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The revised model of the gauge gravitational theory presented by author in previous
papers cited in References is considered. This revised model has simplified macroscopic
limit owing to the natural condition that the magnitude of the microscopic spin vanishes
in macroscopic limit, i.e., when Planck’s constant tends to zero. The model restricted by
the algebraic constraints Q; 1= Qf; = 0 is also considered.

PACS numbers: 04.20.Me

1. Introduction

Gauge theory of gravitation having gravitational Lagrangian

L, = A +0' A x0)+pQ; A @,
where

et K*hG  K*he
ﬁ = aA = = -

o= s -
167G ¢ 167

, KeR* (1)

(most probably K = 1), was studied by author in [1]. Q¢ ; and @' denote here the curvature
2-form and the torsion 2-form of the Riemann-Cartan connection «’, respectively and
n? = g™y, is the pseudotensorial 2-form introduced by Trautman [2]. * means the Hodge-
-star-operator [3]. The latin indices run over 0, 1, 2, 3 and metric signature is (+ — — —).
h denotes Planck’s constant, ¢ is the value of the light velocity in vacuum and G denotes

Newtonian gravitational constant. The Lagrangian (1) has very good physical and geometri-
cal motivation (see [1}).

* This work was carried out as a part of the Polish Research Project CPBP 01.03.
** Address: Katedra Fizyki, Uniwersytet Szczecifiski, Wielkopolska 15, 70-451 Szczecin, Poland.
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Performing standard calculation we get the following gravitational field equations

. o . . o . S;
D QJ' =\") 9" A @i—\?i A @J —— @ i"k.... : ,
* Q= ( )2[3( * * ©) 2% e AT Y )
Jk b pr 5fp bir
Dx0, = ()" Amp+ || Q0D - Y 0" Qs
ﬁ 5{, ijrm i tl
+ “\ 7 RY™R, jom = RYuR ™ ) | 1, 2" 3)

Equations (2)-(3) have the same form as equations of a gauge field with sources given
by the right hand sides. After decomposing the field equations (2)-(3) in the basis given
by the 3-forms 7; we get the following tensorial equations

o
Vleipm + Rlithl +_; Rlim I.’tn = (_) s (Qil.,l - Qlt.,i

2B
p P p 1 P
+ Q67— Q07 + Q%) — ZES,J, 4)
d d 3 - 8 itr
Vkapk + pr,\Qk +% Qbqulk = ('pb_ (T:TE Q' Qirr
N B (s e 8 t
"berQip) - “; ijlRijpt_ 7;113 RY tRijrt - 'é";i . (5)

In the above formulae D means the exterior covariant derivative, ©' denotes the coreper
and R, = (—=)R,,, and Q) = (=)0, are the curvature and torsion components

8ob

respectively; V means the covariant derivative and G,,:= R, — R are the components

of the Einstein tensor. ¢; and S; denote the canonical energy-momentum 3-form and the
canonical spin 3-form of the microscopic matter (fundamental particles) respectively. The
canonical tensors %, and S7, = (—)S?,; are defined by the decompositions

t; = n,t¥, S/ = r’ps{lij' (6)

The field equations of the theory are 2-nd order differential equations w.r.t. coreper
#" and connection o', and, simultaneously, they are 3-rd order differential equations w.r.t.
metric and torsion components (or w.r.t. metric and defect components).

In tensor notation and inside of matter we have the system of 40 nonlinear, partial
3-rd order differential equations on the 40 unknown functions: 6 intrinsic metric compo-
nents, 24 intrinsic torsion or defect components and 10 functions describing phenomenolog-
ically microscopic matter.
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In the framework of the theory there exist the so-called “differential identities” (DI)
({1, 2, 4, 5]) having the following form

DP/ = % A e —9 A e, €))
De, = Q% A e;+3 R, A PL (8)
The l-forms Q/, and R’,; are defined by
Q= 0N, %)
Rii= R, (10)

and P/ and e; denote the 3-forms constituting geometrical part of the field equations, i.e.,

P/ = 4D » @ 4+20(8 A » ©,~9; A 07+, A 1), (11)

. of
e = 2u [D * Qz"}' %‘ ij A Mg (QlflrQl;pr—‘ _i' Qb"thr) np]

6 . .
—2p (—‘;“ R'mRijn - Ruf:stp‘) Hp (12)

The differential identities result from the invariance properties of the Lagrangian (1).
In vacuum, the differential identities give, in general, 10 relationships between 40 vacuum
field equations. In consequence, we have only 30 independent field equations in vacuum
on 30 unknown functions: 6 intrinsic metric components and 24 intrinsic torsion compo-
nents (or defect).

A suitable combination of the differential identities and field equations of the theory
leads us to the following covariant, differential conservation laws for matter ([1, 2, 4, 5))

DSY =9 Ati—9% A Y, (13)
Dt; = Q% A ti+% R* A Si (14)
or, in tensor notation
V.Sl + 800 = ty—t, (15)
Vit t00; = Qutl+3 RIS (16)

In order to get the integral conservation laws (non-covariant) for gravity and matter one
must transform the field equations of the theory to the so-called superpotential form [1]

. o
d(=2a%0) = [aﬂ’k A Mp—200% A * O+ 2a (7;‘ 0" Quer
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P

y 8F .
_Q’.leri;pr> N, +2B (Rfj‘itRijpt - Tl RurmRijrm) N+ lt] > 17)

d(—4p* @) = [20(8' A * 0;=9; A x O)—4B(@%; A * pr
—l, A % QP )+220, A n*+S/]. (18)

From (17) and (18) there follow the following integral conservation laws

t+ ij __2 k -~ EZ_ br
1o A =207 A * O, +2a 4 099

(¢4
b r ij t 5{' ijrm
_Q.Ier';p r]p+2ﬁ R.{ltRijp - TRJ Rijrm | = 0. (19)
5 [Sil+2a(3’ A*GO,—3; A % @1)—4B(w‘f’i A ® Q_’p—w_lp A xQF)
(72

+240; A 1*] = 0. (20)

Here ¢Q is the 3-dimensional boundary of an arbitrary 4-dimensional domain Q in the
space-time,

From the physical point of view, the theory based on the Lagrangian (1) is an example
of the microscopic gravitational theory with microscopic sources (fundamental particles).
We will denote this theory (in short) by MicGT. The material tensors ¢#,, and S?,;, which
arc present in the field equations (4)-(5) denote the canonical, non-symmetric in general,
energy-momentum tensor and canonical spintensor of the microscopic matter (fundamental
particles) respectively. The components S, of the spintensor and the components of the
spin 3-form S/ have magnitudes proportional to the Planck constant % and, therefore,
their values vanish in the macroscopic limit 4 — 0. In consequence, if h — 0 (= 8 - 0),
then the equations (4)-(5) of the MicGT take the following form

Qly =0, 21)
G b = i Mt( b)> h‘t b = 0, (22)
p 20 p [pb]

i.e., they take form of the Einstein equations of GR. Mr,, means here the energy-momentum
tensor obtained from the microscopic tensor f,, by limiting process # — 0. Thus, the
Einsteinian general relativity (GR) still remains correct gravitational theory but only in
macroscopic domain and the both pure gauge terms fQ, A = Q% and 0@ A O, of the
Lagrangian (1) are valid only in microscopic domain.

The macroscopic limit of the MicGT given by (21) and (22) is simpler than the limit
obtained in our previous papers (see [1]) without using the fact that the magnitude of the
microscopic spin of fundamental particles vanishes in macroscopic limit # — 0. Now we
think that it was incorrect.
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Useful property of the MicGT are special torsion constraints. We obtain them in the
following way. Let us consider the antisymmetric part of the field equations (5). We get
from them

1
Ry = ViQuop' + Qropy Q+ 55 ey (23)

On the other hand, the torsion Bianchi identities impose the following structure on R,

R[pb] = % Vle.‘bp*‘V[pr} ‘f‘% QnQ'.’bp' (24)

Comparing (23) and (24) we get the following torsion constraints

A 1 , " <
VkQ[bp]’L + Q[bp]ka+ é-& [[pb_l = .12' VI»'Q’rbp'I"V[pr] +17 QnQ.bp' (23)

The constraints (25) are rewritten (with the help of the torsion Bianchi identities) anti-
symmetric part of the field equations (5). They admit torsionless solutions in vacuum and
inside microscopic matter having symmetric energy-momentum tensor only. The constraints
(25) are very useful if we want to investigate existence of the solutions with torsion (in
a given situation) in vacuum or inside matter having a symmetric energy-momentumn tensor.
Then they take the simpler form

VkQ(bp{k + Q[bp]ka = 5 V.05, + V5@ +1 Q0% (26)

We have the following Criterion “C” [I].

In a given vacuum or interior problem with a symmetric energy-momentum tensor
the solutions to the field equations (4)-(5) having dynamical torsion may exist when:
(i) The constraints (26) are identically fulfilled (reduce to the form 0 = 0) and the system
of the field equations (with not entirely vanishing torsion) which must be solved is not
overdetermined, or
(i) The constraints (26) immediately follow frem the ficld equations of the theory (the
trivial consistency of the constraints with the field equations) and the system of the field
equations is not overdetermined.

The Criterion “C” gives the conditions under which torsion Bianchi identities are
compatible with the antisymmetric part of the field equations (5). In all the cases when
the solutions having dynamical torsion exist this Criterion is satisfied. If the Criterion
is not fulfilled, then the torsion Bianchi identities contradict the antisymmetric part of the
field equations (5) and there exist only torsionless solutions (no counter-example is known).
We have used the Criterion “C” when we have investigated the existence of the solutions
with torsion to the field equations (4)-(5) in the spherical symmetry problems and in
cosmology (see [1]).

The exact MicGT is satisfactory from the formal point of view because: it is causal
and deterministic, it admits Hamiltonian formulation, satisfies Birkhoff’s theorem and it
attributes energy-momentum tensors to the gravitational field (see [1]). Moreover, in the
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framework of the theory there exist interesting cosmological solutions without singularities
[1] and the global quantities of an isolated system (especially global energy) are equal
to zero (see Sect. 2). However, the linearized theory admits tachyons and ghosts connected
with the vectorial part Q, = Q' of torsion. The linearized theory is considered in Section 3.
The covariant algebraic constraints Q, = 0 exclude tachyons and ghosts connected with
the vectorial torsion. Therefore, we proposed previously [1] to confine to the restricted
model (RMicGT) of the theory with the L, given by (1). The suitable restrictions are given
by the covariant constraints @; = 0 imposed on Riemann-Cartan geometry and excluding
vectorial torsion (see Section 4). But now we think that no limitation of the theory is nec-
essary because the global energy of an isolated, finite system is nonnegative also in the
framework of the linearized theory.

2. The global quantities of an isolated, finite system

Let us consider an isolated, non-radiative, and finite material system. Space-time
around of such a system is asymptotically flat or asymptotically Newtonian {7, 14], i.e.,
the gravitational field has, at very great distances from the sources, spherically symmetric

leading terms of the order O (;1;) Substituting to the field equations (19)-(20) the g, deter-
mined by the asymptotic form of the line element
ds* = dsg— 2——6(—?:—4 (dr*+c*di*)+0 (liz) s 27
where
r = \/m;?, dr* = dx*+dy*+dz?,
M is the mass of the system, (28)

and ds? is the Minkowskian line element and the torsion components

Y]

. L 1
Qu = g‘f’ +0 (‘r';;) s (29)

r

0. |
where @', = const, we get the following equations to the lowest order 0(—2>
r

0 o o 0 0

Q-0+ Q07— 0:67 + Q% = 0. (30)

1

The remaining equations are identically fulfilled to the lowest order 0(-;) by the gravita-
r

tional field given by (27)-(29).
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r3
that the asymptotically flat space-time of an isolated, finite material system is, in the frame-

0 . 1
From (30) it follows that @', = 0; therefore Q' = 0(—). We conclude from

1y . .
work of the MicGT, torsion-free to the lowest order 0(—5), i.e., for such a space-time
r

t _ofl i_oi @—0_1_ Qi—O—l—— 3
Q.kl"’o r3 ’ R.klm‘— r3 = i = r3 I k "3 . (1)

From (17) and (18) we have the following integrals representing the global energy-mo-
mentum

Pi=(-)2 § %0 (32)
Z(0)
and global spin
S.it = (—)4p Z(ﬁ) * Qfl (33)

of gravitation and matter. X(c0) denotes here the 2-dimensional boundary of a spatial
hypersurface x° = const. We will take this boundary in the form of the sphere having
infinite radius R. Then it follows from (31), (32) and (33) for an isolated, finite material

system
( 1
Py =(-)2 3%@ * 0 = (—)2x lim # 0(1—{3> R*dQ =0, (34)
R-> o

over sphere over
with R~ sphere
i i : 1 z -
S = (=)4p * @, = ()48 lim 0(= )R =0, (35)
R-x
over sphere over
with R« sphere

i.e., that the global quantities, especially global energy, vanish for such a system.
If we use for energy-momentum the superpotentials

d(—2a % O, —aw’, A 1,/ (36)

which differ from the superpotentials (—)2ad * ©, by the exact form (—)ad(w’, A n,j"),
then we get for an isolated, finite material system (in the coordinates in which the system
is globally at rest)

Py =— =M, P,=0, (37

a

E
c

i.e., the same result as in the framework of GR.
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The superpotentials determined by (1 7)-(18) are exactly the same as the superpotentials
for a gauge field. Using them we have then the following result: for an isolated, finite ma-
terial system, gravitational and matter energy globally cancel.

3. Linearization

Let us consider the linearized equations of the theory!. Generalizing the standard
linearization procedure of the GR equations in holonomic coordinates [6] on the space-
-time with torsion (see also [8]) one can linearize the MicGT equations (4)-(5) and obtain
the following system of the linearized field equations (LFE)

1 ] 0)
0w = (-) - t“’b)—46jQ(b")’+26(bQ”)-2ng@aQ", (38)

. . 1
,3[th] _ 6jQ[b”]’ +1 anpr = 7 1te8l, (39)
al D hpi_ai D hpl___amap(Qiim+Qiml+Qmii)

+OQ"+07 0" + %‘_(Qspz__Qtpi

©) ©) 1

+0'g? -0 g" +0™) = (-) 2—135”", (40)
oYP* =, 9% =0, (41)
©)
In the above equations g, = g, + Ay,
. ) ) ©) (0 (0)
glk — glk ___th = glk _ gxl gkm hlm! (42)

©  (©
where |h,| <1 and sufficiently many of their partial derivatives. g, = g* = diag (1, — 1,

—1, —1) is the flat background metric and

, @ @ (0)
Yoo = hpp—% 8 8" hu = hpy—3 gl 43)

We have put on the flat metric corrections y,, = y,, the gauge conditions (41) the same
as in the framework of the GR.

In the weak-field approximation we also put |Q%,] <1 and sufficiently many of its
© (0)
partial derivatives; indices are raised and lowered with the flat metrics g% and g,.

0= 5 —4 = g*dd, = 0%, (44)

is the d’Alembert wave operator.

! Qur approach to linearization is different and simpler than that presented in [7].
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The LFE (38)-(41) satisfy in vacuum (#* = S%; = 0) 10 linearized differential identi-
ties (LDI)

aaP?ij = € €ji» (45)
0% =0, (46)
where
Pail = ZB [al D hai_ai D Ilal_amaa(Qlim+anl+Qmil)
e o & @@
+ 00@"+0"+0")+ 3 Q“-0"+0g"“-0'g" +Q’")], 47
and
. . s : ¥ ar (0) .
¢ = a([1 ¥ +30,0% - 20'0°+ 3,0 - 3,077 +2 g 5,0"). (48)

We have obtained the LDI (45)-(46) by linearization of the exact differential identities
(7)-(8). As a consequence of the LFE and LDI we get the linearized conservation laws
(LCL)

Gith = 0, (49)
tu—ty = &S (50)

Linearized torsion constraints (LTC) obtained from (26) have the form
17 = 20(61°QP — 5,0"P%) + 20,07 (51)

and they are identical with (39). Therefore, the LTC are not important in linear approxima-
tion of the theory.
Using (38) one can rewrite the equations (40) in the form of the 2-nd order equations

0 (207 +0") - 2,°(20"™"+ Q™)
o . ; . .
-2 gp[! 8']8,,Q“+4615[‘Q’}‘” + 4ajatttQpilll

, . o ]
+25Pa[le] + % (2Q”'“’+2 gp[t Ql]+ Qtnl)

AR B 1@
= (=)= + — (@1 + — g" o, (52)
4 o®
where

o
t.
[ = t_". = g tik'
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Finally, we take the LFE of the MicGT in the form of the following 2-nd order system
of the partial differential equations

{ _ ()
0 peb (_) _O_c_ t(pb)~4an(bp)1+25(pr)__2 gpb 3¢Qa, (53)

z[pb} - Za(éibgp} . an[bP)j) + aanij’ (54)

D (ZQ[H]p+ Qpil) _amap(zQ[ll]m +Qmil)

(0) . . . . .
-2 gP(‘ 6’)30Qa+45j5[th]w + 45j5['{Qp(l]J + 2595UQ!1

® 2 [tilp 2(0)1»{!' I pil; 1 sril
+ 5 Q0" +22707+0M) = ()
1 . . ©
4 (6lt(pl)_alt(pl)+ g””&"t), (55)
o
CP* =g ¥F = 0. (56)

The linearized field equations (53)-(56) are equivalent to the following system if
S.ii! = (2

0w = (=) %; (P9 _ 45,00 +2a<bgp>_2(2)pb 2,0% (57)

QP — 2,0 11 0,07 = 51; it (58)

(D + %) oun = (=) 5% Stpill_ éa[‘tpi]’ (60)
(D+ %_) Q(pm - (—)4’—1% St ‘%(;)l(pai)t

1O : _ .
-5 ghdt+id O Yr+ir oY -t 0w
a

2 The condition S%; = O slightly simplifies the right hand side of the equations (59). ¥

. 1
Sk =:(~)S; = 0 then we have on the right hand side of the (59) the additional term (—)EESI.
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0)
@ © o gigPgl g
pi Ol ’l(p in = .8 (:7[("} a
ﬁ 2 (e g’a" 3 5 009
e
+ 2 . a.)~ Q +1 - (tQp) (61)
6i¥l"‘ = ai‘l’“ = O. (62)

We obtain the system (57)-(62) from the system (53)-(56) by means of the following
procedure. We write (55) in the form

rIrpil: = D (ZQ[li]p+Qpil)~6m6p(2Q[li]m+Qmi!)
) )
-2 gp[i al]aaQﬂ + 4aja[in]m’+ 4aj@[ilQP|1]i

) (0
+2505!¥Qi1+ %(2Q{!i}p+2gpIiQ!}+Qmi}

Uoon b g sian, Ortia
+§~/§S"'——~——(Ut"—-0t"+g"0t)=0 (63)
2 4

and decompose T?! = (=)T*" into irreducible components with respect to L',

. )
Tptl 2 ( Tptl tTplz)+ (gprl Fl -1)+”p:lmam’ (64)
where
Tl" = Tfi!’ a, = _é I7mrsz'ﬂ (65)
and
0) (0) (0)
tTpxl = T(p:)l+ (gpl T + g;l Tp) px Tl. (66)
We see that
T =0eT =0Aa,=0A"'TH=0. (67)

Using the equations (54) one can bring the equations T/ = 0 to the form (59) and
the equations a,, = 0 to the form (60). Indeed, the equations ‘T*" = 0 = T® = 0 if we
use T' = 0, one can bring to the form (61) with the help of the equations (53) and (54).
The remaining equations (57), (58} and (62) of the system (57)-(62) are the same as the
equations (53), (54) and (56) of the system (53)-(56).

It is seen from the system (57)-(62) that the null hypersurfaces are characteristic sur-
faces of the LFE and that the linearized theory is deterministic. Moreover, one can see that
the propagation law of the vectorial part Q' of torsion given by (59) leads to tachyons
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(problems with causality) and to negative encrgy-density states (ghosts) (problems with
stability and unitarity). Namely, let us consider the equations (59) in vacuum

(D—ﬁ>o'~o 250 (68)
g)= " BT

It is casy to check that the particles of the ficld Q' described by the plane wave

. O 2 . Et p-X ©
g =29 COS—/T(EZ—IO.X) T Q' = const,

he ..
satisfying (68) have imaginary masscs m = i\/-é« (we put K = 1), positive energy
E > 0and velocities v > ci.e., they are tachyons. On the other hand, a rcal field ¢ satisfying
Klein-Gordon equation (E - %) ¢ =0, % > 0 may have negative encrgy-density. It

is easily seen from the 1°, component of the canonical energy-momentum tensor £, of such
a field

0, = 1 (%go_ 7? <p2>. (69)

Thus, the field Q' satisfying (68) leads to negative encrgy density (ghosts), i.e., it generates

non-stability of the solutions to the linearized field equations. 1f we want to havc the lineari-

zed theory without tachyons and ghosts connected with @', we must confine from the

beginning to the restricted MicGT. The suitable restriction is given by the constraints

0,=0,=0="0 =9 A x0,=0. We will consider this restricted version of the

MicGT in Scction 4 we end this Section with some remarks concerning linearized MicGT.
(i) Inthe framework of the linearized MicGT one can associate with the gravitational

field the following particles?:

— massless graviton 2~ described by ¥ : W% =0, ¥ = 0,

— tordion 0~ described by Qf, |

— tordion |- described by Q',;

— tordion 1 described by Qpo,4,

— tordion 2+ described by Q“P°

— tordion 2- described by T,

— tordion 1- described by Qo0 = 3 Qogpos

— tordion 0~ described by £/7Q,,..

Tordion 0~ can be eliminated by mecans of the constraints

tachvons connected with Q,

2x

. . 1
C{hQ”}—ﬁjQ'b”“ _}_‘% OjQ’bp I—11 Y (70)

3 QOur definitions of tordions are different and simpler than given in {7]. We decompose the linearized
field Q% onto irreducible components with respect to 3-dimensional rotation group and connect particle
having suitable spin and parity with every such component,
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The greek indices run over 1, 2, 3 and

A 0 0 50!3 1]
Q(Gﬂ) - = Q(aﬂ) _ T Q{y,’
QU = QUL QN+ Q%
']aﬁ = na[i = dl'dg(—}, _19 _1)- (71)

All the above particles, except tachyons 0+ and 1- are normal in the sense that they have
positive masses and the energy-densities of the “generating” fields ¥*, Q' and QU are
positive-definite (see Section 4). The masses of the normal particles and the modules of
masses of the tachyons 0+ and 1- are very large if K = 1 and equal to the so-called Planck’s

he . )
mass mp = \/ Y3 = 10-° g. Therefore, these particles practically do not propagate.

(if) Forces connected with the normal tordions are attractive (short-range, having

Yukawa’s potentials) and the forces connected with tachyons are repulsive for r > \/ E
o

( \/ ~B~ =hLif K= 1) and exponentially growing. So, the forces connected with tachyons
o

lead to nonstability of matter.
(@iii) If torsion vanishes, then the LFE (53)-(56) reduce to the form

1
D leb = (_) ; tpba tpb = tbp’ (72)
P =Y, =0, (73)
. R L
Spit — 2A(23”t']"+ gp[l 5!1,)‘ (74)

In the above system the equations (72) form dynamical system; (73) are constraints and
(74) only define spin S™ = (—)S” which is microscopic and conserved.
In the macroscopic domain (# = 0) the system (72)-(74) takes the form

1 -
O g’pb = (’—) ; tpba tpb = lpps (73)

Wik,k = lPki,k =0; S =0, (76)

identical with the linearized form of GR (see, e.g., [9]). In the so-called “Newtonian limit”
(see, e.g., [6]), the equations (75)-(76) take the form of the Poisson equation

Ap = 4nGo W)

with the variable density o(x, y, ).
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(i) The so-called ““superpotentials” in the framework of the linearized MicGT are
the same as in the exact MicGT, i.e., they have the form (—)2ud * ©; and (—)48d = .
In consequence, the global quantities of an isolated, finite material system, especially global
energy, vanish owing to the fact that the linearized MicGT (likely as the exact MicGT)
admits asymptotically Newtonian solutions (see [14]) having vanishing torsion only.

4. The restricted model of the MicGT with constraints Q, = 0 and conclusions

Let us consider the restricted version of the gauge gravitational theory with the gravita-
tional Lagrangian (1). (We will denote this version by RMicGT.) The restriction will be
given by the algebraic constraints Q, = 0 = k; = 0 where x;: = x%; and ¥’y = +(Q'
+Qu’+ 0,/ are defect components. One can introduce the constraints Q, = 0 = x, = 0
in usual way by adding to the Lagrangian (1) the term L4, = A A YO where 1-form 1 = A0
is the Lagrange’s multiplier and 3-form Y@ = 9'A * 0, = 0/’ = Q;n’. Then we obtain
the theory having the following gravitational Lagrangian

Ly = o A +0" A +0)+BQ A xQ5+4 A V0. (78)
%

Varying L (¢, w'4) we treat ¢, w} and J; as independent variables. We obtain the
following field equations

Doy = ()3 (8 £ =08 n 2 0)= L O, n

S/ 1 . )
- Z"ﬁ‘ - ‘ﬁf [*GAS)AF-«0C AF)A Y] (79)
o b 5{1 b
D% @, = (_)"2— AN 'hjk+ (Q.lrQl'Jpr"— :I Q ”thr) np
} (67 .
-+ ’Ii (Zl RY™R jym— RUltRijm> Hp
o
1 -k j - tl
— —[AQun’+D (4 A §)]— —, (80)
20 2
Yo =0=0, =0, (81)

or, in tensor notation (modulo the terms containing Q,)
VR RN = (=) 2 (Qf= 01+ Q) — (82)
maNli 2 M .tn Zﬂ il L.i Wil 4ﬁ B

Vkapk+% Qit’kalk = Gpp
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8 itr i r ﬁ i 8 ijr i b
e (Tp Qt Qilr“Q.erip) - ; (R ]btRijpt_ _41" RY tRijrt) - Ep& » (83)
0, =0, (84)
where
8%y = Shy+ 207~ ndf
and

_— k
Ipp: = tpb'f'lp,b—’z ,kgpb"

We see that the field equations of the RMicGT originate from the field equations of the
MicGT by: 1) omitting all the terms containing Q,; 2) changing S?; — 5%, top = tpss
3) adding the constraints Q, = 0.

(82)-(84) form the definite system of 44 equations on 44 intrinsic unknown functions:
6 intrinsic metric components, 24 intrinsic torsion components, 4 Lagrange’s multipliers
/; and 10 functions describing microscopic matter. Physically, we can interprete the La-
grange multipliers as some kind of the new field describing dynamical properties of vacuum
(Higg’s field)*. The energy-momentum pseudotensor of the new field 4’ as it is easily seen
from the (80) or (83), has the form

; o N
i = Jix— A8 (85)
and the spintensor

AS}.’ it = }-iaf—'ﬁl(sfv (86)

From the (82)-(84) we get that the linearized equations of the RMicGT have the form

1 .
O g/pb = (__) : Z(Pb)__4an(bP)J’ (87)
) it
anpr_zan[bplz =—, (88)
o

3 1 1 1
(m+ ﬁ) A =80 = — Ot — 3t (89)

Ji] a T 20 o
O+ 2 Quin = () 1 Stritl _ 1 alypn (90)

B 28 a ’

%\ A 1o, L i
D+—E Q =(—)Zﬁg +5o 80

4 In analogy as the cosmological constant /A is interpreted in GR.
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1@© . .
- % grhdt+ioip -1 0w, (91)
o
P =09 =0, Q=0 (92)
with the following constraints on material tensors ¢, ans S%; (LCL)
ity =0, 93)
fa—tii = O\Skye (94)

The constraints Q, == 0 eliminate tachyons and negative energy densities’ connected
with vectorial torsion Q, and the remaining fields ¥*, QU and QW' have positive-
-definite energy-densities and the particles connected with them have positive (or null)
masses. The positive-definitness of the energy density of the fields Q"' and Q¥ is seen
from the following considerations.

Let us consider the energy-momentum complex .#, of the gravitational field in the

framework of the RMicGT. We have from the equations (80)° with constraints Q, = 0.
gl = w(@’y A O i+l A 0% A gt

+al A 0F; A =200k A %0,
5:, brr b .pr
+2a EQ thr_Q.lrQb Np

+28 (R"f,,izi - %p R“""R,.,.,,,,> Nps 5
or, in terms of components
ot = (R Q T M= ™,,)60
S B RS L R R PR R
R BV B AT L R o
AP = D8+ THQ7 4+ TH QY
— Q8 — 7,08+ 7,07,] - 2aT%,0;7

P
+2a ("4_1 0" Qp— Ql.’eri,pr>
ij pt 5lp ijrm
+28{ RY,R;j" — " R Rijm ) (96)

2 =0, o7

$ Note that our method of elimination-of tachyons and ghosts is different and simpler than the methods
presented in {7, 10, 11].

¢ gti given by (95) is based on the superpotentials (36). The constraints Q) = 0 do not matter for the
energy densities of the fields QU1 and QUM



1013

where

i i i i d
ry, = {kl} —xy = {kl} —5 (Qu+ 0w +0u) (98)
and
R.ijkl = Gl fjl_alr ijk‘*‘r irkF rjl"r .irlI‘rJ'k' (9)

From the expressions (96)-(99) we get the pure torsion part of the component 7o, of the
linearized energy-momentum complex in the form

gloo = (3 Qiijijk +4 040, +1 00 ik
+3 07°0;50+3 07°Q0i+3 07°Qji0—% %700
+2B[RFAQ)R 10(Q) — 3 RMQR;u(D)], (100)
0,=0.

R';(Q) denotes here linearized, pure trace-free torsion part of the curvature tensor
Ru({}—%). From (100) we have for the axial torsion AQ* = QU1

:too = a(T}:AQijkAQijk“AQUOAQUO)
+2B[R™(*QRijeo(*Q) — 7 R QR;u(*0)] > 0, (101)
because the linearized tensors % 00— 0770y and RVORyo— 3 R™Ry, are
positive-definite. Concerning of the linearized field Q' =:°Q we get from (100)
gloo = (% Q(ij)kQ(ij)k_Q(ij)oQ(ij)O +5 Q(ij)kQ(ij)k

+20%P%Q ) + 2B[R7°COIR, 4,0(CQ)
Piklys s « i i)
—3 RMCOR (O] = 7 G 0 Qujo+3 27 Que

+2070 ) +2B[R¥COR;10('Q) —§ R¥CQR; Q)] > 0 (102)

as the all appearing linearized tensors are positive-definite,

The linearized energy-momentum complex for the massless graviton field ¥*: ¥ = 0
obtained from (96) if Q%, = 0 is, by virtue of the linearized field equations with @', = 0
and linearized Bach-Lanczos identity [7], the same as in the framework of linearized GR
and it leads to the positive-definite energy density of the field.

However, the energy-density of the new introduced field A’ (instead of Q) is equal to

o0 = }*o,o—i’,‘kgoo (103)

and is not positive-definite.
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Thus, we see that the linearized RMicGT is not better than the linearized MicGT:
it only moves the bad, local properties of the field @, on the “Higg’s” field Lagrange’s
multipliers 4;.

From the point of view of the exact MicGT any limitation of the Einstein-Cartan
geometry, e.g., by the covariant constraint Y@ =9’ A * ©; = 0 is artificial and unfounded
because:

1. The exact theory is causal.

2. The exact theory admits only non-negative global energy for an isolated, finite material
system, i.e., an isolated system is stable. .

3. In the framework of the exact MicGT there exist interesting cosmological solutions
having vectorial torsion [1].

4. The constraints Y@ = 0 complicate formal structure of the theory:

Moreover:

1. Also in the linearized MicGT the global energy of an isolated, finite material system
is non-negative in spite of appearing negative energy-densities.

2. If K = 1, then all the tordions are too massive for propagation and problems with
cousality vanish.

Summing up the constraints '@ = 0 are not necessary and we think that the MicGT
is very good microscopic gauge theory of gravitation (the best model in our opinion).
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