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TRANSPORT IN STRANGE STARS

By P. HAENSEL AND A. J. JERZAK
N. Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw*
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We calculate thermal conductivity, electric conductivity and shear viscosity of hypo-
thetical strange star matter. Transport coefficients are calculated using variational solutions
of kinetic equation for a normal degenerate quark plasma. All considered transport processes
are dominated by quarks. Color screened QCD scattering largely dominates over the
Coulomb scattering of quarks. At the same density and temperature, transport coefficients
of strange star matter are about an order of magnitude larger than those of normal neutron
star matter. The influence of strong magnetic field presumably accompanying strange stars
on transport processes is studied.

PACS numbers: 21.65.+f, 97.60.Jd

1. Introduction

It is currently believed that at sufficiently high density matter undergoes some kind
of transition from a state where quarks are localized (confined) inside baryons to a decon-
fined state of quark matter. Quark matter in equilibrium with respect to weak interactions
contains, apart from the massless u and d quarks, also the massive s ones. The strange
quark matter, with the strangeness per unit baryon number close to — 1, is energetically
preferred over the non-strange one, composed of the u and d quarks only. This is due to the
fact that the exclusion principle effect, favoring the appearance of the s quark, prevails over
the non-zero mass effects. Recently Witten [1] has pointed out an intriguing possibility
that such a strange matrer might be an absolute ground state of matter at zero pressure.
This would not be in conflict with reality: ordinary nuclei could not convert to the strange
state because of the difficulty in making transition to the strange configuration via a very
high order weak interaction.

The existence of the self-bound strange matter might have important consequences
for physics of neutron stars. The appearance of the nucleus of the strange matter during
the implosion of a massive star or during the evolution of a massive normal neutron star
could lead to the formation of the strange stars, composed entirely, or predominantly, of
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strange matter. Possible scenarios of conversion of neutron stars into strange stars have
been considered by Olinto [2]. Some of the static properties of strange stars have been
recently studied in [3, 4] (for a review, see [5]). It should be stressed, however, that the very
possibility of existence of strange stars is a matter of a lively debate. Arguments against the
existence of strange stars have been presented by Bethe et al. [6].

In order to study the astronomically relevant properties of strange stars one should
know, apart from the equation of state, also the transport properties of strange matter.
Knowledge of thermal conductivity of strange matter is necessary for studying the cooling
of strange stars. Electric conductivity is needed if one is studying the electrodynamics
of these objects. Hydrodynamics of strange stars involves viscosity of strange matter.

In the present paper we calculate some of the transport coefficients of strange matter
starting from the relativistic Boltzmann equation for degenerate quark plasma and assuming
that the system is normal. The formulation of the problem is given in Sections 2, 3. In
Section 4 we calculate the transition rates relevant for the considered transport processes.
Qur numerical results in absence of a strong magnetic field are presented in Section 5. In
Section 6 the influence of strong magnetic field on the transport coefficients is studied.
Finally, Section 7 contains a discussion of our results and conclusions.

2. Formulation of the problem

2.1. Introductory remarks

For reasonably small values of the quark-gluon coupling constant and m,c? < 200 MeV
strange matter is a nearly flavor symmetric mixture of the u, d and s quarks. Thus, the
baryon number density of strange matter, ng, is to a very good approximation equal to
the number density of quarks of a given flavor, ng = n, (f = u, d, s). The strangeness per
unit baryon number is close to — 1. The electron fraction Y, = n/ng is small, ¥, < 104
Detailed models of strange matter have been studied by Farhi and Jaffe {7], see also Haensel
et al. [3].

In the simplest approximation strange matter is an ideal gas of massless quarks. For
T < 102K strange quark matter is degenerate, with

T|Tg = 3.68 - 107 3(ng/nge) > Tyo, Q.1

where T,, = 7/10'° K, normal nuclear matter density ngo = 0.17 fm~* and the Fermi
temperature Ty = p/kg, u being the quark chemical potential. Finite strange quark mass
and quark-quark interaction imply only minor corrections to Eq. (2.1). In what follows
we shall thus consider a gas of massless quarks. Moreover, we shall neglect weak and electro-
magnetic interactions between quarks. In this approximation, strange matter will be
completely symmetric with respect to all internal degrees of freedom (flavor, color, spin).
Corrections resulting from the electromagnetic interactions between quarks will be esti-
mated in Sections 3, 4.

Quark matter is a relativistic system, in which pressure is comparable to energy density.
Indeed, for noninteracting massless quarks P = 1/3 & In view of this, we have to use
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relativistic description of kinetics of quark plasma, as well as the formalism of relativistic
hydrodynamics (for a detailed presentation of relativistic kinetics and hydrodynamics, see
the monograph of de Groot et al. [8]). We assume that strange matter is a normal system.

We shall use Greek letters u, v for the relativistic four-indices, with the summation
convention over repeated indices. Full sets of internal degrees of freedom of quarks will
be denoted by « = (f, ¢, 5), where f, ¢, s stand for flavor, color and spin, respectively. Infinites-
imal element of momentum space will be denoted by dI' = (Qrh)*p°)-td3p. We shall
use the metric tensor g,, = diag(l, -1, -1, —1).

2.2. Boltzmann equation and hydrodynamics

Assuming, that the screened quark-quark interaction is relatively weak, we describe
the nonequilibrium behavior of quark plasma using relativistic Boltzmann equation (cf.,

eg., [8, 9],

2 , 5
&;fau(x, PP +F¥q,,pyy 0—1;;ﬁ”(x’ I

= "‘% Z _{szdF3dF4[A/I,N,Msu(plpz, P3P4)§z

A4

X Y 84 (py + P2~ P3— Pa) {fur(%, DO (X, P2) [1 —fi(%, P3)] [1—foils Pa)]

—fas(%, PSl(%, pa) [N =£oi(x, pOT [ —fak(%, P21} (2.2)

where £, is the distribution function for quarks, F** is the external electromagnetic ficld
tensor, g, is the electric charge of a quark with internal quantum numbers a. The quantity
M, ., 43, 18 the transition amplitude for the two-body process p,ot; +p,0, = p3dts+pata,
calculated to lowest order in the screened quark-quark interaction. For the sake of simpli-
city we put h = ¢ = 1. In what follows we shall usually drop the space-time and mo-
mentum arguments.

The entropy four-flow, relevant for the calculation of the tramsport coefficients,
is given by

St = —kg Y fdr[f,Infi—(1—£) In (1-£)]p". (2.3)

The energy-momentum tensor, 7", the electric current, j*, and the quark number current,
A#, are given by the formulae

™ = 3 | dIptp, @4
=Y drfq.r”, (2.5)

H#P =Y [ drfp (2.6)
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In the hydrodynamic regime the distribution function for quarks deviates slightly from the
local equilibrium one, £°,

nyo -1
o = O —f0)8, £ = [1+exp (-”—IET—")} . @7

Here, u is the local chemical potential of quarks assumed to be flavor, color and spin
independent, T is the local temperature and ¥, is the hydrodynamic velocity. The energy-
-momentum tensor can be split into equilibrium and dissipative components,

T* = T2 46T, T& = (P+eV*V'—g"P, (2.8)

where P and ¢ are pressure and energy density, respectively. We adopt the Eckart definition
of ¥*. Thus, u, T, V* are implicitly defined by the formulae

oT*"V,V, =0, N* =nV¥ 2.9

where n is the particle (quark) number density in a comoving reference frame and P, ¢, n
are assumed to be the same functions of 7'and y as in equilibrium. The quantities §T*" and
J* are functionals of &,

oT™ = ZS ArffA—Ap'p'®, i* =Y [ drf2(1—£0)q.p"®.. (2.10)

2.3, Entropy production and transport coefficients

Our calculation of the transport coefficients will be based on the Chapman-Enskog
method, which will be applied to the relativistic Boltzmann equation, Eq. (2.2). In this
approach we obtain a relation between (small) gradients of hydrodynamic quantities, and
the unknown function @,(x, p), which describes the deviation of the quark distribution
function from the local equilibrium one. After tedious calculations we get following rela-
tion, linear in unknown functions &,

f;n(l —f) . 1 1
A . +{—P,——T, 43,
T " Pipi et P T P1P1

-4 () ~ra] ot}
B

7 }: fdfzdf3df4lM}2(2n)4§4(p, +P2—P3—Da)

X furfall=£2) (L =f2) (B, + B~ B, — B,). (2.11)
Here,

AW = gt _YHp, A‘” _ A" Av( o +Vv,,”,)_.§_ An\'V:ﬁ:‘ (2.12)
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We use the notation F, = dF/dx*. In our approximation, the dissipative part of the energy-
-momentum tensor and the electric current take the form [8]

, T
ST™ = nA™ 4-x VU g0e (T:#'_' 8_;; P,u’> R (2.13)

j* = aF*V,, (2.14)

where 1, ¢ and x are the shear viscosity, the electric conductivity and thermal conductivity,
respectively. Script brackets denote symmetrization in the corresponding indices. Notice,
that in our approximation the bulk viscosity coefficient vanishes (ultrarelativistic gas,
[8, 10]). A very fortunate decoupling of heat conduction from electric conduction results
from the assumed flavor symmetry (only electric charges of quarks are not flavor symmetric).
The entropy production in a unit volume, S = S* ,, can be calculated in three ways. Micro-
scopically, the entropy production results from the two-body scattering and, in lowest
order perturbation theory, can be expressed as a functional of &,

Si(®) = § kp Y, [ dIdI',dT3dl |M*(21)*8*(p + P2 — p3—Pa)
xXgaz
[ &1 71

X fA1 =) (1 =f2) (D + By — By~ D, ) (2.15)

On the other hand, entropy production can be expressed in terms of the dissipative com-
ponents of the energy-momentum tensor, calculated as a functional of &,

R 1 ,
SD(¢) = -I_J:'F p.,v(¢)+ ﬁAuvaTu (@)

1 P .

— =\ T,—T =2 A"ST™ (®)V,.. 2.16
Tz(,“ 8+P) @V, (2.16)
Finally, the entropy production can be calculated from the macroscopic expression for
the dissipative part of the energy-momentum tensor, involving transport coefficients x, o
and 1,

i3

n v d ‘wpv
Sw = 5= A A"+ — VPP,

_ fi(r“_T .’_’:n_) 4 (T,V—T P ) 2.17)
T e+P e+P ,
In the case when & is the exact solution of the Boltzmann equation, the values of S, Sp
and Sy are strictly equal.
Our model of the quark-quark interaction, derived in Section 3, will be a very simplified
one. In view of this, it does not seem reasonable to put a great effort in an exact solution

of Boltzmann equation, Eq. (2.2). Much more practical seems to us to obtain an estimate
of transport coefficients using the Ritz variational principle for the Boltzmann equation.




146

This variational principle can be written in the form [8, 11]
Sy(®) Ss(®) 1
\ F\12 > N 25 &
ISp(@) ISp(P)| Sm

(2.18)

where & is a trial function, and @ is a solution to Boltzmann equation, Eq. (2.2). Notice
that @ is determined up to an irrelevant normalization constant.

Introducing appropriate gradients of hydrodynamic quantities 7, ¢ and V' and
an external electromagnetic field, F**, corresponding to a transport process under considera-
tion, and guessing reasonable trial functions, @,, consistent with symmetry requirements,
we can obtain approximate values (actually:lower bounds) of transport coefficients.

2.4. Variational expressions for x, o and

We shall fix the local reference frame by requiring that the local three-velocity vanishes.
In order to estimate the heat conductivity of strange matter let us introduce a small tempera-
ture gradient along the x axis. The natural choice of @, is then

é.(p) = - p'(0°—1). (2.19)
Using variational principle, Eq. (2.18), we get
1 S«(P)
— =T —i==s - 2.20
K [5T01(¢)]2 ( )
Inserting expression (2.19) into the above expression we obtain the formula
L_ 5T [y sin2? (2.21)
— = sin“ = ). .
K 90xn 2

Here, ky is the Fermi wavenumber for quarks (in our approximation kg = u/hc) and
W, is the transition rate, relevant for the heat conduction,
Wx = W = z IMalaz,aga.g‘z' (2'22)

axy
x304

The brackets {...) denote an average over the Fermi surface, which is characteristic of
degenerate systems,

E s 2n
sin 6d6 F(6, 9)
CF@, 9> = dp &9 (2.23)
4n )
0 0 2 cos :;Z

Here, 0 is the angle between p, and p, and ¢ is the angle between the planes determined
by the initial and final momenta of colliding particles.
In order to calculate the electric conductivity we consider a weak electric field directed
along the x axis. The variational principle gives us the formula
1 S«(®
_ 5@

- W . (2.24)
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A natural choice for &, seems to be

-~

@, = y,pl. (2.25)
We have y, = 74. The condition that the total gquark number flow vanish leads to y, = —2y,.
The variational principle yields then
1 ke(kgT)’n 0
—= l%;z—) < W, sin? 5 sin? %i> . (2.26)

where the transition rate, W, is given by

Wo‘ = Z (1 -5}':}'2) (5fx“+6f2“) Hﬂaw:,aauﬁ' (2-27)

X122
[ £1-7)

For the calculation of the shear viscosity it is sufficient to consider the case of a slow flow
of strange matter in the direction of the x axis, the local value of the hydrodynamic velocity
depending on the y coordinate only. The variational expression for # is then given by

1 Sy(®
-=T 5(12)2. (2.28)
1 (6T™%)
The appropriate Ansatz for the spin, color and flavor independent ¢ reads
&, = —pipa. (2.29)
Final formula for the variational estimate of # is
1 Skp)n /. . .0
)™/ ine O sin? ). (2.30)
n  216kg 2

In order to obtain explicit formulae for k, ¢ and y we need to calculate corresponding
transition rates W and W,.

3. Scattering rates in strange matter

The constituents of strange matter interact by the exchange of photons and gluons.
These interactions are described using QED and QCD, respectively. In the case of two
quarks in vacuum both interactions are long range ones. However, the interaction of two
quarks embedded in strange matter becomes finite range because of screening effects. In
what follows we discuss separately the cases of the QED and QCD interactions in strange
matter. We assume that quarks are massless.

3.1. QCD scattering rates

In our calculation of the quark-quark scattering rates due to gluon exchange we shall
use a very simplified version of the QCD. We shall assume a small, constant value of the
QCD coupling constant o, = g?/4n. The calculation of the transition rates is standard,
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similar to that in QED, with some complications being caused by the color structure of the
quark-gluon vertices (see, eg. [12]). The effect of the color screening will be calculated to
lowest order in «,. We shall use a very simple prescription, in which screening is essentially
the same as Coulomb screening in QED plasma. In this picture, the interaction with the
quark gas gives the gluons an effective mass [13]. Color screening will be then described
by a single parameter, which is the inverse color screening length [13],

k. = (60,/7) *kg. 3.0

Typical values of «, for the standard models of strange matter are o, = 0.1-0.2, so that
ke./kp = 0.4-0.6. Color screening is thus very strong and at high baryon density the result-
ing cut-off of momentum transfer from below is sufficiently large to justify (qualitatively)
the use of a constant, small «. in the expression for the transport coefficients.

It should be stressed, that the use of only one screening parameter is a very rough
approximation, in view of a complicated structure of the color interaction. Another simpli-
fication consists in using the static limit of the screening. One may argue, that the use of
the static limit for the ultrarelativistic quarks is justified by the smallness of the parameter
ho/hk,c, where typical excitation energy is hw ~ kgT and thus less than 1 MeV for
T < 1019 K (cf. [14]).

Apart from the quark-quark scattering, one should consider in principle other micro-
scopic QCD processes leading to irreversible entropy production. An example of such
a process involves one quark emitting or absorbing a QCD plasmon. However, the color
plasmon energy in strange matter is very high, hw,. = (50/2r)"*hkgc [13], on the order
of hundreds of MeV. Hence, color plasmon absorption process can be neglected because
of the Boltzmann factor exp (— hwp/kaT) < 10-*3. On the other hand, the Pauli exclusion
principle for quarks inhibits the color plasmon emission process in degenerate strange mat-
ter. This justifies our approximation consisting in taking into account only quark-quark
scattering.

Using the Born approximation for the color screened QCD interaction we obtain,
after lengthy but otherwise standard calculation, the following expression for the two-
-body QCD scattering rates in strange matter:

a’hc?
WP = 32(2m) . Fy(0, 9, (3.2)
F
athc?
WP = 12(27)* T [5F (8, ¢)—% F,(0, 9)+F;(0, 91, (3.3)
F
where functions F; are defined by
0
sin* 5 (1 +cos* _?i)

Fl = FS(B’ ‘P) = F1(99 TE—‘P): (3'4)

20 ., 9 2’
(smz 5 sin? > +x,2¢)
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]
sin* -
2

g 6
(sin2 5 sin® 12)— +xszc) (sin2 5 cos? —:i +x§c>

and x,, = ko/2ke = (Ba/2m)'/2.

F, = (3.5)

3.2. QED scattering rates

The QCD scattering rates have been calculated in the preceding section with QED
interaction being switched off. In this approximation, the interaction is flavor symmetric
and this enabled us to introduce significant simplifications in our calculation of the transport
coefficients. The QED interaction violates the flavor symmetry. However, as we shall
show below, the effects of the QED interaction on the scattering rates can be safely
neglected.

The QED interaction of quarks is modified by the charge screening. This effect will be
calculated in the static limit by applying the Debye-Hueckel theory to the flavor symmetric
strange matter. For the Coulomb screening length we get

re = 1/k, = (m/8a)"/*1/kg, (3.6)

where « is the fine structure constant of QED. Notice that r, is flavor independent. The
use of the static limit for the ultrarelativistic quarks is justified by the smallness of the
parameter hw/hk,c, where typical excitation energy is fiw ~ kT and thus less then 1 MeV
for T < 10'°K [14).

Processes involving one quark emitting or absorbing a QED plasmon can be neglected.
Plasmon energy in strange matter is ho, = 2(20/r)"/*hkgc ~ 40 MeV [4]. Hence, plasmon
absorption process can be neglected because of the Boltzmann factor exp (—hw,/kpT)
< 10-17, On the other hand, emission of a plasmon by a quark embedded in degenerate
strange matter is strongly inhibited by the Pauli exclusion principle.

In our calculation of the QED effects we shall separate the QED and the QCD interac-
tions. This is (qualitatively) justified by the fundamental properties of the interactions in
strange matter. QED interaction is color independent and hence does not affect the color
distribution, while QCD interaction is flavor independent and hence does not affect the
electric charge distribution.

In order to estimate the QED scattering rates we calculate the corrections to W and
W, resulting from the switching on of the QED interaction. Using Born approximation
for the screened QED interaction, we get, after lengthy but standard calculations, the
following formulae for the corrections implied by the QED scattering,

oa?hc?
AWSED — 84 (27)? E F(8, ¢), 3.7
F
QED _ 4 2¢:czl‘w2
AWED = £ (27) [11F (6, @) +2F (0, @)+ F5(6, 9)], (3.8)

ki
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where F; are defined in Eq. (3.4, 3.5), with x,. replaced by x, = k,/2kg = (2a/m)'/?
= 6.82 - 10-2. We shall show in the next Section that these corrections give negligible
contribution to transport coefficients.

4. Results in absence of magnetic field

Let us consider transport processes with the QED interaction being switched off.
In order to obtain order-of-magnitude estimates of transport coefficients, we may use
expansions of the angular averages in terms of the parameter x,, = 0.218(«./0.1)"/2. The
leading terms of the small-x,, expansion are

1 _ 2n ot”zT it
< loco T + .., 4.1)
1 L [2n o22KET? N 42
a QCD n—- 4 3 hkg‘czez see g .
1 _ 25n* /21: a2 k2T? . 43
n QCp - 6 3 hskF o )

Let us now estimate the QED contribution to transport coefficients. The charge screen-
ing is rather weak and we will take advantage of smallness of the screening parameter
x, = 6.82 - 10-2. The leading terms of the small x, expansions of the transport coefficients
are then

1 T 1/2

Al f’\/ > st @.4)
K 18 2 hc nB

n TG

e *\/ " 4.5
g QED 6 2 he c ng ( )
1 257 nl/ﬁ k2T2 372

A;I—QED 27 \/2 h3 2, 5/3 + o @6)

For «, = 0.1 the QED contributions are nearly two orders of magnitude smaller than the
QCD values. Thus, transport of heat, charge and momentum in strange matter is limited
by the QCD interaction between quarks.

Expressions suitable for a rapid order-of-magnitude estimates of the transports coeffi-
cients are

a, \" V2 ng erg
~ 3.4-10%2 Tl — ——, 4.7
* (0 1) % ngo cms K @7



o=58-102 (% L 48
=7 0.1 1o Rgo ’ (.)
o -3/2 n 5/3 g
~ 701015 = T2 2} =, .
n (0.1) 10 nBo cms (4 9)

For «, < 0.2 the above expressions yield estimates which differ by at most a factor of two
from those obtained from the full expressions, Egs (2.21, 2.26, 2.30).

We performed our calculation of the full expressions for k, ¢ and # using a specific
model of strange matter, derived by Haensel et al. [3]. It has been obtained assuming
B = 60 MeV fm~3 for the MIT bag constant, m > = 200 MeV and o, = 0.17. For this
model, strange matter of baryon density npg = 0.2902 fm—* and mass density o, = 4.816
1014 g cm=3 is self~bound and energetically preferred even over the nucleon configuration
in the form of 36Fe crystal. This model of strange matter has been used by Haensel et al. [3]
in the calculation of the models of strange stars.

Our results for transport coefficients at 7 = 10'® K versus density of strange matter
are given in Figs 1-3. In practical applications the dependence of the transport coefficients
on the baryon density may be needed. In order to enable the transformation from the
ng to g variable, we give in Fig. 4 the relation ¢ = g(ng) for the considered model of
strange matter. Notice, that the maximum density reached in stable strange stars built
of such matter is g, = 2.45 - 10! g cm™3 (g, = 1.20 fm—3). Approximate expression,
Eq. (4.7), gives a very good approximation to the value of x. However, in the case of ¢ and
n Eq. (4.8) and Eq. (4.9) give only about half of the full value of these transport coefficients.
The values at other temperatures may be obtained by scaling the corresponding curve
by a factor T in the case of o and 7 and a factor Ty, in the case of k, respectively.

5. Transport coefficients in the presence of strong magnetic field

If strange stars are born in (some?) supernova explosions, or are products of a phase
transition in a strongly magnetized massive neutron star, we should expect them to possess
very intense magnetic field, B ~ 10!2-10!3 Gs. At the origin of such a strong magnetic
field would be, as in the case of ordinary neutron stars, very high electric conductivity
of dense matter, which would enable a huge amplification of magnetic field during the
shrinking of a collapsing star.

In order to study the influence of such a huge magnetic field on the transport properties
of strange stars we should calculate the Larmor radius of a quark in the neighborhood of
the Fermi surface (only such quarks contribute to transport in a degenerate system)

U - -
rg = 'l'qf%B =~ 10 6#3003121 cm. (5.1)

Here, i, is the quark chemical potential, uso0 = /300 MeV, By, = B/10'> Gsand f = u,
d, s. The motion of quarks in magnetic field is nonquantized as long as the distance between
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the Landau levels, hwp = hicfry, is less than the energy of the thermal motion of quarks,

hog

T = 1072Bop300Ts ' < 1, (5-2)
B

where Ty = T/10® K. This condition is satisfied for the values of B and 7 relevant for not
too old strange stars (say, of age < 10°y).

5.1. Weak and strong magnetic field

From the results for x, o and 7, obtained in the preceding Section, one can derive
typical values of the relaxation times characteristic of a specific transport process in absence
of magnetic field. These relaxation times, 7, (¢t = «, 0, ), are related to the mean free path
of quarks (at the Fermi surface) by 4, = 7,c. From expressions, that will be derived in
Sections 5.2, 5.3 and 5.4 we get,

hky 3k 53)
T = —— , .
ngc mwekAT
hke 9
T, =% 7, (5.4)
2ngc e
_ o (5.5)

T, = .
" ngchkg

Typical mean free path between the collisions, in the vicinity of the Fermi surface and in
absence of magnetic field can be thus estimated as

A~ B1074Ty 2 cm, (5.6)

where f, depends on the transport process involved (but very roughly f, ~ 1).

In the case when ry < 4, transport processes in strange matter are strongly influenced
by magnetic field. On the contrary, for rz > A, the effect of magnetic field on transport
phenomena can be neglected. In terms of B and T both regimes can be determined by:

rg S 4,
magnetic field important 5.7
By, R 107 %300 T3/ B:

rg > Af
magnetic field can be neglected 5.8
By, < 1072p300T3/B..

For T ~ 1, corresponding to an expected interior temperature of a 10y old strange star
(such a value can be deduced from thermal evolution scenarios of a neutron star discussed
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in [15]), transport processes are strongly influenced by the magnetic field B > 10'° Gs.
So, magnetic field may start to play an important role at an early stage of thermal evolution
of a strange star.

5.2. Thermal conductivity

In the presence of electric field E and magnetic field B, the general form of the Boltz-
mann equation for the quark distribution function f,, in the relaxation time approximation
for the collision integral, reads

e 5 Ofa o fo=f
hekd Fi = — ,
ot o % + op’ T,

_ LV (5.9)
Fi=q,|E+ —vxB},
c

where v = 0¢,/0p and we have used a convention of summing over the repeated indices j. Eq.
(5.9) is a three dimensional reduction of the relativistic Boltzmann equation, Eq. (2.2),
with collision integral expressed in the relaxation time approximation. Terms corresponding
to coupling of magnetic field to the quark intrinsic magnetic moment have been neglected.
In what follows we shall consider steady flows corresponding to df,/0t = 0. In our calcula-
tion of transport coefficients we shall follow a general procedure sketched in [16] and
explained to one of the authors (P. H.) by D. G. Yakovlev.

Let us consider the case of heat conduction in a constant magnetic ficld directed along
the z-axis, B = (0, 0, B). We shall assume E = 0. Using the notation f! = f,—f°, we
reduce Eq. (5.9) to the form

1
A N S

— - = — . 5.10
x ¢ (o op’ Tz (5.10)
In our case
af? ol e ,—u OT
AL ATl o A1
ox’ e, T ox 1D

After linearization of Eq. (5.10) in the temperature gradient one can easily see, that the
deviation of the distribution function from the local equilibrium one, f!, has the form

1 =AUe ), (5.12)

where o7 are unknown functions of the quark energy, which are linear in 87J0x' (i = 1, 2, 3).
. Inserting expression (5.12) into Eq. (5.10), and solving the resulting system of linear
equations for &#J(¢), we find that the heat flux implied by a small temperature gradient
is, in the presence of a strong magnetic field, given by

Jjn = x BB - VT)+x,[VT BB - VT)]—x ,(Bx VT), (5.13)
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where the thermal conductivity coefficients are

o nk} e .
Ky =Ko = 3 ShE, 5, (5.14)
s
s .
K, = KOEI—W/Z?P (5.15)
f f
. sy .
K, = Ko z 1+(a,})2/z s (5.16)
I I

Here, for the sake of generality we take into account possible dependence of the relaxation
time relevant for the heat conduction (in absence of magnetic field!) on the quark flavor,
/- Let us notice, that in our approximation % is independent of f, T = t,. The dimensionless
parameters @, determine the importance of magnetic field. They are defined by

aj = ofr, = q;Br,[hke (5.17)

because in our approximation u, = hkgc. It should be stressed that in deriving our expres-
sion (5.13) we have assumed that the pressure gradient vanishes (cf., Eq. (2.13)). Such an
approximation is valid in the case of degenerate quark matter with constant baryon density.

5.3. Electric conductivity
In order to study the influence of a strong magnetic field on electric conductivity of
1
strange matter, we consider the general case of %, = ¢ (E+ — v X B), assuming that E is
c

weak. Equation (5.9) reads then

.0 i !
o Vo g Ve S

ox? *op’ 2

(5.18)

The calculation of f! can be performed after linearizing the above equation in E. Equation
(5.18) implies then the following functional form of £,

fl = €Ue,)p’, (5.19)

where %7 are unknown functions of &, linear in E. Inserting expression (5.19) into Eq. (5.18),
we find a system of linear equations for %2, which yields analytic expressions for these
quantities. This enables us to calculate the electric current j,., implied by a weak electric
field E, in the presence of a strong magnetic field B,

jo=0BB-E)+o [E—B®B - E)]-o,(BxE). (5.20)
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Here, the electric conductivity coefficients are given by the formulae

ngc
oy =0=1% m‘; E g%, (5.21)
!
2.0
qf‘tf o
6,=0, E 1+(a})2/ E q}t,, (5.22)
7 !

2,0 0
sty o
o, =0, g 1+(a})2/ E g5 (5.23)
I r

In our approximation, in which all quarks are assumed to be massless, and flavor
independent QCD interaction dominates over the QED one, 77 = 7, and

aj = q;Bt,[p. (5.24)
5.4. Shear viscosity

The case of the shear viscosity is the most complicated one. This is due to the tensor
character of the perturbation. Let us impose a nonrelativistic hydrodynamic velocity field
V(IV| < ¢). The local equilibrium distribution function reads then

T
2= [1+exp (fg‘?’k ; #)] . (5.25)
B

The above formula contains quark energy ¢ calculated in the local rest frame of a moving
fluid element. The bulk motion of strange matter is assumed to be nonrelativistic and there-
fore we may use the approximation

Hp. V) =¢,—-Vp. (5.26)
Equation (5.10), after linearization in 0V¥/dx’, implies then the following form of £,
[ = 2K’ (5.27)

In what follows we shall assume that the fluid motion is described by a purely shear flow
(density of each quark flavor #, = const.). Equation (5.10) reduces then to a system of
six linear equations for the quantities 2%, which are symmetric in j, k indices. Let us
introduce the tensor

ov? . ovi
W, = - ersll
Y ax/ ox’t

(5.28)

We restrict ourselves to flavor symmetric flows without compression. After getting an ana-
lytic solution for 2%, we can express the dissipative components of the energy-momentum
tensor in terms of the five viscosity coefficients and of the components of the w;; tensor
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(Baranov et al. [16]),

0Ty = =% MoWas +1My(Wy1+3 Wa3)+137 12, (5.29)
0Ty, = —5 NoWas +1(Waz+7 Wa3)—13W 12, (5.30)
0Ts33 = 1oW33, (5.31)
0T 2 = 0112~ H3(W11—W22), (5.32)
0T 3 = NaWis+14Wa3, (5.33)
0T53 = NaWy3 —14Wy3. (5.34)

Explicit formulae for the #, coefficients read

No = +nghkgc % ; 7, (5.35)

: : 7 : : )
ng =1, =1 1—“—“_'_4{“,,)2/ % (5.36)
I d S
Tf2a}
N3 =1 E T34 Ha)? 7, (5.37)
S !
Tyay "
= , 5.38
e = o Z 1+(a})2/ Z K -39
J f

where the dimensionless coefficient 4} is defined by Eq. (5.17), with 7, replaced by 7,. For
the sake of generality, the formula for #, has been written in the form valid for flavor
dependent relaxation times.

5.5. Limiting cases of strong and weak magnetic field

In the case of a weak magnetic field |a;| < 1 and strange matter can be treated as an
isotropic medium with

Ky =KL =Ky, K,=0, (5.39)
o) =06,=0y 0, =0, (5.40)
N1 = N2 = No» N3 =14 =0, (5.41)

where x,, a4, and 7, are transport coefficients calculated at B = 0. Such a situation occurs
for By, < 1072 pi500 T2. In an opposite case of a strong magnetic field (B, > 102 300 T3)
transport properties of strange matter become highly anisotropic. Transport processes
taking place along the direction of the magnetic field are not affected by its presence, while
those in the other directions are strongly suppressed. This property is visualized by the
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following approximate formulae, holding for B,, » 10-2 TZ (notice, that u;oo~ 1),

Ky =Ko, Ky = 6.75k0/a} < Kk, = 1.5ko/a, < Ko, (5.42)
6y =0y, O = 4.504/at € 09, 0, =0, (5.43)
My =1y = Nola; < 1o, (5.44)

N> N2 € N3 = 0.75n0/a, < no, (5.45)

N, N2 € 1y = L.5ngja, < nq. (5.46)

The above formulae have been obtained in the approximation of the flavor independent
relaxation times. Flavor independent parameters a are defined by a, = eBr,/hkg, etc.
Equations (5.42-46) imply, e.g., that diffusive heat flow in a strange star with B,, » 10-2 T2
takes place, to a very good approximation, along the direction of the stellar magnetic field.

6. Discussion and conclusions

Our results for thermal conductivity, electric conductivity and shear viscosity of strange
star matter should be treated as very rough estimates of these quantities. Actually, using
analytical techniques developed in the theory of degenerate Fermi liquids (see, eg. [17]) we
might try to find exact solutions of relevant transport equations in absence of magnetic
field. However, much larger uncertainties and errors, than those resulting from our variation-
al calculation of transport coefficients, stem from our extremely rough treatment of the
QCD interaction in quark plasma. First of all, we use an approximation which is valid
only in the limiting case of a very dense quark matter. Secondly, our use of a small, constant
value of o, as well as our very simplified treatment of the color screening, are of course
drastic approximations. Finally, we assumed flavor symmetry, which introduced great
simplification in our calculation of transport coefficients from the relativistic Boltzmann
equation.

Being aware of many simplifications and rough approximations, used in the present
paper, we are convinced that going beyond our model would require a tremendous amount
of work. For the time being, it does not seem to us reasonable to make such an effort for
the description of the properties of such hypothetical and exotic objects as strange stars.

Despite simplicity of our model we think that our results are qualitatively correct.
All transport processes in strange matter, considered in the present paper, including electric
conductivity, are dominated by quarks. Electrons play a negligible role, because their
fraction is very small, ¥, = n/ng < 10-%. On the other hand, transport of electrons in
strange matter is very effectively limited by the Coulomb scattering off quarks. Let us recall
that in the case of normal neutron star matter both x and ¢ are determined by the transport
of electrons.

The knowledge of the thermal conductivity of strange matter is required for studying
the process of cooling of strange stars. Our results are shown in Fig. 1. At ¢ = 29,
(0o = normal nuclear density = 2.5 - 10} g cm—?) the value of x for strange matter is an
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Fig. 1. Thermal conductivity of strange matter, in absence of magnetic field, at T = 10'® K, versus density
(solid line). Dashed line: thermal conductivity of normal neutron star matter at the same T (from Flowers
and Itoh [17]). The curves scale with temperature as 773

order of magnitude larger than that of the normal neutron star matter at the same tempera-
ture [14, 18]. Results of Flowers and Itoh are shown only for ¢ < 4¢,, because at higher
¢ the validity of their calculational scheme becomes questionable.

The electric conductivity of normal neutron star matter is determined by the motion
of ultrarelativistic electrons. A simple expression for ¢ has been derived by Baym et al.
[20]. Assuming a simple formula for the density dependence of electron fraction in normal
neutron star matter, Y, = 0.02 g/g, [21], we transform the formula of Baym et al. [20]
into a suitable form

3/2
neutron star matter: o = 5.0-10* (—g) Tiols ' (6.1)
Qo

This formula vields the dashed line in Fig. 2. At ¢ = 2¢, the value of ¢ for strange matter
is several times larger than that for normal neutron star matter. The validity of approxima-
tions used in deriving Eq. (6.1) breaks down for ¢ 2 3¢,.

If the hypothesis of strange matter is correct, then one might contemplate possibility
of existence of macroscopic, self-bound, stable nuggets built of strange matter. At room
temperature the electric conductivity of such an object would be seventeen orders of magni-
tude larger than that of copper.

If strange stars are born in (some?) supernova explosions, then we expect them to
possess a very intense magnetic field (B ~ 102-10'3 Gs). The presence of such a strong
magnetic field could strongly suppress transport processes in the direction parallel to mag-
netic field, resulting in a very strong anisotropy in the heat flow in the interior of hot
strange star,

The shear viscosity of strange star matter is about one order of magnitude larger than
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Fig. 2. Electric conductivity of strange matter (solid line). Dashed line: electric conductivity of normal
neutron star matter calculated using Eq. (6.1). Results correspond to 7 = 10'° K, in absence of magnetic
field. The curves scale with temperature as T1a

that of normal neutron star matter at the same temperature and density, Fig. 3. The values
of n for normal neutron star matter are taken from Flowers and Itoh {18}, who give them
for ¢ < 204. An order-of-magnitude estimate of the characteristic timescale of the damping
of shear motion in strange matter leads to conclusion, that for T' > 10° K the effect of
shear viscosity on, e.g., pulsations of strange star, can be safely neglected.

In the present paper we have restricted ourselves to transport processes which do not
change the local density of matter. On the other hand, our model of quark plasma was
flavor-symmetric. Consequently, we did not consider bulk (second) viscosity of strange
matter, determined by the flavor changing weak interactions between quarks. Some informa-
tion about this quantity can be extracted from the paper of Wang and Lu [22]. The
importance of the bulk viscosity for the damping of the strange star pulsations results
from the slowness of the flavor changing process u+d — s+u, involving massive s quark.
The results of Wang and Lu show, that bulk viscosity resulting from this process can lead
to a damping of the radial pulsations of the strange star in less than a second. However,
one should remind that this damping time is still three orders of magnitude longer than
the period of strange star vibrations. So, bulk viscosity of strange star is negligible on the
dynamic timescale, 14 ~ (Go)~"*~ 10%s.

It should be stressed, that all results of the present paper have been obtained under
assumption, that strange matter is a normal system. Actually, one cannot exciude a possi-
bility that dense quark matter is a superconductor. Such a possibility has been considered
by Bailin and Love [23, 24]. If strange matter was superconducting, than thermal and trans-
port properties of strange stars would be dramatically different from those derived in
the present paper. However, in view of the uncertainties, characteristic of the dense quark
matter models, connected especially with the perturbative treatment of the QCD interac-
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Fig. 3. Shear viscosity of strange matter versus density (solid line). Dashed line: shear viscosity of normal
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Fig. 4. Mass density of matter, defined as energy density divided by c?, versus baryon density, #p, for the
strange matter model considered in the present paper
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tions, it scems reasonable to treat the problem of the actual nature of the ground state of
strange matter as an unsolved issue.

One of the authors (P. H.) expresses his deep gratitude to D. G. Yakovlev, for teaching
how to calculate transport coefficients of a plasma in the presence of magnetic field. We are
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magnetic field on the transport properties of strange stars. We are also very grateful to
M. Soyeur and R. Schaeffer for their helpful comments in the initial stage of this study.
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