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QUANTIZING SOLITARY WAVES IN FIELD THEORY
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The partial success in interpreting solitary waves, quantized by semiclassical methods,
as nucleons in a meson field has obscured fundamental questions of a semiclassical approach.
A review of these problems is presented in this paper and one alternative non-semiclassical
approach to quantization is discussed.

PACS numbers: 11.10.Lm

1. Introduction

There has been a certain amount of success in interpreting quantized solitary wave
solutions of a self interacting meson field theory as a nucleon surrounded by a meson field
[1-5]. That this is a reasonable objective is seen from two points of view. Witten’s conjecture
that QCD reduces in a large N, limit to a scalar field theory suggests that such a limit
should produce objects that behave like confined quarks which thus constitute a nucleon
[6, 7]. Another insight has been provided by Skyrme who has shown that nonlinear scalar
field theories can give rise to soliton solutions which can be interpreted as classical, nucleon-
-like objects [8]. This idea has been developed to the point of fairly close agreement (around
309,) with experimental properties of the nucleon [9, 10].

The above ideas hinge on quantizing solitary wave solutions to nonlinear field equations
by methods based on semiclassical approximation schemes. This paper points out some
philosophical objections to this approach and discusses an alternative quantization method.
There is no intent herein to claim originality, but rather to encourage alternative thinking
regarding the quantization of nonlinear field theories and their interpretation.

2. Standard approach

In the path integral formulation of quantum field theory, the propagator is written
as a functional integral of the Lagrangian density [11]:

G(t', x'|t, x) = Tr [exp (—iHT/h)] = | 2[¢(x, t)] exp {S[$(x, t)]i/h}, (6))
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where 2[¢(x, t)] is the measure and the action is given by

T
S[é(x, )] = (.E dt { dx£[d(x, )], )]

with Lagrangian density [Z[¢(x, £)].
The above is subject to the boundary conditions

o(x, 0) = ¢(x, T) = ¢o(x) 3

and an integration over ¢,(x) is understood in the expression for the trace. An additional
boundary condition depends on the behavior of ¢(x, ¢) at spatial infinity. Should the condi-
tion ¢(c0, ) = ¢(—c0, t) = 0 not hold true, as is the case for topological solitons, the
solution space is divided into unconnected sectors and separate boundary conditions applied
to each section. '

In order to quantize around solitary wave solutions, the stationary phase approxima-
tion is applied to the action potential. In this approach

V¢l = | dx[3 (V¢)* -~ U(¢)] , 4

is expanded in a functional Taylor series around an exact nonlinear classical solution
¢o(x, t) which is an extremum of the potential [12, 14]:

Vgl = Vigo)+ J‘dx%{q[; [—V2 + d U(f ) ](5I + higher order terms, Q)
d¢* 1sol"S
where
$(x) = (x)—o(x) = .;1 c(O)n(x). (6)

Here, #,(x) are normal modes; small fluctuations around the classical solution which
satisfy

d*u
l:_vz + dd)(;ﬁ)

Higher order terms in the expansion of V]¢] are ignored. This is equivalent to choosing
the path which gives the functional integral it’s minimum value, the classical solution.
The stationary phase approximation is therefore equivalent to a weak coupling condition
where fluctuations around the classical solutions are small and harmonic.

The bound state energy levels that result from this approximation are

]m(x) = w?ny(x). )

do.

E = V[¢o]+h Y (n,+3)o,+higher order terms. )
i=1

This result agrees with results arrived at by other semiclassical methods [15, 16-20]. A review
of these alternative approaches can be found in [21]. The interpretation of these results
is that a single classical particle with energy V[¢,] exists in addition to a series of linear
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normal mode states which are interpreted as a free meson field. Calculations for several
field theories for which exact solitary wave classical solutions are known yield mass for-
mulae which lend support to this interpretation.

Some minor difficulties must be overcome for an interpretation consistent with the
above outlined procedure. Renormalization must be performed to rid the theory of diver-
gent terms. There is also the problem of zero mode fluctuations. If w;, is zero, which occurs
under conditions of symmetry of the potential, the assumption that higher order terms
can be ignored because they are small obviously breaks down. However, it is possible
to reformulate the theory in terms of collective coordinates, representing the center of mass
motion of the extended classical object, so that the problem of zero normal modes is avoided
[13, 18, 21, 22}.

3. Objections

A chief objection to the above scheme of quantization is that even though nonpertur-
bative solutions have been utilized, the solution is a perturbative solution. The theory
for the mesons remaining after the soliton contribution has been set aside is still a perturba-
tive field theory with all of the associated problems including renormalization. The per-
sistence of the interaction has been ignored as is evident since the in and out fields, the
fields evaluated at infinity, are free noninteracting meson fields.

1t is also not clear what happens for larger fluctuations around the classical solution.
If either the fluctuations or the coupling constants are large, the semiclassical method fails
because it depends on ignoring higher order terms in the expansion for the potential.
The above approach makes no claims to validity in these regions even though it occasion-
ally yields the exact results (see [23] for comments). Although it is appealing to interpret
the soliton as a massive object, it is not reasonable to expect a free linear meson field to be
generated from a strongly self-interacting field theory. In classical nonlinear differential
equations (after which these field theories are modeled) self coupling results in totally new
phenomena (solitary waves) which have entirely different properties than linear waves.
In fact these equations do not have any linear solutions at all. This being the case, it seems
more reasonable to expect a quantized nonlinear field theory to result in quantum objects
which have properties totally unlike their linear quantum counterparts.

4. Alternatives

One alternative non-semiclassical quantization scheme has been developed by Burt
[24]. In this method a propagator for a self-interacting field theory is constructed using
the quantum superposition of states.

For a free scalar field theory the coefficients of a Fourier series expansion are inter-
preted as creation or annihilation operators acting on a Hilbert occupation space |r)
where n labels the number of particles in the state. The probability amplitude for a particle
created from the vacuum at x to be found in state |¢) is {(¢|¢(x)|0)> where ¢~(x) is an exact
solution to the field equation which contains a coefficient interpreted as a creation operator.
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According to the rules of quantum mechanics, the time ordered sum of probability ampli-
tudes over all intermediate states is the propagator;

G(x,x") = 3 kZ <0lpg (NP ()8(x0— yo) + bq ()i (¥)8(yo — o) 10). ®

If exact solutions ¢*(x) = are¥ for the free meson theory
O%p+m?¢ =0 (10)

are substituted into this expression, the standard free meson Feynman propagator results

with the interpretation of @) as creation/annihilation operators.

The nonlinear self-interacting field equation
D% +m’p+ip™**' =0 ¢8))
has exact solutions (25)

1—-MA%)?? exp (F2ipq - x)
A(p+1m?

—-1/p
¢*(g,x) = { } A” exp (Fig - x), (12)

where ¢% = qo—¢q = m>.

The fact that this equation (Eq. (11)) and its exact solution reduce to the free meson
theory in the limit A — O suggests that the 4¥ in the solution be interpreted as containing
creation/annihilation operators [26]. With this assumption, the propagator for the self-
-interacting theory can be constructed with the identical probability amplitude sum over
intermediate states in equation (9) [27].

Under this treatment the nonlinear field theory has given rise to a single self-interact-
ing meson field. Advantages of this interpretation are several. In standard perturbation
theory, nonlinear terms are assumed to be small and act only for short time periods. The
in field and the out field are, at infinity, free, noninteracting fields. In the above interpreta-
tion the propagator represent sa self-interacting field, where the interaction is turned on at al
times. The resulting theory is intrinsically nonperturbative and does not require renormali-
zation [24]. Interactions with other fields can be added to the theory in which case perturba-
tion theory is re-introduced for these new terms but the interpretation of the meson as
a self-interacting intrinsically nonlinear object remains.

That this approach can lead to valid results in practice has been demonstrated in several
calculations {28, 30]. A determination of nuclear data such as S, phase shifts due to a po-
tential generated from this quantization scheme [29] has been more succesful thus far
than the Skyrme model and as succesful as models based on meson exchange such as the
Bonn model [31]. It is interesting to note in this connection that mass formula generated
by the self-interacting propagator suggests an interpretation of the interaction as an
exchange of a sum of mesons of different masses, where the number of masses involved
depends on the total energy of collision,
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5. Conclusions

Perturbation theory has been and continuous to be an extremely useful tool in quantum
field theory. However, it is also evident that there are still some problems to overcome.
It cannot be expected that perturbation theory will work well for self-interacting theories
where the coupling is strong such as the self coupled meson theories discussed above.
Solitary waves and other coherent phenomena resulting from nonlinear equations are
evidence that at least some nonlinearities are nontrivial and cannot be dealt with using
semiclassical approaches. Linear results cannot be expected to derive from nonlinear
equations. Clearly more effort must be spent exploring alternative intrinsically nonlinear
methods to quantum field theory.
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