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Using t\he Bogoliubov-Valatin variational method we have analyzed the effect of the
Coulomb potential on the chiral symmetry breaking in the pairing model of QCD. The
renormalized gap equation for massless quarks interacting through the Lorentz vector

>, &, . .
potential V{r)~ or — — is sclved numerically. An alternative derivation of the gap equation
r

based on the Schwinger-Dyson equation is discussed. We also study the influence of the
Coulomb term on the equation for the pion vertex function and on the pion properties. The
chiral parameters and pion characteristics arc also calculated in the baryonic background.

PACS numbers: 12.38.Lg

1. Introduction

Spontaneous breakdown of chiral symmetry is well established in hadron physics [1].
According to the standard argument, which was borrowed from the theory of superconduc-
tivity by Nambu and Jona-Lasinio [2], the dynamical chiral symmetry breaking is caused
by the condensation of fermion pairs. The underlying mechanism responsible for the pair
condensation is, however, still poorly understood in the framework of Quantum Chromo-
dynamics [3]. The most promising tool, available at present to study this nonperturbative
phenomenon, is the numerical simulation of Lattice Gauge Theory. Although, in principle,
the lattice formulation allows us to solve Quantum Chromodynamics (QCD) completely,
the inclusion of fermions on a lattice is still problematic and the technique is under develop-
ment [4]. In continuum there are various attempts to find a good approximation to describe
the spontaneous breakdown of chiral symmetry. One of them [5] analyzes a gap equation,
written down in the Landau gauge in the linearized approximation. In this approach the
ultraviolet behaviour of the dynamical quark mass can be studied. In the alternative method
[6], which we are using in this article, the gap equation is considered in the Coulomb gauge
within the instantaneous approximation. This approach is similar to the models used in
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quarkonium spectroscopy and allows for using the phenomenological static potentials
to describe the chiral symmetry breaking.

The model, originally proposed by Finger and Mandula, connects the Nambu and
Jona-Lasinio mechanism with the basic properties of Quantum Chromodynamics. The
vacuum of Quantum Chromodynamics is approximated by a coherent superposition of
quark-antiquark pairs, and analyzed via the Bogoliubov-Valatin variational method.
This leads us to the gap equation. The quark interaction is described by the chirally sym-
metric, normally ordered effective Hamiltonian derived from QCD Hamiltomian in the
Coulomb gauge. The normal ordering in the second-quantization formalism is equivalent
to the omission of the self-energy of quarks, which, for potential used there, is infinite.
This approach, however, can not be applied to the confining potentials {7], because in this
case the Casher instability criterion (2p+ ¥ < 0 [8]) can not be satisfied, as the potential
V(r) = r* is positive for all r’s. Another argument, for changing the procedure is due to
Adler and Davis [9], who noticed that the renormalization prescription (normal ordering)
ieads in general to the momentum dependent wave function renormalization constant. They
also derived the correctly renormalized gap equation for general potential and solved it for
the linear one. Simultaneously, the correct gap equation for confining potential was pro-
posed in Ref. [7], where the authors pointed out that the instability criterion can be fulfilled
when the quark self-energy, is taken into account (no normal ordering). This energy, which
is negative, prevails over the kinetic and potential terms and leads to the chiral symmetry
breaking. The gap equation for quadratic potential was also solved in Ref. [7]. Unfortu-
nately, in both models resulting chiral parameters (such as the dynamical quark mass m*,
quark condensate {uu), the pion decay constant f,) were much smaller than the correspond-
ing experimental numbers. One of the reasons to which this deviation was attributed [7, 9]
is the lack of the Coulomb potential in the Hamiltonian. In this paper we analyze the full
model containing the Coulomb and the linear potentials. We introduce the potential into
the scheme in the way suggested in Ref. [9).

Another problem, which has recently attracted much interest, because of its importance
for the heavy ion collision and for astrophysics, is the chiral symmetry restoration at finite
temperature and baryonic number densities [10]. The present model has also been applied
to the description of the phenomenon at finite temperature {I1} and baryonic densities
{12, 13]. The phase transition parameters (such as the critical Fermi momentum or baryonic
density), which we have obtained in Ref. [13] for purely confining, linear potential ¥(g)
~ 1/gq*, are again consistently smaller than expected from the experiment. In this paper
we also investigate the recovery of chiral symmetry within the full model by solving the
renormalized gap equation written in the baryonic background.

At the outset, in Section 2, we briefly review the main assumptions of the model and
rederive the gap equation. This is achieved by introducing to the original Hamiltonian the
counter-term, which removes the ultraviolet divergence caused by the Coulomb potential.
An alternative derivation, which is based on the Schwinger-Dyson equation is also discussed.
The influence of the Coulomb term on the equation for the pion vertex function and on the
pion resulting properties is presented in Section 3. In Section 4 we analyze the effect of the
baryonic background on the chiral parameters and pion characteristics in the presence of
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the Coulomb potential. In Section 5 we solve numerically the gap equation and Bethe-
-Salpeter equation for the pion, with the aid of the overrelaxed Gauss-Seidel algorithm,
and compute the chiral parameters. Section 6 contains discussion of the results and conclu-
sions. In the Appendix A we detail the Green function approach to the gap equation. In
the Appendix B we present a brief derivation of the homogeneous Bethe-Salpeter equation
from the general inhomogeneous one. The expression for the pion charge radius is given
in the Appendix C.

2. Review of the model — the gap equation

Let us discuss the two equivalent derivations of the gap equation. In the first one [6],
this equation results from the minimalization condition imposed on the energy of the trial
Bogoliubov-Valatin state. This method displays close relation between our model and BCS
theory. The second approach [9], via the Green function method, allows us to derive
correctly renormalized gap equation starting form the Schwinger-Dyson equation for the
quark selfenergy (k).

1.1. The Bogoliubov-Valatin transformation

The effective Hamiltonian, introduced first in Ref. [6], for massless quark fields interact-
ing through the fourth component of instantaneous Lorentz vector potential, reads

e e =g N S e A
H = Y(x)(—a- Vp(x)+3 V(x—y) “sv(X)—i-w(x) w(y)*z-w(y))

x x,y.8

+Z-D L ¥IE (—a- V(D). @1

The discretization is introduced in order to regularize the singularities, which emerge in
further steps. Final expressions are derived in the continuum limit. a, A, B =1,.8 are
Dirac and Gell-Mann matrices correspondingly, w(x) is the coloured, single flavour,
massless quark field. The generalization to the case of two flavours is straightforward. We
expand this field in the massless, free spinor basis v°, u°

-, 1 - - - P Prdiied
¥u(X) = —373 E [u)boK) + vg(k)dat (= K)]e™ =, (2.2)
Ks '

where b&(l?) and dfa(ic') denote the annihilation operators for a massless quark and anti-
quark with colour index a, helicity s and momentum k. The potential V(%) is equal to?

73 = - (ar— 5), 2.3)

r

! The minus sign ensures attractive force between the gq in a colour-singlet state.
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where 7 = |x|. The last expression in Hamiltonian (2.1) is a counter-term, necessary to
obtain finite results [7].

Analogously to the BCS description of the superconductivity, the vacuum in the
model is approximated by a coherent superposition of the colour singlet qq pairs

12 = %H(l—stﬁ(k)b"*(k)d (=K 10y, (24

where N = [] V1 + p*(k) denotes the normalization factor, and 7 is the volume element
K.s.a

in the momentum space. This non-perturbative state {Q2) is chirally asymmetric unless

B = 0 — in this case |Q2)> reduces to the chirally symmetric, perturbative vacuum [0).

The momentum space wave function of a quark-antiquark pair f(k) is determined by the

gap equation

KQHIQ)
oBR)
Similarly to the theory of superconductivity, it is convenient to calculate the matrix

element & = (Q|H|Q> with the aid of the Bogoliubov-Valatin (B-V) transformation.
To this end, one introduces the linear combinations (for each colour)

(2.5

by(k) = cos Pk )b"(k)-;- Hk )d°’f( b,
sdy(k) = ~—sm(£(—) oK) +s ¢ 4’( )d°( k),
iy = 05 X 3@y +55in B2 50,
v (k) = cos 4’(—) 00(k) —s sin ‘?l(—) u(k). (2.6)

One can show, that the state |2, given by (2.4), constitutes the vacuum for the new creation
and annihilation operators b, d, bt, d¥, provided that

¢(k) ﬁ(k) and cos (E(~k—) = L 2.7

ERRTT) 2 JIHF®
it follows by direct computation that the quasiparticle operators satisfy the Fermi-Dirac
statistic. The B-V transformation consists of expressing the quark field and the Hamiltonian
in terms of the new spinor basis u, v

PoX) = Z [ (R)bouR) + (RN L~ )] 7. (2.3
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Now, the matrix element can be easily calculated with the aid of the Wick’s theorem. It
allows us to rewrite the Hamiltonian in the following form?

H =&+ :H,:+:H,:, 2.9)
with

& =32 z Tr [(@ - k)A-(R)]+ (71:—) z LV(E—p) Tr [4.(R)A_()],
R

7

1 & - - - - - R nd
Hy=%— Z VGE=5) [¥) (4., (R~ 4_RypGyle™

n
XK
+Z 3y (—id - V),
1 e -r"}“'g" f"}'ﬁ”
H, = V- (x)z w(x) || v (y)~2- v() |- (2.10)
.8

Ai(lz) denote the projection operators (contractions) and are defined (k = E/[EI) by

b |~ - P
YWD = 3 [4: (0] 7,
k

ey, o 7 —ik- (=)
YY) = L [A-®)]ape™™ 7,
k

to give
A4 (F) = L (14 B sin p(k)+4 - k cos ¢(k)). (2.11)

V(ié) is the Fourier transform of the potential

V() = a3 V@ = vk + Vi), (2.12)
with [7]

VB =% and W) = 2% (2.13)

= —QZ—= - an ¢ == . .
T ® (®’

Inserting Egs. (2.9)-(2.11) into Eq. (2.5) gives the nonlinear integral gap equation
k sin ¢(k) = (1 —Z)k sin ¢(k)

a - pa
+2 f (Zn;; V(3—F) (sin ¢(p) cos (k) —kp sin $(k) cos $(p)), @.14)

2 The normal ordering in this model was studied in papers [7, 16].
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where in the continuum limit

: ST SN )
a Z-»jd % (an)3Z J G (2.15)

However, the Coulomb potential in Eq. (2.13) introduces logarithmic divergences unless
the appropriate renormalization is performed. The ultraviolet singularity can be eliminated
with the aid of the momentum independent renormalization constant

_ 1, dp . .
Z—-1=-— ?-4(-2—753 V.(p-k)kp. (2.16)

Performing the integrations over angles, after inserting the Eq. (2.16) into (2.14), we arrive
at the ultraviolet finite, one-dimensional equation

k sin ¢(k) (2.17)

2 o
=3, fdp(l %(k, p) sin ¢(p) cos ¢(k)—I7(k, p) sin (k) cos ¢(p))
0

+ 52; jdp (Ii(k p) sin ¢(p) cos P(k)+2I5(k, p) sin (k) sin® ¢(p)) ’
0

where
1
2 . . 4op?
Ik, p) = 4 f dkpyik—p) = (k—ﬁ—’i—z)—
-1
2 : k
k?
150 = —% fd(kﬁ)kﬁVL(k p) = Z: I5(k, p)— 108 §+ kl )
1
p2
2(k, p) = ™ J d(kpyV(k—p) = — — |
n
2+p2
Ik, p) = — J. d(kp)kpV(k—p) = 2kp 13(k, )— - (2.18)

The infrared (p = k) finiteness of the Coulomb part in Eq. (2.17) is obvious. It is readily
seen from the Eq. (2.18), that the Coulomb contribution is integrable. On the other hand,
the infrared finiteness of the linear potential term was discussed in Ref. [7]. It is ensured by
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using the colourless trial states. As a consequence one can add an arbitrary constant to the
potential without changing the results. The contribution from constant potential vanishes
between colour singlets, since it is proportional to the Casimir operator of the colour
symmetry group.

2.2. The Green function approach

Let us now discuss an alternative derivation of the gap equation, namely from the
renormalized Schwinger-Dyson equation for the quark propagator [6]. This approach
allows us to see more clearly the approximations which lead to the gap equation. To this
end, we make the nonrelativistic ansatz for the quark self-energy

Z(ky = k| ACK]) +k - 7BIKD). (2.19)
Scalar functions A(IE;), B(iE{) are determined by the equation (see Appendix A)
T T.> 1 3 T 003,00
I(k) =(Z—-Dk-y+ P d°pV(k—p)y S (P, (2.20)

where S®)X(p) is the quark propagator (S*) integrated over p° (p = |p|)

sogy < (40 i _ pA®)-Be)+ 1
2n p°y°—py—Z(p) 20(p) ’
with
w(p) = p VA (P)+(B(p)+1)% (2.21)

From the definition of the equal time quark propagator

d4 - =) N T
J‘ (27:)’4 @@, )™ 7 = <21} [9a(3), v ()] 12 (2.222)

and with the aid of Eq. (2.11), we obtain the following relations
PA(p) = o(p) sin ¢(p),
C(p) = p(B(p)+1) = «(p) cos ¢(p). (2.23)

Now, it is easy to observe that the solution of the equation (2.20) is known once the solu-
tion of the equation (2.14) is found. Taking appropriate traces from Eq. (2.20) we obtain
the following expressions

2 d3p - > .
kA(k) = 5 J(_Z_n—)s V(p— k) sin ¢(p),

d*p
@ny°

kB(k) = (Z-1)k—-% J V(p—-E)kp cos ¢(p). (2.24)
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Multiplying the first one by 1+ B(k), the second by A(k) and then subtracting the second
equation from the first one we arrive at the Eq. (2.14). Also the quasi-particle energy w(k)
can be written in terms of ¢(k). Inserting Eq. (2.23) into (2.24) gives
kA(k) d*p _ . . sind(p)
(k) = - =% s V(—k)——=.
sin ¢(k) (2n) sin (k)
By means of the gap equation (2.14) this formula can be converted into the form

(2.25)

3
o(k) = kcos (k) +% Jé;gs Vi(p—k) (sin ¢(p) sin ¢(k)+kp cos ¢(p) cos $(k))

Pp ..
¥ f (2_1;% Ve(p—K) (sin ¢(p) sin $(k)+kplcos ¢(p)— 1) cos ¢(k)).  (2:26)

Hence, the addition of the Coulomb potential gives finite contribution to the total quasi-
-particle energy, due to the ultraviolet counter-term added to the kinetic part of the Hamilto-
nian Eq. (2.1). However, the linear potential term is singular (confining potential), reflecting
the unphysical character of w(k). From the Eq. (2.25) we can see that the excitation energy
o(k)y-w(0), which is, in turn, a physical observable, is infrared finite. Since we are going
to use the quantity w;(k)~«(0) in further calculation we regularize the infinity, by introducing
a small cutoff 1 around the singular point p = k, and taking the 2 — O limit at the end.

Finally, let us comment on the Lorentz vector character of the potential (2.12). This
vector character is forced by the chiral symmetry. However, from the experiment we know
that the confining quark interaction is predominately Lorentz scalar [18]. Presence of such
scalar term in the Hamiltonian would manifestly break the chiral symmetry. A solution
of this paradox could be found in the dynamics of the chiral symmetry breaking. An effective
Lorentz scalar (mass) term appears already on the one-particle Hamiltonian (H,) level.
Using the gap equation and Eq. (2.10) H, can be rewritten in the form

H, = 3 HE) (0LK)be(R) +db(~ B)d o~ K)), 2.27)
k,s,a
where
H(k) = w(k) (sin ¢(k)+cos p(k)ak), (2.28)

with «w(k) is given by Eq. (2.26). Presence of the mass (scalar) term formally reflects the
nontrivial (8(k) # 0) structure of the vacuum |Q).

3. The Bethe-Salpeter equation — the pion properties

A pion, as a bound state 0— of the massless quark and antiquark is described by the
homogeneous Bethe-Salpeter equation [25] (this equation is discussed in the Appendix Band
illustrated in Fig. 5b)

4

d . -
PP, p)= —i}% J. (2;)14 V(p—-)y°SU(P + )PP, )SD(P - q)°, (3.1)
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with quark propagator defined by Eq. (2.22a). 2(P, p) is the pion vertex part defined as
follows
4

d’x —
gaﬁ(P’ p) = J‘Ein_)i e‘Px+'px<QiT[Wa(X+x)y)ﬁ(X —X)] lH>’ (3'2)
where 2P is the total momentum of the bound state {IT) (see App. A), p is the relative
quark momentum and X, x are their conjugate coordinates respectively. The bound state
amplitude (P, p) fulfils the following parity (—) and charge conjugation (4-) constraints

P(P, p) = ~y°* P(P, pyy° and (P, p) = +CP(P, —p)C. (3.3)

C is the charge conjugation matrix. The operator denoted by ~ transforins a four-vector
(#° p) into (p°, —p).

It has been shown [6, 7] that the chirally nonsymmetric solution of the gap equation
can be used to construct the massless pseudoscalar solution of the Eq. (3.1), with P = 0.
This can be achieved by performing an infinitesimal chiral rotation applied to the equation
(2.20). Let us define (for simplicity we suppress the izospin matrices)

Po(i) = — - < (@I = pAGN. 34
2 du 2=0

Performing the same operation on the both sides of the gap equation (2.20) we obtain just
the bound state equation (3.1), with @4(p) = P(P = 0, |p|, p) obeying the conditions
(3.3). It means that spontaneous breaking of the chiral symmetry implies the existence
of the Goldstone pion. However, the normalization of the solution 2, cannot be computed,
because in this momentum region (pion at rest) the matrix element (II|TT> ~ E(I-5) = 0,
as the pion is massless — E(P) is the pion energy. In order to calculate the normalization
we have to know the wave function for moving pion [7], or for the static one with a small
mass (u, # 0) [6]. In this paper we consider the second alternative.

The finite mass of a pion is caused by non-zero mass of current quarks, which explic-
itly breaks the chiral symmetry. Therefore, we introduce massive quarks to our model,
and at the end take the chiral limit. The propagator of a massive quark takes the following
form

i

S(‘)(p) —_ = - s
P>’ —py—2(p)—m

3.5)

where 3(p) is given by the Eq. (2.19), with the functions 4 and B depending on the quark
mass. Now, the pion rest frame is well defined and the general form for the J*¢ = 0+
vertex function, for P = 0, is the following

P, D) = P01 + 101" Pa(0)+7°7° 7P Pr(p)), (3.6)

where the functions 2 (Z, = 2,y%), £, and P; are determined by the Eq. (3.7). Other
terms in Eq. (3.6) are forbidden, because of the Lorentz invariance and Egs. (3.3). Sub-
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stituting the expression (3.6) for £ into Eq. (3.1), performing appropriate traces, integra-
tion over g° and then taking the chiral limit one finds

- @4(p) = pA(p)

PA(p) = 2 dskv*l‘c' k)g(k
A(p)—sfm (p—k) sin ¢(k)g(k),

a3k ..
pP(p) = % jén_f V(p—kJkp cos ¢(k)g(k), 3.1
where g(p) is defined as follows

8(p) = [2,(p)+2p(A(p) 2 A(p)+ C(p)p P+(p))]/0*(p), (3.8)

with w(p) given by Eq. (2.26) and 4(p) and C(p) by the gap equation (2.20). The function
g(p), in turn, is determined by the following integral equation

Pk . .
g(p)ax(p) = sin ¢(p)+% f oy V(p—k) (sin ¢(p) sin ¢(k)

+kp cos ¢(p) cos ¢(k))g(k), (3.9
using the formula, Eq. (2.26), for w(p) we obtain the following infrared finite equation

8(p)p cos ¢(p) = sin ¢(p)
+ 3727—; J‘dkkz((fz‘(P, k) sin ¢(p) sin (k) + I%(p, k) cos (p) cos $(k)
0

+13(p, k) sin ¢(p) sin ¢(k) +I5(p, k) cos ¢(p) cos $(k)) (g(k) - &(p))
+13(p, k) cos ¢(p)2(p)), (3.10)

which is then solved numerically. The solution g(p) contains all the information about
the bound state. In particular, the pion decay constant is related to the normalization
of the pion vertex function 2. It is shown in Appendix C that

@O

3 1/2
N=- [—— J' dkk? sin ¢(k)g(k)] . 3.11)

272

It is convenient to choose the normalization factor negative. Substituting the expression
for the axial vector current A3(x) p(x)y,y* ¥(x) into the definition of the pion decay constant
(Q\Ai(O)ll'I) = ~if,P, and making use of the Eq. (3.2) we have

f.=—N. (3.12)
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The calculation of the pion charge radius is more complicated. It is obtained following
Ref. [6]

F (49

(re> =6 ,
an g2=0

(3.13)

where F,(g?) is the pion electromagnetic formfactor defined by <Z(P)|J:™(0)|Z(P"))
= iQ(P,+ P,)F,(q*). Q is the pion charge and J;“"'(x) is the electromagnetic current. Using
this definition, the pion formfactor can be expressed in terms of the quark propagator
and the pion vertex

N, 1 [ d*%
N?* E J(@2n)*

FAd) = Tr [SK°+1 E, B)P(E, k+3 )SPK° -1 E, k+1 q)y°

xSk -1 E k-1 ) P(~E, k-1 9] (3.14)

Inserting Eq. (3.14) into Eq. (3.13) we obtain after straightforward but tedious calcula-
tions (N, = 3)

1 dk
2
D= - = | 5o, :
e Y j (zn)zf( ) (3.15)
0
where the function f(k) is derived in Appendix C.

4. Restoration of the chiral symmetry

The chiral symmetry is expected to be restored at large temperature and density.
Since QCD is much too complicated theory to resolve this problem several models have
been developed [10, 22]. The present model has also been applied to describe the transition
from the low energy broken symmetry phase to the chirally symmetric one — the quark-
-gluon plasma {11, 12, 13, 20]. In this Chapter we extend the analysis of Refs [12, 13]
by including the Coulomb interaction.

In this model nonzero baryonic density may be simply achieved [12, 13]. The whole
construction [13] is done in quasiparticle basis. The prototype of the nuclear matter is built
from colour singlet baryons containing three valence/constituent quarks, which fill Fermi
sea up to a given Fermi momentum K.

IB) = H 51—,(b:fm(E)b;‘,b<k>b:‘,c(k)eubc) 12, (4.1)

313283

ki<Kp
with 2> and bI,(E) defined by (2.4) and (2.6) respectively. We did not have to introduce
the chemical potential into the description since baryonic number is a constant of motion
and we work at zero temperature. This construction of the baryonic background has the
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good feature that the state |B) automatically represents the sector in Hilbert space with
a finite baryonic number density because [13]

O K%

s = 3 62’ 4.2)

where o, = 2 (spin) x N, (flavour) x N, (colour) and equals six (twelve) for one (two)
flavour (s). This relation (4.2) is very useful because this allows us to directly see the influence
of gp on the chiral symmetry breaking. From the Eq. (4.1) and the definition of the state
|2) we see that the introduction of baryons causes the suppression of the qq pairs momen-
tum modes below Kg. It occurs due to the Pauli blocking. Introduction of a quark with
momentum k& destroys the pair with this momentum in the vacuum state |Q) 3 since

(k)( Al —5T§ ¢( )b°*(k)d°’f( k)) 0>

= (cos ¢_a(2_k) b(k) +s sin ¢—(—) do(— k))

X (cosﬂzli) —stsin 4’(2) O K)dSH(— E)) 10> = b2(K) 10D. (4.3)

Hence, the baryonic background changes the gap equation and the equation for the pion
vertex in the following way

o0

ksin ¢(k) = — f dp(I5(k, p) sin ¢(p) cos ¢(k)—Ii(k, p) sin $(k) cos ¢(p))

KF

+ ész J dp ( $(k, p) sin $(p) cos Pp(k)+2I(k, p) sin (k) sin® ‘?12”—)) , (4.4)
Kp

and

g(k)k cos ¢(k) = sin ¢(k)
+ = Jdpp ((I5(k, p) sin ¢(k) sin ¢(p)+I7(k, p) cos P(k) cos $(p)

+15(k, p) sin $(k) sin ¢(p)+1i(k, p) cos ¢(k) cos ¢(p)) (8(p) - g(k))
+Ii(k, p) cos ¢(k)g(k))- (4.5

3 For a more detailed analysis see Ref, [13].
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The suppression of the small momenta in the integration over p in Egs. (4.4), (4.5) can also
be demonstrated from the Green function analysis. This was done in Ref. [12]. The suppres-
sion does not damage the infrared and ultraviolet finiteness of the gap equation and the
pion vertex equation, as the Coulomb potential appears here in the same way as in the
Egs. (2.17), (3.10).

Equations (4.4) and (4.5) allow us to see the effect of the Coulomb potential on the
chiral parameters with nonzero baryonic number density, which is discussed in the follow-
ing section.

5. Numerical solutions

Now, before the numerical results are shown, let us briefly summarize the overrelaxed
Gauss-Seidel algorithm, which is used to solve the gap equation and the Bethe-Salpeter
equation for a pion. A detailed description of the method is presented in Ref. [14].

5.1. Gauss-Seidel algorithm

In order to solve numerically the gap equation

@

2
k sin ¢(k) = — Jdp(l (k, p) sin ¢(p) cos ¢(k)—Ii(k, p) sin (k) cos ¢(p))

0

+ 527; f dp <I§(k, p) sin ¢(p) cos ¢(k)+2I5(k, p) sin p(k) sin o )> , (D

with functions If; 2k, p), IG ,2)(k,) given by Eq. (2.18), it is convenient to replace the
continuum variables k, p in the following way: k; = 2di and p; = 2di—d, i=1, ..., N,
where 2d is the distance between neighboring points. After discretization we rewrite the
Eq. (5.1) in the form

C, sin ¢(k;)+ C, sin ¢(k;) cos ¢(k;)+ C; cos ¢(k;) = 0, (5.2
for i = 1,..., N. The coefficients C(y,, 3, depend on ¢(p;) in the following way
N
2
C, = o Z 2d (—Ilf(ki, py) cos ¢(p)+2I5(k;, p;) sin’ ¢(2p,)> -k, (53a)
j=12
ki—A
2
C2 =5 j dpp*(I3(ki, ) —Ii(ky, p), (5.3b)
ki—4
N
2 .
Cy = 2d(I5(k;, pj)+15(k;, py)) sin $(py)- (5.30)
3n

j=12
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The second term in Eq. (5.2) arises from the p-integration over a small neighborhood of
k; — say, over range {k;— A, k;+A}, where A < d. This singles out the infrared singularity
atp = k from C,, 3, which occurs due to the presence of the linear potential. Both singular
terms in C; and C; cancel at that point producing finite limit. The integration over p in
Eq. (5.1) is replaced by the sum X;, where the index A implies omission of the terms from
integral (5.3b).

The Gauss-Seidel iteration consists of the successive replacement of each mode ¢(k,)
by ¢°%(k;), which solves the Eq. (5.2), as a function of a single variable ¢(k;), with other
variables ¢(k; ;) held fixed. An initial guess ¢°(k), obeying suitable boundary conditions,
has to be supplied as an input to the algorithm. Boundary conditions can be derived from
the integral equation (5.1). After setting k = 0, the gap equation reduces to cos ¢(0) = O,
which gives

T
¢0) = o 5.9
Expanding the r.h.s. of Eq. (5.1) gives the large-k behaviour of the gap function ¢(k)
V(k
¢k » ) ~ -—fc—z , (5.5)
which yields, with the aid of Eq. (2.13)
b
¢(k — ) > =L (5.6)
1.0 T T T T T T T T T T T T Vj
Rlp) §
0.8 | ]
H -
X = 0.0
06 |- — 5
3 oy =04
oy =08
0/. - et —
o, =10
i P
0.2} yd
WOy 015 I 10 s

Fig. 1. The function (k) = tan 6

for several values of ¢,
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for the Coulomb potential. The Eqgs. (5.2) for ¢(k,) are solved using Newton iterations.
It is more efficient to update the function ¢(k;) in the following way

P(ky) = ¢"*(ky) = % (k;)+(1 - w)d(ky), (5.7

where  is the relaxation parameter, which can be determined for a coarse mesh (say,
40 points). In our case wo = 1.93. The introduction of the relaxation parameter yields
(about seven times) more efficient algorithm. This allows for the faster convergence, after
passing to larger lattices.

After several iterations with @ = 1 and many iterations (about two hundred sweeps)
with = w, we obtain the solution for ¢(k), which is depicted in Fig. 1 for some values
of a,. In the case of the linear potential (¢, = 0) the momentum space wave function behaves
like 1/k5 for large k (see Eq. (5.5)). After the introduction of the Coulomb potential the
large-k asymptotic behaviour is replaced by (5.6), which will be important in the next
chapter.

5.2. Chiral parameters

At first, let us calculate the dynamical quark mass m*. It is related to the small mo-
mentum behaviour of the gap function

n
(k) ~ 5l ~ak. (5.8)
Expanding the A+(E) near k = 0 gives

A, &) = (1 +p+aak). (5.9)
Comparing the expression (5.9) with the massive particle propagator

1 - -
%<1+ﬁ+ —-—*-ak), (5.10)
m
we obtain
1 d¢d
* o = — | — . .
" a (dk )k=0 (5-11)

The calculation of the quark condensate was presented in Ref. [21]. As (Qjpyp|Q)
is logarithmically divergent the quark condensate needs renormalization. To this end,
we renormalize the wave function y — y//Z, where Z is given by Eq. (2.16) and then,
after introduction a temporary ultraviolet momentum cutoff 4 we compute the quark
condensate using the definitions (2.4) and (2.8)

- 1 -
{uu) = 7 {Qlypyl, (5.12)
then, taking the A4 — o0 we obtain
- 27 b
up) = - — — (5.13)

87 o’
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Fig. 4. The pion charge radius plotted versus Ky for some values of &;, as obtained from Egs. (3.15) and (C5)

TABLE

The quark condensate <uu), dynamical quark mass m*, density of quark pairs ¢ (see Eq. (5.12)), energy
gap AE (see Eq. (5.11)), the pion decay constant f and the pion charge radius for some values of @;. At the
bottom we quote the experimental values taken from indicated references

A Cun) (MeV?) m* (MeV) AE (MeVY) g (MeV?) Jr (MeV) ry (fin)
0.0 -(95)3 70 —(88)* 41)? , 11 1.03

0.4 —(150)% 95 —(97)* (49)° | 14 0.87

0.8 —(210)® 120 —(115)* (65)3 19 0.64

1.0 —(260)3 170 —(136)* (81) 24 0.49
exp. —(225)® [15] 300 {15] —(140)* {17) —_ 93 [1] 0.68 [24]

where b is defined in Eq. (5.6). Applying the Eqs (5.11), (5.13) we calculated <{uu) and m*
for some values of «, — see Table I. The string tension was taken to be /o = 350 MeV.

The energy difference between the chirally symmetric and broken phases and the density
of quark-antiquark pairs in the vacuum state can be calculated form the following formulas

d’k 1— k
AE = 81409 = 01-810] = 2% [ 5 @0 -0) =54, 510
a d*k 1—cos ¢(k)
0= 2NN, | s ——5 (5.15)

where w°(k) is given by Eq. (2.26) with ¢(k) = 0 and the vacuum energy &[¢(k)] follows
from Eq. (2.10). AE and ¢ are shown in Table I. Once the solution of the gap equation
¢(k) is known it is easy to find the pion vertex g(k) solving Eq. (3.10) by means of the same
algorithm. Though ¢(k,) is the input function in the equation for pion vertex, the numerical
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errors are small and do not infiuence the accuracy of the solution for the pion wave func-
tion g(k,) very much. With the aid of equations (3.12) and (3.14) we can obtain the values
of the pion decay constant and the pion radius. The results are presented also in Table I. The
influence of the baryonic number density on quark condensate in the presence of
the Coulomb potential is illustrated in Fig. 2. The K dependence of the pion decay constant
and the pion radius is depicted in Fig. 3 and Fig. 4 respectively.

6. Discussion

From the results presented in Section V it is evident that the introduction of the
Coulomb potential makes the model more realistic. This confirms the earlier expectations
[7, 9, 12]. The common improvement in all parameters listed in Table I can be clearly under-
stood. Frem the formula for potential (2.13), it follows that the addition of the Coulomb
field to the linear one effectively makes the string tension larger at small distances (both
interactions in Eq. (2.13) have the same sign). The increase of the string tension produces
more physical chiral parameters. Better description of the chiral symmetry breaking results
from the high momentum components in the potential. Hence, this effect is due to the contri-
bution from small Cooper pairs — we see from Fig. 1 that the condensate of quark-anti-
quark pairs becomes more dense after introduction of the Coulomb potential.

The quark condensate, the energy shift between the chiral symmetric and broken phases
AE (the latter we compare with the bag constant B = (140 MeV)?* [17]) and the pion radius
are rather in agreement with the experiment. However, the pion decay constant f, and the
constituent quark mass are still too small. Similar results have been obtained by other
authors [6, 7, 20]. In the most recent study of the problem by Alkofer and Amundsen [20]
the chiral parameters are calculated for the temperature dependent Richardson potential

) a(q, T) ith (@ T) 127
= - . w1 alqg, == .
1 e 7 (1IN, —2Np) In (1 +aT? +¢*/4%)

The potential reduces (for T = 0) to the linear one for smail g2 and to the Coulomb potential
for large momentum. This approach is complementary to our in two respects. First, the
authors of Ref. [20] are probing different kind of potential. The quark interaction is only
known for large momentum — relevant for charmonium physics. Therefore, it is important
to see how much the chiral parameters are sensitive to the shape of potential for small
momentum. Secondly, they analyze the chiral symmetry breaking at finite temperature.
Solving the gap equation and the equation for the pion vertex renormalized in the way
suggested by Adler and Davis [9] they obtain the T-dependence of the quark mass m* and
the pion decay constant f,. The calculations were carried out at zero baryonic density.
Therefore, we can compare them with our results only in the limit T = 0 and Kp = 0.
In Ref. [20] the experimental value of the quark mass m* = 300 MeV is used to fix the
only (at T = 0) parameter A in the Richardson potential. After solving the equation for
g(k) they have obtained pion decay constant f, = 58 MeV — also considerably lower
than the experimental one. Furthermore, for the same value A = 1800 MeV they find
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AE = (300 MeV)*and ¢ = (230 MeV)3. In order to have better comparison with Ref. [20],
we have solved the equation for the pion vertex g(k), with ¢(k) reproducing the experimental
value m* = 300 MeV and found similar pion decay constant f, = 47 MeV and
AE = (370 MeV)*, ¢ = (180 MeV)3, This comparison implies that the chiral parameters
do not depend strongly on the kind of potential utilized. The results also suggest that the
small value of £, from Table I is not only due to the incorrect shape of the gap function ¢(k).

The discrepancies in the pion decay constant f, and the constituent quark mass may
result from the lack of the transverse gluons and retardation effects, which are difficult
to study [18]. The situation is similar to that in superconductivity. Not only the Coulomb
potential is required besides the long range BCS interaction, but the retardation effects
are needed to obtain a quantitative agreement with the experiment for a number of super-
conductors {19].

The influence of the Coulomb potential on the values of chiral parameters in the
presence of the baryonic background, is illustrated in Figs. 2, 3, 4. The Ky (hence the
baryon density) dependence of the parameters depicted in these figures can be understood
from the formula (4.1). As discussed in Section 4 the introduction of a quark with mo-
mentum k destroys the pair in |{Q) with quark internal momentum k (Pauli blocking).
Hence the role of the large momentum components is enhanced accordingly. In the large
momentum limit the kinetic energy dominates over the self-energy. Therefore, the instabil-
ity condition (see introduction) suggests that the chiral symmetry should be restored for
some Ky = K. This is confirmed by the numerical calculation. From Fig. 2 we see that
for a, = 0 we have K§ = 46 MeV, with V, = 350 MeV. This result was obtained in
Ref. [12, 13]. With the Coulomb potential K§ is shifted to the value 100 MeV
(or g§ = (60 MeV)?), for a, = 1. The recovery of the chiral symmetry in this model,
supports the lattice and the mean field calculations {10]. However, resulting critical value
for Fermi momentum is still smaller then the generally expected K§.,, = 450 MeV (or
08 = (270 MeV)®) [22]. Is not clear whether the instantaneous interaction or the simple
way of achieving the nonzero baryonic number density is the reason for the discrepancy.
Another possible origin of the trouble would come from the vector character of the con-
fining potential which, as data shows, is predominatly Lorentz scalar [18]. Unfortunately,
a Lorentz scalar instantaneous potential would explicitly break the chiral symmetry. For
this reason it is not present in the original Hamiltonian. However, an effective Lorentz
scalar term (which is also needed in the spectroscopy) could originate from dynamics of the
chiral symmetry breaking. In fact this happens in our approach on the level of the one
particle Hamiltonian — see Eq. (2.28). The detailed study of the problem is now in progress.

From Fig. 2 we conclude that the restoration of the chiral symmetry occurs through
the second order phase transition., This observation seems to be in disagreement with
Ref. [13], where the first order phase transition has been reported. However, in the approach
of Ref. [13], we have performed the linearized approximation in ¢(k). Hence, the discrep-
ancy is the result of this approximation. It would be interesting to observe, how other
approximations, which are performed there, influence the order of the phase transition.
Our prediction concerning the order of the chiral phase transition is in contrast to the earlier
lattice calculation [10], where the first order phase transition was found (for SU(3) gauge
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theory at zero temperature). However, the introduction of baryons on a lattice encounters
many difficulties [27], and the result is still rather preliminary.

Another interesting result, which confirms our intuitive understanding of the chiral
symmetry breaking in QCD, is shown in Fig. 4. After increasing baryonic number density
the pion radius increases, to become infinite for Kz = K§. Thus the recovery of the chiral
symmetry is associated with the vanishing of the pion, as expected for the Goldstone boson.
The Coulomb potential shifts the value of the critical momentum K§.

The Kp-behaviour of pion radius also supports the general hypothesis, that the size
of a quark bound state (e.g. nucleon) becomes larger after immersing it into the baryonic
environment. This postulate was used phenomenologically to explain the EMC effect [23].
Now, it is possible to make this connection more quantitative.

In conclusion, the present model seems to give a satisfactory description of the chiral
symmetry in QCD. Most of the chiral parameters became more realistic after inclusion
of the Coulomb potential. However, further improvements are necessary. In particular,
it will be crucial to understand the significance of the time dependence in the model. Though
the problem is very complicated, the analogy to the superconductivity model seems to be
promising.

The author would like to thank Prof. A. Bialas for introducing me to the model and
dr. J. Wosiek for many stimulating discussions. I also would like to thank Mr. W. Kubica,
University of Rochester NY, USA and A. von Humbold Fundation, W. Germany, for
the computer assistance which made this publication possible.

APPENDIX A
The renormalized gap equation in the Coulomb gauge

Analogously to the theory of superconductivity, the gap equation follows from the
Schwinger-Dyson equations for the quark propagator and the quark-gluon vertex part [9].
This derivation allows us to perform correct renormalization and see clearly which approxi-
mation leads to our equation (2.20). The renormalized vertex equations for vector (I',) and
axial-vector (I'}) vertices, after omission of the fermion annihilation diagrams, are

d*q
@2n)*

X Kopyo(p+4, p'+4, 9), (Ala)

d*q
(2m)*
X Kaﬂ,yd(p"' 9, P' + q, q)’ (Alb)

where K(p+q, p'+4, q) is the quark-antiquark Bethe-Salpeter kernel. In ladder approxima-
tion, which is imposed here after theory of heavy quarks bound states [26], one sets

Kupoo(p+a, p'+4, @) = —iy% 3 V(@)75s. (A2)

I (p, s, = (Z1)sy+ j [S90 + I (0’ +4, p+@)iSP P+ )]s,

3, Psy = (Zy,7%)sy+ j [iS®(p' + @Iy (p’' +4, p+DiS“(p+a)]s.
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Using the Ward identities
(' —pI'Tup’s p) = S (p)~ 597",
@' =pYTip, p) = ¥’SO7H(p)+ SO H(p')? (A3)
we obtain from Eq. (Ala, b)
d’q
@n’

(' —p)'T P, p) = (Zv,) (p'—p)*~ f 3 V@' liS“(p’ +9)

x[SDY(p' +9)—SP ' (p+9))iSP(p + 1y°

, d*q . -+ . )
= (Zy)p" - j(zn)‘* i % V(@iS(p’ +4)y°
’ d4q . P . ’ - - ’
—(Zy)p'"+ J 2 i£V@liSP0p +qp° = SPT(p)-SPTI(p). (Ad)

Similar equation to Eq. (A4) can be derived from the second formula of Eq. (A3). As the
p, p'~dependences in (A4) separate we have

d4q . 4 N0 (47 (4
o i3 V(gnis(p'+q)y". (A5)

(d)=1/  __ m_
S p) = (Zy)p j(z

The non-relativistic ansatz (4.1) for the self-energy yields
-, - - 1 - - -
Z() = Zo—Dp*y°+@Z—-Dp i+ — Jd3qV(p—q)v°S‘3’(q)v°, (A6)

where we have integrated out ¢° in the Eq. (A5). Since the Bethe-Salpeter kernel does not
depend on time, I'g can be easily determined. From Eq. (Ala) we see, by direct calculation,
that I'o(p, p') is equal to Zyy°. It follows from the asymptotic freedom that, in the large
momentum limit, the quark-gluon vertex is equal to y°. This condition sets Z;, = 1.
Substituting the value of Z, into Eq. (A6) gives Eq. (2.20) from Section 4.

APPENDIX B
The Bethe-Salpeter equation — normalization

In this section we present the derivation of the homogeneous Bethe-Salpeter equation
(BSE) (3.1), following Refs. [7, 25]. To this end, we start with the inhomogeneous BSE
for the four point Green function (G), which can be symbolically written (G, = 5,S55)

G = Go+G, KG, (B1)
where K is given by Eq. (A2). With the notation introduced in Fig. 5, Eq. (B1) reads

Go‘1¢z,¢3a’4(pl’ p2; P3’ P4) = S;T;;(pl)sfr:)a4(p2)
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P, P, P +d

a) le] - + x| Je]
P, P, P9
p1=P+-;—p P+q

. Tl - T
p,=P-3P P-q

Fig. 5. Graphical illustration of the Bethe-Salpeter equation, a) Eq. (Bl), b) Eq. (B4)

d*q - . .
-+ (21:)4 Ka'xa'z.a'scs(pla Das q)lS£‘:?,7(p1 + Q)lsz(rt)aa(Pz — q)

X G,r08.0504(P1 + 5 P2— 45 D3s Pa)- (B2)

Assuming existence of a bound state formed from the scattered particles we can rewrite
the two body propagator (around the pole) in the following way

& 0o pyi po, py = ZE DA D)
6102,6304\F 1> V2> V3> P4 ((ZP)Z—E%) ’

(B3)
where 2P = p, —p, and 2p = p, +p, are the center mass and relative momenta respec-
tively, E is the energy of the bound state. After inserting Eq. (B3) into Eq. (B2), recalling
the ladder approximation Eq. (A2) and changing variables we obtain the homogeneous
BSE for the bound state vertex part

d* -
PP, p)=—i% Iaﬁz V(p-)y°S(P~q) P(P, )SP(P+q)°, (B4)

with the quark propagator defined by Eq. (2.22a). Using the definition of the four point
Green function the bound state amplitude 2(P, p) can be related to the time ordered product
of the quark fields [25]
d*x, iP(x+y)+ip(x~y) i —
Pop(P, p) = @ ¢ PHREI ATy (x)Pp(»)] ITD. (B3)
To derive the normalization condition we rewrite BSE (B1) in the following form
G(G;*~K)G = G. (B6)

Comparing the residues at the pole P, and using the homogeneous BSE (B4) we arrive
at the equation (3.11). For more details see Ref. [7]. Another derivation of the normaliza-
tion factor N is presented in Appendix C.
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APPENDIX C
The pion charge radius

The pion charge radius is defined by [6]

2
=62 ()
where F(q?) is the pion electromagnetic formfactor
CII(P)| J™(0) ITI(P")) = iQ(P,+ PF (g°). (C2)
Q is the pion charge, and
JiP(x) = PO, p(x) (C3)

is the electromagnetic current. The pion formfactor, written in terms of the quark propaga-
tors and the pion vertex takes the form (3.13). F(¢g?) is normalized to F(0) = 1. This condi-
tion sets the normalization constant N2. On the other hand, expanding the integrand in
Eq. (3.13) for small g2, performing the trace and inserting the result into (C1) we obtain
(after taking the chiral limit and A — 0)

ro = Lz )zf( k), (C4)

where
f(k) = 2k*SG(k) sin ¢(k) (—sin ¢(k) (¢'(k))* +cos $(k)¢''(k))
k? cos p(k)¢'(k) [ — 12SG(k)SP(k)
—4k? sin ¢(k)SG'(k) +12SG(k) sin $(k) (cos P(k)CP(k)
+sin ¢(k)SP(k))+3SG(k) sin (k)]
+sin ¢(k) [4SG(k)AA(K) + 12k*SG'(k)SP(k) +2k*SG''(k) sin ¢(k)

+4SG(k) sin ¢(k) (—3 cos p(k)CC(k)
—3 sin ¢p(k)AA(k)+ CP*(k) - 9SP*(k))
—40SG(k) sin® ¢(k) (sin p(k)CP*(k)

—2SP(k) cos $(k)CP(k)—sin ¢(k)SP*(k))
+10SG(k)SP(k) + 3k*SG'(k) sin ¢(k)

—26SG(K) sin ¢(k) (cos $(k)CP(k)+sin $(k)SP(k))

~SG(k) sin ¢(k) (15— 12 sin? ¢(k))]
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+2CG(k) cos p(k)k*(—sin (k) (¢'(k))* +cos $(k)d''(k))
+k? cos ¢p(k)¢'(k) [ —4 cos (k) (K*CG'(k)—L CG(k))
—12 sin ¢(k)CG(k) (sin ¢(k)CP(k)— SP(k) cos $(K))+cos ¢p(K)CG(K)]

+sin (k) [—SCG(k)CC(kmk’ (C—i(-’i)) cos $(k)

+CG(K) (12 sin? ¢p(k)CC(k) +4 cos ¢(k)CP(k))
—16CG(K)CP(k) + 5(k*CG'(k) —% CG(k)) cos (k)
+32 sin $(k)CG(k) (sin $(k)CP(k)—SP(k) cos $(k))

+cos p(KYCG(k) (12 sin® $(k)— 11)] ) (C5)

with the functions
SG(k) = 7 sin ¢(k)g(k),
CG(k) = § cos ¢(k)g(k),

.3 sin (k)Y
SP(k) = k (——--k )

_ 3 fcos (92
CP(k) = k (———-—k )

YO
AA(k)_k( : )

s fcos ¢k’
CC(k)—k( p ),

where the first and the second derivative, with respect to k?, are denoted by ' and ", respec-
tively.

REFERENCES

[1] H. Pagels, Phys. Rep. 16C, 219 (1975).

2] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 (1961).

[31 M. E. Peskin, Chiral Symmetry and Chiral Symmetry Breaking, in Recent Advances in Field Theory
and Statistical Mechanics. Proceedings of Session XXXIX of the Universite de Grenoble Summer
School at Les Houches, J.-B. Zuber and R. Stora, eds. North-Holland, Amsterdam 1984; W. Weise,
Quarks, Chiral Symmetry and Dynamics of Nuclear Constituents, in Rev. Nucl. Phys. 1, 57 (1985).

[4] E. Dagotto, J. B. Kogut, Phys. Rev. Lett. 58, 299 (1987).

[5] K. D. Lane, Phys. Rev. D10, 2605 (1974); H. D. Politzer, Nucl. Phys. B117, 397 (1976); for recent



117

review see P. I. Fomin, V. A. Miransky, V. P. Gusynin, Y. A, Sitenko, Riv. Nuovo Cimento
5, 1 (1983).

{6} J. Finger, D, Horn, J. E. Mandula, Phys. Rev. D20, 3253 (1979); J. Finger, J. Weyers, J. E.
Mandula, Phys. Lett. 96B, 367 (1980); J. Govaerts, J. E. Mandula, Nucl. Phys. B199, 168 (1982);
J. R. Finger, J. E. Mandula, J. Weyers, Nucl. Phys. B237, 59 (1984).

[71eA. Amer, A.Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. Let?.50,87(1983); O. Pene,
Acta Phys. Pol. B14, 499 (1983); A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Lert.
134B, 249 (1984); Phys. Rev. D29, 1233 (1984); Phys. Rev. D31, 137 (1985).

{81 A. Casher, Phys. Leit. 83B, 395 (1979).

{91 S. L. Adler, A. C. Davis, Nucl. Phys. B244, 469 (1984).

{10] V. Shuryak, Phys. Rep. C115, 151 (1984); J. Kogut et al., Nucl. Phys. B225 [FS9], 93 (1983); P. H.
Damgaard, D. Hochberg, N. Kawamoto, Phys. Lett. 158B, 239 (1985); E. M. Iigenfritz,
J. Kripfganz, in Proceedings of the 22nd International Conference on. High Energy Fhysics, Leipzig
1984, edited by A. Meyer and E. Wieczorek, Akademie der Wissenschaften, Zeuthen, East Germany
1984, p. 57; C. P. van den Doel, Phys. Lert. 143B, 210 (1984).

[11] A. C. Davis, A. M. Matheson, Nucl. Phys. B246, 203 (1984).

[12] A. Kocic, Phys. Rev. D33, 1785 (1986).

[13] A. Trzupek, J. Wosiek, Phys. Rev. D33, 3753 (1986); A. Trzupek, Acta Phys. Pol. B18, 1141 (1987).

[14] S. L. Adler, T. Piram, Rev. Mod. Phys. 56, 1 (1984).

[15] J. Gasser, H. Leutwyler, Phys. Rep. 87C, 77 (1982).

[16] T. Jaroszewicz, Acta Phys. Pol. B15, 169 (1984).

[17} T. Barnes, Toronto preprint, UTPT-85-21.

{18] S. L. Adler, Prog. Theor. Phys. (Supplement) 86, 12 (1986).

[19] S. V. Vonsovsky, Yu. A. Izumov, E. Z. Kurmaev, Superconductivity of Transition Metals, Springer
Series in Solid State Sciences, vol. 27, 1982.

[20] R. Alkofer, P. A. Amundsen, Phys. Lett. B187, 395 (1987).

[21) A. Trzupek, Acta Phys. Pol. B19, 179 (1988).

[22] B. Muller, The Physics of the Quark-Gluon Plasma, Lecture Notes in Physics, vol. 225, 1985; L.
McLerran, Rev. Mod. Phys. 58, 1021 (1986).

[23] L. S. Celenza, A. Rosenthal, C. M. Shakin, Phys. Rev. Lett. 53, 89 (1984); Peng Huang-an,
Chao Wei-qing, Liu Lian-sou, Liu Feng, Hua-Zong, preprint, HZPP-84-8.

[24] S. Dubnicka, V. A. Meshcheryakov, J. Milko, J. Phys. G 7, 605 (1981).

[25] C. H. Llewellyn Smith, Amn. Phys. (NY) 53, 521 (1969).

[26] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, T. M. Yan, Phys. Rev. D21, 203 (1980).

[27] F. Karsch, QCD at Finite Temperature and Baryon Number Density, Illinois preprint, ILL-(TH)-85 4 75,
January 1986.



