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An analytic method of asymptotically solving the Breit relativistic equation is presented
for a system of two spin-1/2 particles of equal masses bound in parastates by the Coulomb
attraction.

PACS numbers: 11.10.Qr

1, Introduction

Exact solutions to relativistic wave equations in quantum mechanics played an im-
portant role in the development of particle physics. It is enough to mention the exact
solution to the Dirac equation for a spin-1/2 particle in the external Coulomb potential
[1], that revealed the relativistic origin of fine-structure phenomena in atomic spectra and
gave the impulse to the essential progress in quantum electrodynamics.

In spite of many efforts [2], the relativistic wave equations for a system of two spin-1/2
particles interacting through the Coulomb potential ¥ = —a/r have resisted for a long
time an exact treatment because, in this case, the Sommerfeld polynomial method of solving
the second order differential equations [3] does not work. It is caused by a singularity
at r = —ofFE that, though regular, appears in the analytic extension of the respective radial
equations in addition to the familiar regular singularity at r = 0 and irregular singularity
at r = oo, In the present note we report on an analytic method of asymptotically solving
the Breit relativistic equation for a system of two spin-1/2 particles of equal masses bound
in parastates by the Coulomb attraction.

As it is well known, the Breit relativistic equation [4],

[E’H1(51)"Hz(;z)"V(;x—iz)]?(;‘b ;‘2) = 0’ (1)
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where H(p) = &; * p;+ Bm,, offers the simplest wave equation for a system of two Dirac
particles interacting through a “vector” potential ¥(r), 7 = X, —X,. In contrast to the much
more complicated Salpeter equation [5], it does not include the hole theory.Nevertheless,
one usually believes that in the case of Coulomb potential ¥ = —a/r, r = |7, it is pretty
well applicable, the deviations from the hole theory being manifested only when the non-
static corrections depending on a; are added to the Coulomb potential [4]. In particular,
the lowest nonstatic correction given by the Breit terms (a/r) L [, - 2, +(%; - 7) (@, - 7)/r2]
introduces a large deviation from the hole theory, unless this correction is treated as
a first-order perturbation only [4, 6].

The belief in the Breit relativistic equation with Coulomb potential is based on a per-
turbative treatment of Eq. (1), where one starts from the Schrédinger equation as the zero-
-order nonrelativistic approximation and evaluates from Eq. (1) consecutive relativistic
corrections in powers of v/c with v = |plju, p = L (p,—p.) and u = mym,/(m, +m,)
(in the centre-of-mass frame p, = —p, = p). We shall see that such a perturbative procedure
deforms the behaviour of the exact solution at r = 0, though it leads to the proper bound-
-state energy spectrum, at least in the orders O(«?) and O(x*) (we shall consider solely
parastates).

2. Radial equations for parastates

Let us start from the subset of radial equations for parastates, following from Eq. (1)
in the centre-of-mass frame when the case of a central potential ¥V = V(r) and equal
masses m, = m, = m is considered. In the notation of the last Ref. [2] this subset has
the form (cf. Eq. (A2) in Appendix A):

d 2 1
%(E—V)¢o+i(5 + ";') ¢el+i7 ¢loug = m¢s

1(E-V)$ — még,
LE-V)patiL 40 _o,
dr
i(i+1
'% (E— V)¢long— i](]:- ) ¢0 =0,

Z(E=V)Pmsg = 0. )

Among the four nonzero radial components of the wave function y(r) appearing in
Eq. (2) two, ¢°(r) and ¢(r), correspond to the total spin s = 0 and are the “large-large”
components (superposed with the “small-small’ components), while two other, ¢.(r)
and @y,,,(r), correspond to s = 1 and are the “small-large” and “large-small” components
superposed with each other (for the detailed definition of these components which is not
relevant here cf. the last Ref. [2]). Thus, the subset (2) has the spectroscopic signature
Y»J=0,1,2, ..., and the total parity n(~— 1)’ (where y = +1 or —1 for a fermion-fermion
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system or a fermion-antifermion system, respectively, the latter, if bound, being called
fermionium).

Eliminating from Eqs (2) the components ¢, ¢, and ¢,,,, We obtain the following
second order differential equation for ¢° (cf. Eq. (A8) in Appendix A):

1 4  jg+1n 1 dv d
LE-V)Y?+ — —r—""" —m’t —— — —[¢° = 0. 3
[T( Y+ rar’ r? E-V dr dr ¢ Q)
Omitting the last term in Eq. (3), one gets the radial equation corresponding to the (two-

-body) Klein-Gordon equation for a system of two spin-0 particles of equal masses. Then,
in the nonrelativistic approximation

FE-VY-m? = [ E-V)+m] [} E-V)-m]
= 2m[5 (E—V)~—m], “

one comes to the (two-body) Schridinger equation. We can see that in the case of Coulomb
potential ¥ = —a/r both steps deform the behaviour of ¢° at r — 0 that for Eq. (3) is
r¢® ~ r* withy = J1+ J(j+ 1)—(/2)?, while for the Klein-Gordon equation and the Schrs-
dinger equation it becomes rg® ~ r"<° with ygg = % + V(j+1)2—(/2)* and r¢® ~ s
with 5 = j+ 1, respectively. In the case of Coulomb bound states the behaviour of ¢° at
r— o is rd° ~ exp(—ar) with a = v m?—(EJ2)* >0, both for Eq. (3) and the Klein-
-Gordon equation.

Note that in the first-order perturbative treatment of the last term in Eq. (3) only
its Hermitian part contributes, if the unperturbed ¢° can be taken real, as in the case of
Coulomb bound states. This Hermitian part is

AV 1 (_d_v_ S 2n08(r) 1[ a 2

T 2AE-V) 2AE-V)? dr> " E+afr ? rz(E+a/r)]
_ _l[__}.__]z 5
2| r(E+a/D) ©)

if V = —a/r. Such a form follows from the relation (d/dr)t = —(d/dr+2/r). In the approxi-
mation of V/E - 0 the last term in Eq. (3) tends to the operator (1/E) (dV/dr)d/dr whose
Hermitian part

AV 2mad(r)

2E E ©

is the Darwin term AV/(2m)? = (no/m?)é(r) multiplied by —mQCm/E) = —m+O(a?).
In the first-order perturbative calculation the Darwin term contributes the correction

oz4m n

o
Ep = g oy = Ton® j11 dj0 D
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to the bound-state energy spectrum. Here, {) denote the Schrédinger bound-state expecta-
tion values. The Darwin correction (7) can be also obtained when the expression —(1/m) )
is evaluated for the exact last term in Eq. (3) with ¥ = —a/r and then approximated up
to the lowest power in «?. In this case, e.g. for the ground state, one gets

o0

o d am)’aJ‘ r ( am\ _
_— =4(—) — | dr . b i
r(Er+a) drf ,-1 2/ E r+a/E 2

0
am\* [ a\? ((a*m\ ™! aim = 1 a*m\*] £
= a2} (2) )22 c+ln 22 — (=2 | eE
(2)(5) {(8) +[+“E *ka( E)] }
k

=1

42

8

where C = 0.5772 is the Euler constant and E = 2m+ O(a?). Thus, —(1/m)  p=y = a*m/8
+O(a In o) +O(a®) with a*m/8 = Ep,_,*.

+0(af In &*) +0(c®), (8)

3. Fine structure for parafermionium

In the case of ¥V = —afr it is convenient to rewrite Eq. (3) in the form
1 d* 1 jG+D—(a2)? a* d
—_— XAt — — —{¢° =0, 9
[x a2 2x x? x(x +a%) dx ¢ ©

where x = xErand A = gfaE = (1/2%) v (2m/E)*~1 > 0 (for bound states). Here, x¢° ~ x7
at x — 0 and x¢° ~ exp (— Ax) at x — 0. Note that for x = a?> we have r = «/E = af(2m)
+ O(«®) which is the “classical radius™ of a pointlike limiting counterpart of our fermio-

a d 1 a2
WEr+a) dr | 2 \r¥Er+ap /[’
¢ d 2m a*m? 2m
Bk = - = — —— mEpn=1
Ert dr [n=1 E 8 E
is finite, while
1 a? 1‘1 o? 1,4am4¢2
- — = - lim —{ —— = — lim — —
2 \ E** [p=1 es0 2 \r(Er+e? [ n=1 -0 2 E
<0
Al cm e 1 (_ eme )]
E " k! E
k=1

! Note that

Here,

becomes divergent.
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nium, For positronium it is equal to 1.4 fm. Since {1/x> = O(a)/oe = O(1), a range of r lying
much outside this “classical radius” dominates the structure of any real fermionium.
It is not difficult to deduce from Eq. (9) its other equivalent form

[i & e, 1 JGHD-@2) ot ] e

x - A
x dx? 2x x? x*(x+a*)? |1 5+o?/x

Bl

= 0. (10)

Here, the truncated function ¢°/(\/ E1 +a?/x) is normalized with the weight VEV1 +a?fx
= VE—Vlikea (two-body) Klein-Gordon radial function, since ¢° is normalized as a radial
component of the (two-body) Dirac wave function (). Notice that in the deduction of
Eq. (10) the relation ré(F) = O was used, where 8(r) = —A(1/r)/4n.

It can be seen from Eq. (9) or (10) that the analytic extension of this equation in the
complex x-plane has a regular singularity at x = —a? in addition to the familiar regular
singularity at x = 0 and irregular singularity at x = co. Thus, Eq. (9) or (10) cannot
be reduced neither to the hypergeometric equation (which has three regular singularities)
nor to the confluent hypergeometric equation (which has one regular and one irregular
singularity). Because of its singularity at x = —a2 Eq. (9) or (10) cannot be solved in the
whole physical range x >> 0 by means of a universal series. But, its solution ¢° may be looked
for in the form of two separate series defined in the ranges 0 < x < «? and x > «2. Since
the point x = «? is regular for the analytic extension of Eq. (9) or (10), both series, if con-
vergent, are defined and equal (with all their derivatives) in the limit of x — «*. Unfortu-~
nately, in contrast to the hypergeometric equation with singularities at x = 0, x = —a?2
and x = oo, the singularity at x = oo in Eq. (9) or'(lo) is irregular, implying an awkward
divergence at any x for the expansion of ¢° at x = oo that can be considered only as an
asymptotic expansion. On the other hand, by its extra singularity at x = —a? Eq. (9) or
(10) differs from the confluent hypergeometric equation with singularities at x = 0 and
X = 0.

By the substitution x¢° = x¥ exp (—Ax)f we transform out from Egs (9) and (10)
the behaviour of ¢° at x —» 0 and x — oo getting, respectively, the equations

d? y d -2y y-1 a? d y-1 :|
AIY A | A Lo a)|r=0
[dx2 * (x )dx T3 x* 0 x(x+a?) (dx 3 > s (1)

d? 7 d 1-=2iy y-1 ot f
— 42— —-i)—+ 2 - - = 0. 12
[dx2 + (x ) x % x? x*(x +a2)2] Ji+a?x (12)
Here, f~ 1 at x — 0 as x¢° ~ x”, and f ~ x*“D~7 at x — oo. Defining ¢ as the larger root
of the quadratic algebraic equation

{=1+29)~y+1 =0 (13)

2
y+{ =3+ \/(f‘i";‘)z— (g) = Yko» (14

and

S

that gives
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we obtain the following equations equivalent, respectively, to Eqs (11) and (12):

2 d 1_2 2 d -1
[d— +2(’i‘$’ —-A)—+ 276 X ( + Jxo —A)]x"4f=0 (15)

dx? x dx x x(x+02) \dx X

and

d? Yk d 3—24yke ot :| x7f
— +2{ = -1 ]— -3 —— = 0. 16
I:dx2 + ( x dx + x * X2+ V1rod/x (16)

Here, x %~ x % at x > 0 and x~%f ~ x!/*H~7%S at x — oo. If the last term in Egs (15)
and (16) is omitted, they become the confluent hypergeometric equation corresponding
to the (two-body) Klein-Gordon equation with ¥V = —aojr.

Since f~ 1 at x - 0 (where x = 0 is a regular singularity), the function f can be
represented in the range of 0 < x < «? by the Taylor series

f= Zo ax’ for 0<x<a an

On the other hand, since f ~ x/"~7? at x — co (where x = o0 is an irregular singularity),
the function f can be asymptotically represented in the range of x > a? by the formal
Laurent series

] Vmax
f____xll(‘u)-v Z bvxv=x1/(4/1)—7-Vmax Z c,x’

V=—o0 v=—o

Ymax
=x* Y ex’ for x> (18)

vy=—w

where vy, = 0, 1,2, ... and § is defined by A = 1/[4(Vpax + Yk +0)] > O (for bound states).
So, & parametrizes the exact bound-state energy spectrum for parafermionium:

2 g 2 21—~-1/2
\/1 + (2&]\.)2 Vmax + kG + 5

When § is determined independently. Eq. (19) gives the bound-state energy spectrum for
parafermionium. Note that Eq. (18) implies for ¢° the asymptotic behaviour x¢°
= x4V exp (—Ax) = x*mex¥Ko+d oy (_Jx) at x — co (while $x° ~ x” at x — 0).

If the last term in Eq. (9) is neglected, one gets the radial equation corresponding to
the (two-body) Klein-Gordon equation with ¥ = —a/r. Then, for bound states 1 becomes
2k = 1/[4(Vmax +7xg)] With v, =0, 1,2, ... (cf. Eq. (15) with the last term neglected),
leading to the familiar bound-state energy spectrum

2 2 21-1/2
V1+Qadgs) Vaax+ kG
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Thus, 0 can be calculated perturbatively in the foliowing way:

1 1 al/2m\? =32 5E
d=—— —=-|—]) =1 —— +O[(8E)?
o) 1] 25 +oremn

2

where E = Ey;+0F and OE = E+ O(x®) with Ej, given in Eq. (7). From Egs (19) and (21)
one can obtain the perturbative formula for the bound-state energy spectrum of parafermio-
nium:

o 2
= (‘) 8;0+0(), 21

n(1— 51’0)

j+%

3
i—

E 2 azm + a‘m
== n -
4n? 16n*

] +0(®), (22)

where n = v, +j+1 = 1,2, 3, ... Of course, this formula takes into account the interac-
tion given by the Coulomb potential ¥ = —¢/r only and so it is a fine-structure formula.

It is interesting to remark that up to the order O(«*) the perturbative result (22) coin-
cides in the case of j = 0 with the exact j = 0 bound-state energy spectrum {7]

(X/Z 23-1/2
E = 2m [1 N (-;) ] 23)

of the (two-body) Schrddinger relativistic equation
>3 o -
(E—Z pi+m i+ —r—) wrs(r) = 0. 24

Such an equation describes a system of two spin-0 particles of equal masses and (only)
positive virtual energies, interacting through the Coulomb potential ¥ = —«fr. Unfortu-
nately, the spectrum of Eq. (24) for j > 0 is not known yet.

The Salpeter equation including consequently the hole theory for a system of two
spin-1/2 particles is, of course, still more difficult for exact treatment [5] than Eq. (24).

4. Asymptotic expansion for parafermionium

In the range of x > o2, inserting the formal Laurent series (18) into Eq. (11) multiplied
by x(x+a?), we derive the following recurrence formulae for the coefficients c,:

[3 —2A(v+7kc+)]e,
+{(+1) (V+ 276 +28) +86(6 — 1) +a’[F 240+ Yk + 5+ D]} evs +
+2’[(v4+2) (V4 2+ 29k +28) + (6 — D+ 9k +E—1]c, 4, = 0. (25)

Putting in Eq. (25) v = v,,, we reproduce the spectral relation A = 1/[4(Vyax + Tk + )]
(because ¢, .y = 0 = ¢,__, +,). Note that, if the formal Laurent series (18) representing
fdid not terminate for v 2> 0 at some v, = 0, 1, 2, ..., it would behave as X% exp (24x)
at x —» oo contradicting the bound-state behaviour of x¢° = x"exp(—Aix)f at x - ©
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characterized by exp (— Ax). This can be seen from the recurrence formulae (25) considered
for v - co. Starting from v = v,,—1 we can solve the recurrence formulae (25) step by
step (because ¢, .1 = 0), expressing all consecutive ¢,, v = vy — 1, Viay—2, ..., 0, ~ 1,
-2, ..., by ¢,_,.. Then, the resulting series (18) gives for x > & the asymptotic expansion
of the solution f to Eq. (11). It means that

Ymax
—-{-d ~Vmin
[x7*7°f(x)~ v.—.;, ¢, X" ]x7"R ——s 0 (26)
for any fixed vy = Viaxs Vmax — s -.» 0, —1 —2..., though the formal series (18) is diver-
gent at any x > o? i.e., the sequence

VYmax

Y X, Vmio = Vmao Vmax— L - 0, =1, =2, ., @7

V=¥min

has no limit at v,;, —» —o0. This is implied by the recurrence formulae (25) considered for

v — —oo. Evidently, the regular part of the formal series ), ¢,x” is the polynomial given
= -

by the term v,;, = O of the sequence (27), while its principal part contains nontrivially all
negative powers v < 0.

The divergence of the asymptotic expansion of a solution to a linear ordinary differen-
tial equation of the second order is a generic phenomenon when, as in our case, x = o0
is an irregular singularity of the equation [8]. A convergent expression for f could be perhaps
found by an integral transformation. Then the formal series (18) would be the asymptotic
expansion of a transform integral.

Now, in the range of 0 << x < «?, inserting the Taylor series (17) into Eq. (11) multiplied
by x(x+a?), we obtain the following formulae for the coefficients a,

[Z—24(v+)]a,
HO+D (+2) -y +1+°[3-240+y+P]}a, 41
+f(v+2) (v+2+2P)a, ., =0, (28)

where 1 = 1/[4(v_,, +yxc+9)] as found in the range of x > «?. Starting from v = — 1
we can solve the recurrence formulae step by step (because a_; = 0), expressing all consec-
utive a,, v =1,2,3, ..., by ag. Then, the resulting series {17) gives for 0 < x < o? the
solution f to Eq.(11). In fact, for v — 0 Eq. (28) takes the limiting form

—2)a,+(v+1)a,  +O+2a,, =0 (29)
which can be solved by
2.y
a, = —-—-—>( ) ao (30)
hand ] V!

since then asymptotically at v — oo

(V+2)dy4 2 _ «*(v+2)a, 4, 22 >0
~2ia,  (v+Daye; v+l

(31)
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It implies that the series (17) is (quickly) convergent for any x from the range of 0 < x < &2
because

a,,.x" ! 24x

a,x’ T ovow v+1 v

(32)

5. Hyperfine structure for parafermionium

Turning back to the perturbative fine-structure formula (22) one should stress that
the Breit terms, even if treated perturbatively in the first order, give the comparatively
large orbital and hyperfine-structure corrections. For parafermionium such a correction
is (cf. Eq. (B6) in Appendix B)

a*m [ (B+8;0)n
- 2_ - n

2

] +0(a®). (33)

If added to Eq. (22), the correction (33) leads to the following perturbative spectral formula
for parafermionium: '

m o*m (. n p

E+Eg =2m— Iz + an (’1—5“].—_:%_) +0(a”). (34)

It is a well known result [4] consistent with experimental data for positronium. Radiative

corrections to Eq. (34) come in the order O(«®) [9]. Annihilation corrections of the order

O(o*) vanish for parastates as being provided by virtual one-photon annihilation process.

We can see that the perturbative result (34) is in agreement with our asymptotic solu-

tion (18) when 4 is evaluated as in Eq. (21), although the usual perturbative treatment of the

Breit relativistic equation deforms (or rather ignores) our exact solution (17) in the range
of x < o2.

A part of this work was done while the author was staying at the Max-Planck-Institut
fiir Physik und Astrophysik in Munich during February-April 1988. I am also indebted
to Leszek Lukaszuk and Stawomir Wycech for helpful discussions in Warsaw.

APPENDIX A

Radial equations following from Breit equation

The Breit relativistic equation for two spin-1/2 particles of equal masses m; = m, = m
interacting through the “vector” potential V(r) and a “scalar” potential S() has in the
centre-of-mass frame the form

[E—V —(21—8;) * p—(B1+B,) (m+3 $)]w(r) =0, (A1)

Where Pr= —p=p and ;1—;2 =T,



128

Assuming central potentials, ¥ = V(r)and S = S(¥) withr = |r},and usinga multipole
method of eliminating the angular variables described in the last Ref. [2], one can split
Eq. (Al) into the following three independent subsets of radial equations [10]:

(i) subset !j; with total parity n(—1)’

d 2
%{E—V)QDO'*'I.(‘T )d’ l+l leons = (m+%S)¢,
r r

T(E-V)¢$ = (m+3 S)$°,
T(E- V)¢=1+’ ¢° =0,
1
7z (E V)¢Xong J(J * ) ¢ =0,
% (E - V)¢mag = 0’ (AZ)

(i) subset 3(j+1); with total parity n(—1)*!

d
’%(E—V)Xel'*‘i E‘;XO = (m+—;‘ S)xgl’
+1)
(E V) Xtong ™ J(J r Xo = (m +';" S)X?ong,
1 0 1 0 1
Zz (E_ V)Xel+ 7 ¢mag = (m+7 S)Xela
1 (t] d 1 0 1
3z (E_' V)Xlong- E‘ + — (i’mag = (m+7 S)Xlong’
r r
d 2 1
T (E-W)"+i —+—) ati— o =0,
2 (E—V)x i\t 75 ) tati— on
](H—l) d 1
(E V)¢mag X(e)l+ <d?‘ + _; Xﬁmg = 0, (A3)

(iif) subset *j; with total parity n(—1)’(j > 0)
% (E—- V)Xmag = (m +% S)xglap

+1 d
LE-VyR+ Y )¢,, (

i
_r') ¢gng = (m+% S)Xmag’
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1 0 1 (0]
2z (E - V)¢el+ ';‘ Xmag == 0’

1 ] d 1 0
T(E—V)¢long— ;i-;‘ + 7 Xmag = 0. (A4)

Here, the spectroscopic signature >**!/ ; is conventionally determined by the spectroscopic
signature of the “large-large” components involved in a given subset. The total parity,
being a “good” quantum number, is the same for all components and so equal to the total
parity n(—1)! of the “large-large” components in a given subset (here, # = +1 or —1
for a fermion-fermion system or a fermion-antifermion system, respectively). The total
angular momentum j = 0, 1, 2, ... is, of course, also a “good” quantum number.

The detailed definition of the 15 radial components appearing in the subsets (A2),
(A3) and (A4) is given in the last Ref. [2] and is not relevant here. A 16-th radial component
¥, appearing in the general case, identically vanishes in the case of m; = m,. The norm
squared of the state u(r) is

lpl? = oI+ % + i+ I 1P+ W12+ 112 + UG 12 + 10 1, (AS)

Where 2 = (Xel’ Xlong’ Xmag)’ etc., Wlth

”XIong "2 + “xmag ”f

1P = e+ =2 (A6)
1 JjG+1)
and Yjong = 0 = Ymeg for j = 0. The scalar and vector components correspond to the spin

s =0 and s = 1, respectively. In the case of vector components the combinations

J j+1 Xiong \/]'I'l \/ J Xiong Xmag
i K™ . Ty N Xat N ’ ’ (A7)
‘/2J+1 DN VG VLT NG+ ViG )

etc., correspond to the orbital angular momentum ! = j—1,/ = j+1 and / = j, respectively.
The “large-large” components (superposed with the “small-small” components) are con-
tained in the scalar components ¢ and ¢° as well as in the vector components Xy, Xiong
Xmag 1A XD, Xiongs Xoag- Other scalar and vector components are superpositions of the
“small-large” and ‘“large-small” components.

Eliminating from the subset (A2) all components but ¢° one gets the equation

1 a2 j(j+1) 1 dv d
LE_VYy — 1Yt oo —— — % = Al
[“( R e dr:l¢ 0. (49

where s = 0and / = j (nj; states). Similarly, from the subset (A4) one obtains the equation

[ 1 42 iG+1) 1 4dv [d 1

—(m+%S)2+ = 1 g (_ + —)] xgmg = Oa (A9)
dr r

HE-W T oET T
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where s = 1 and ! = j > 0 (n®j; states). Finally, eliminating from the subset (A3) the
components 3, X and x° one derives the system of three equations for ., Xjong and ¢2,.
In the case of j = 0, where xj,,, = 0 and ¢f’mx = 0, it reduces to the single equation

1 a 2 1 av(fd 2
[% (E-V)’+ —-aT G ~(m+3 5+ — _'(Er' + 7)] Xa = 0. (A10)
Here, s =1 and / = j+1 = 1 (n3P, states).

In the situation when only a “scalar” potential S is active, Eqs (A8), (A9) and (A10)
become identical with radial equations corresponding to the (two-body) Klein-Gordon
equation for a system of two spin-0 particles of equal masses interacting through this
“scalar” potential. So, in such a situation the mathematical problem of solving the Breit
relativistic equation is much simplified in comparison to the situation when a “vector”
potential V is active, introducing into radial equations an additional singularity. The
1S, and 2P, states in the case of a linear scalar potential S = x?r acting alone were discussed
in Ref. [11].

APPENDIX B

Correction from Breit terms

When one adds to the static potential ¥ in the Breit relativistic equation (A1) the Breit
terms

’ - - 1 - - - -,
il %[al “ay+ r—z(% ICN r)] (BD)
representing the lowest nonstatic correction, one can derive in the case of central potentials,
V= Wr), V'=V'(r) and S = S(r), the following radial equations for parastates [6]:

1 4>  j(j+1) E-V
LE-V-2VVE-V)+ — —r—
[“( MYE-N+ T 2™ "7 Evav

E-V 1 dv d
—(m+18)? + —1¢° =0. B2
m+2S) v YESv @ dr]¢ (B2)
To avoid large deviations of the Breit relativistic equation from the hole theory, the Breit
terms must be treated as a first-order perturbation only [4, 6]. Thus, in Eq. (B2) only terms
linear in ¥’ should be taken into account. Then, Eq. (B2) transits into the equation

1 j 1
LE_pyPe =& D i 2 Ll =0, (B3
[4( VP4 — = —(m 3 dr+n]¢ (83)

U+ 2Am+3 S)’] - (B4)

ri(E-V) E-V
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In the electromagnetic case of V' = V' = —afr and S = 0 one gets for Schridinger
bound-state expectation values of I the formula

3 2 +1Da
<IB> - <:n’::> * <%> <J(2]mr) >(1 610)+0(a )

a*m? a*m? a*m*(1—8,0)
= — - 0(a®). BS
a T amGeD T leni(jrd) TO@) (BS)

Hence, for parafermionium the energy correction from Breit terms is given by

3 +5,0)n

2

1 ) am
Ey = —Ip? ;1[1+0(a )N = [2— ] +0(a%). (B6)

If the potentials ¥ = ¥’ were (uncorrectly) treated on the same footing from the very
beginning, Eq. (B2) could be exactly rewritten in the form (B3) with Z; replaced by

j(j+1)  2Am+3S)
Iexact — 1 E V + V B7
B [ 7 ( )+ 2E ErV 37
Then, in the electromagnetic case of V' = ¥’ = —afr and S = 0 one would obtain
perturbatively in the first order
a*m ( n
ESSt euct 1+0 — 2 Jjo 0 6
= > [1+06)] 164[+ j+2]+() (B8)

the energy correction for parafermionium deviating largely from the previous outcome
(B6). In fact
4

am n
EF _Fp = —— —— +0(a®). B9
B BT I il (") (B9)

In this case, the perturbative spectral formula for parafermionium would become

a’m . 4
16n*

4n?
in place of the usual perturbative result (34). As can be seen from Eq. (B7), in this case
there would appear an additional regular singularity at r = o«/F (lying in the physical range
of r >0), while the previous regular singularity at r = 0 would turn irregular.

E+EJ* = 2m— L1 0(%) (B10)
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