Gell-Mann-Ni-
shijima relation is automatically satisfied {2, 3] independently of the / value. However,
we must note that to preserve the gentilionic character of the quarks it is necessary to put
7= 0. Thus, in our approach quarks have fractional charges, in agreement with Gell-
-Mann results. We see that the baryon color charge Q is the physical conserved quantity
associated with the AS; Casimir (M) = 0 that is named “‘color Casimir” (2, 3]

In our approach [1-3] mesons are composed of a quark-antiquark pair [gg]. Ac-
cording to the statistical principle (see Introduction), systems like ¢, [gq], {g9g] and {9934,
for instance, are prohibited. Of covrse baryons with more than three quarks ¢ are also
prohibited. Thus, only the systems [g4] and [gqq] are allowed in the gentilionic theory.

Since g and g are different particles in color space we can conclude, in agreement with
our general results [1], that mesons {gq] are represented by one-dimensional state func-
tions. This implies, remembering that ¢ and g are spin 1/2 particles, that the system [¢4]
is represented in fermionic and gentilionic theories by the same state vector.

According to the gentilionic theory proton must be stable [1-3]. This stability, pre-
dicted as a selection rule, is a consequence of the spinor character of the baryon states:
proton decay is forbidden because the spinor character of the initial current (proton)
would not be present in the final current.

From the above analysis we see that fundamental properties of hadrons can be ex-
plained assuming quarks as g, gentileons. In spite of our stimulating general results,
these remains the crucial problem of determining the intrinsic nature of the quarks and
their dynamical properties. In the next Section taking quarks as g, gentileons, a quantum
chromodynamics is proposed where, instead of fermions, gentileons interact with gluons.

7. A quantum chromodvnamics for gentilionic hadrons

To construct a quantum field theory for hadrons assuming quarks as g, gentileons
we must take into account the SU(3),,,, and S; symmetries and remember, according
to Section 3, that the creation and annihilation operators for g, gentileons obey bilinear
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anti-commutative relations. The gentilionic field approach must be formulated in order
to predict, as conservation laws or selection rules, the hadronic properties deduced in
Section 6: (a) only [¢7] and [ggq] hadrons can exist in nature, {(b) quark-confinement,
(c) non-coalescence of hadrons, (d) proton stability and (e) the hadron color charge is
a constant of motion equal to zero. This is a very ambitious and extremely difficult task.
Since we were not able, up to now, to develop such a formalism an alternative one will
be proposcd. In this way, let us suggest as a first approximation the following Lagrangian
density for gentilionic quarks interacting with gluons,

T 6 +. .8 ;'i i -+
L = 1q. 7 5:,} gat €4,y ey qub_—”lf‘]u da
- “ Jah

!
oAl CAl o\
1 v 14 i 4k .
- ( P —_ "5;“ + gf:‘jkAuAv y (71)
where the summation is over the flavors f = u, d, s, ¢, .... The summation over repeated

indices a, b, ..., referring to color is understood. The Al is the gauge-field, 2,/2 are the
3x 3 matrix representation of the SU(3)_,,.. algebra generators, satisfying the commu-
tation relations [, /] = if;;;4,/2, where f,;, are the SU(3) structure constants. The flavor
symmetry is only broken by the lack ot degeneracy in the quark masses. Finally, the quark
free fields g(x) are expanded in terms of positive and negative frequency solutions, ¢,.(x)
and ¢,-(x), of Dirac’s equation,

4 = ¥ @ 0 () + a7 g (0},
K

where a; and a; obey fermionic commutation relations.

With the above assuniptions, both theories, the usual QCD and the gentilionic QCD,
indicated by QCDG, will have the same gluons and the same Lagrangian density. In both
approaches the previously mentioned properties (a), (b), ... and (e) appear as additional
conditions. In these circumstances, both theories will give identical predictions for ha-
dronic properties. In spite of this we note that they are not equivalent. Indeed, in QCDG,
the five conditions cited above appear naturally, deduced from first principles, whereas
in QCD they arc imposed ““ad hoc™.

Since in QCDG quarks are taken as real particles it must exist, according to Section
5, some kind of mechanism intimately related with the SU(3).,,, symmetry that would
be responsible for the confinement and non-coalescence properties. Hopes for a theo-
retical explanation of quark confinement are pinned on the non-Abelian nature of the
SU(3).010; group which is the gauge invariance group of the quantum chromodynamics.
In spite of considerable efforts only indications for confinement have been found. Since
no rigorous proof for confinement has been obtained, this problem has been considered,
by way of a mathematical analogy, as the “Fermat” theorem of the contemporary par-
ticle theory [20].

Finally let us consider hadronic matter in the high density domain that occurs at ultra
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relativistic hadronic collisions, at the core of neutron stars and at the early stages of the
universe. If in these extreme conditions permutation symmetries are preserved we must
expect, due to the non-coalescence property of gentilionic systems, that the hadron struc-
ture is maintained. That is, hadrons will not be destroyed but only highly compressed.
Thus, in these conditions quarks will be so closely packed that the interactions between
them will be weak due to the assymptotic freedom. This means that, according to the
gentilionic theory, the dense hadronic matter would be constituted of free quarks, These
quarks however are confined inside compressed hadrons and not forming an ideal gas
(quark plasma) as predicted by the fermionic approach.
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