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We obtain various explicit solutions to the interior Einstein-Maxwell field equations
corresponding to charged fluid spheres in the Einstein-Cartan theory. The physical 3-space
t = constant of the solution is spheroidal. The physical features of one of these solutions
are also discussed.

PACS numbers: 04.50.+h, 04.20.1b

1. Introduction

Following the work of Trautman (1972, 1973), the Einstein-Cartan equatlons with
different contexts have been studied by different authors.

Kuchowicz (1975) gave a detailed description of methods of deriving exact solutions
of spherical symmetry in the Einstein-Cartan theory (EC theory in brief) for a perfect
fluid with a classical description of spin. The predictions of the EC theory differ from those
of general relativity only for non-empty regions. Therefore besides cosmology, an important
application field for the EC theory is relativistic astrophysics dealing with neutron stars
with some alignment of spins of the constituent particles and under conditions when the
torsion may give sise to some observable effects. Prasanna (1975) and Singh and Yadav
(1978) have obtained some analytic solutions of the Einstein-Cartan field equations for
the interior of uncharged fluid spheres.

Nduka (1977) generalized Prasanna’s problem by considering a static charged fluid
sphere in the EC theory. He has found that the pressure is discontinuous at the boundary of
the fluid sphere. Some exact solutions of charged fluid sphere in the EC theory have also
been discussed by Singh and Yadav (1978). In this paper we obtain some new exact solu-
tions of charged fluid spheres in the EC theory in which the physical 3-space ¢ = constant
is spheroidal. Vaidya and Tikekar (1982) have discussed in great detail the spacetimes with
spheroidal physical 3-space. They have expressed the line element of such space-times
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in the form

2

ar 2\~
ds* = e¥di*— (1— -R—2>(1— —;—2—) dr® —r}(d6* +sin® 0d¢?), (1.1)

where v is a function of r only. Here R and g are constants, 4 < 1. The line element (1.1)
is regular at all points where r? < R?. We denote the coordinates as x! = r, x% = 0, x3
= @, x* = 1. When a = 0, the physical 3 space ¢ = constant is spherical.

2. The field equations

The Einstein-Cartan-Maxwell field equations are

Ri— 18R = —8nt, 2.1

Qi —850h— 810 = —8nS), (2.2)
=g FY,=4n =g J, (2.3)
Fra.n=20, 2.4)

where Q%, ti, S, Fy and J are respectively the torsion tensor, the canonical asymmetric

energy momentum tensor corresponding to charged perfect fluid, the spin tensor, the

electromagnetic field tensor and the current four vector. The rest of notation is standard.
It is well known that if we assume classical description of spin, we have

SZ = S,-jvk With S”U" = 0, (2.5)

where S;; is the antisymmetric tensor of the density of spin, v! are the components of the
flow vector of the fluid. For the line element (1.1) we have

v; =(0,0,0,¢". (2.6)

In the case of static spherical symmetry, the only non vanishing component of ¥ is S,3.
From (2.5) and (2.6) it is clear that the non-zero components of S}, are

S3: = —S3, = K(n), (2.7
where K is a function of r only. Hence from the equation (2.2) the surviving components
of Qj, are

0%, = —0%, = —8zK. 2.8)
The assumption of classical description of spin implies that ¢ = 7}, where 7} is the usual
energy momentum tensor of the charged perfect fluid given by
T;ci = (P+ Q)vivk_Pali_Fkan"‘Ttlf 5;;anan° (2'9)
Here P and g are respectively the pressure and the density of the fluid. The fluid has been
assumed to have null conductivity, so that
Ji= o'vi, (2.10)
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where o denotes the charge density. We now assume that the metric tensor g, is given
by (1.1). Since there is only a radial electric field, the only surviving component of Fy is F 4.
The Maxwell equations (2.3) and (2.4) lead to

e’ ar2 1/2 r2 -1/2 . ) ar2 1/2 r2 -1/2
F14 = ';2—(1"' F) (1-—- F) J‘47ZO'I‘ <1— ?) (1— F) dr (211)
0

and
1[d r? ar*\ ™12

where the function E%(r) is defined by
—F,F** = E*(r)/4; (2.13)

the function E(r) can be interpreted as the field intensity. It is easy to see that the quantity

. ar?\1/2 F2\ -2 ,
or) =4n |{1- e 11— = ordr 2.149)
0

represents the total charge contained within the sphere of radius r. If we define P and
¢ by the relations

P =P-27K% § = g—-2nK? (2.15)

the Einstein-Cartan-Maxwell equations (2.1) reduce to

- l—a 2 r? ar*\7*

= ., 1 r? ar*\™!
8nP+E? = (v +v'2- 7) (1— F) (1— Ff) .17

3 2 2\ -2
Sz = £ + 5 (1-a) (1_ ,;15__) (1- 3’_.) . 2.18)

Here and in what follows an overhead prim indicates differentiation with respect to r. The
equation (2.16), (2.17) and (2.18).constitute the general set of relevant equations.
The conservation laws give us the relation

L , B ., A4E’
P+—2'(P+Q)V—'8—1E—(E)+—r‘—

= —4nK(K'+KV'). (2.19)
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If we assume the usual equation of hydrostatic equilibrium

o , E*f ., 4E*
P +i(P+ov — —(EH+ —} =0 (2.20)
8n r
we get
K'+Kv' = 0. 2.21H)

The equation (2.21) can be easily integrated.
We have

K = Aje” (2.22)

where A, is a constant of integration.

In principle we have a completely determined system if an equation of state is specified.
However, as is well known, in practice the above general set of equations is formidable
to solve using a preassigned equation of state.

Therefore, we shall apply other methods to solve the above set of equations in the
next section.

3. The solutions of the field equations

We have three equations (2.16), (2.17) and (2.18) for four unknown functions P, g, v
and E2. Therefore, the choice of any one of them is at our disposal. In the Case I we shall
choose v and in the Cases II and III we shall choose E2.

Case 1
Let us make the simplifying mathematical assumption

2\1,2 2 \~1/2
v'z—ﬂ-} -2 (1-L) (3.1)
R R R

where f is an arbitrary constant. The solution of (3.1) can be expressed in the form

_ 1/2
v = p(—a)''? [—;— z <EI———1 —-zz)
a
_ 1/2
+ (%;) sin™* {(a{—J -}] A, (3.2)

r2
where 4 is a constant of integration and a is assumed to be negative. Also z2 = 1— TR

The equations (2.16), (2.17) and (2.18) determine E2, P and g as

2 2N\-2
2E? = %[ﬁz-{-a(a—l) (1— %2-) J (3.3)
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_ [, ar>\"?
8nP = ﬁ:‘[ﬁ +a(a-1)(1— F) ]

-1 2\ -1 2 2\ 1/2 2\ —1/2
Gl Y P WY SORNLAN R PR T (.4)
R R R R R
. (1-a) a r? ar*\7% g
8ng = Rz 3—-5-?2 1—? —-—2-1?". (35)

From (3.3) it is easy to see that E2 > 0 and when r = 0, EZ2 = 0. Thus the electric field
vanishes at the origin. This is a physically reasonable property of the solution.
With the aid of the result (2.12) we can find the charge density o. It is given by

1 [3E? a*(a—1)r? r?\!? ar*\"1?
47(0”—-"—'——"-—-—"—2—3 1—'—2— 1'——2 5
E{ r 6 ar R R
2R%[1- =
where E? is given by (3.3). Using the fact that a < 0 it is not hard to see that ¢ is positive.
We consider a situation where the spherical charged distribution extends to a finite
radius b < R. The appropriate boundary conditions are (Singh and Yadav 1978):
(i) The pressure P must vanish at the boundary of the sphere r = b.
(i) The metric functions of the interior metric (2.1) with v given by (3.2) must be

continuous across the boundary, i.e. must be matched with the metric functions of the
Reissner-Nordstrom line element

2 2 2m 2\ ~1;72
ds? = <1_ —? + %) de*— (1— — + %) ar? 3.7

— r*(d6* +sin’ 8d¢?).

Here m and ¢ denote the total mass and the total charge of the sphere respectively. The
relations (2.14) and Q(b) = g determine g as

b6 b2 -2
q* = 5{—;[3’+a(a—1)(1— ‘;2) ] (3.8)

which is clearly positive.
The boundary conditions (i) and (i) give

sz 2\1;2 2\ ~1/2
LY P v P
2R? R? R?

2 2\ -2
+(a—1)<1— ;—;2—) (1~ %) =0, (3.9)
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2m . bt (14 b? (1 ab®*\"1!
b 2R* R? R?

a(a—-1)b* ab*\7?
+ (2R“) (1— Rz) N (3.10)

b? ab?
A = log (1- —R—2—> —log (1- P-)
b2 1/2 b 1 1/2
_\1/2 _ 9 =z
o[- £ )52
(a_l) o 1/2 bZ 1/2
+ S sin 1{(({—1) (1— 7{2') } G.11)

Equation (3.9) determines B. Substituting this § into (3.10) and (3.11) we can find m and 4.

Case II. Let us assume the form of the function E? as

ree™ g 4r2( +3)+al+a) r*
- {8 — —A{a a a) —;,
R4 (1 ar2)2 R2 R4

R2

E* = (3.12)

where [/ is a constant. This peculiar choice of E? makes the differential equation for e” inte-
grable. Substituting this value of E£? into (2.16) and (2.17) and equating the two values
of P we get the differential equation

d*F dF
(1-a+az’y—5 —az— —a(l—a)F = 0, (3.13)
dz dz
2.4 r2
where F = ' — R and z%2 = 1~- R

r
We have checked that E? given by (3.12) is positive for a = —2 provided 0 < "
< 0.717. If we take @ = — 3 then E* > 0 gives the result 0 < % < 0.816. We have verified

r
that if a << —4, then E? remains positive throughout the range 0 < ry < I.

To obtain a closed form solution of (3.13) we choose the value @ = —7. For this
value of a, E? is always positive. The equation (3.13) has been discussed in detail byVaidya
and Tikekar (1982) for / = 0. Following the same method the closed form solution of (3.13)
for @ = —7 can be expressed as

49r* 1457 r2\1/2 p2\32 2,4
¢ = C(F R ’”“) +B(1‘ F) (1' }?) tows (14
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where C and B are arbitrary constants. The quantities P and p in this case are found to be

N N\ 14r*  14* r
8nP|e" -1 -1—{1— 1+—§2— =4-F 3+?2""'*‘1?“ +h -E , (3.15)

. 7rH\? r? s oy T 2r?
87gR“ | 1+ F = 8{3+ '722— —41% F 1+ ‘}'2— s (3.16)

where the function A(r/R) is defined by

N\ 8 _, .. P2\ [196r 28

428 r2 3/2 7r2 1/2 2B r2 1/2 7r2 3/2
+7{z‘(1“§?) (”F) “ﬁf(“‘k‘z‘) (‘*7{2‘) G17
and e’ is given by (3.14). Following the procedure adopted for case I, we can determine

the constants m, q, C and B. We can also determine the charge density . For the sake
of brevity we shall not report expressions for m, ¢, C, B and ¢ here.

Case IIl. Let us assume the form of the function E? as

2 2\ -2
- T ar
E* = [o*+4’e ]7,; (1— F) , (3.18)
where « and u are arbitrary constants.

Substituting E2 from (3.18) in (2.16) and (2.17) and equating the two values of P we get

the differential equation

2

d*F dF
(1—a+az? 7 9t —[a(l -a)+24*]F = 0, (3.19)
Z z

2

where 2% = 1— ~RC? and

, 2p°

B e
a(l —a) +2*

The equation (3.19) has been solved by Patel and Pandya (1986) in the case y = 0
and for a = —1++/1+242. Following the same method the closed form solution of (3.19)
fora = —14v 1+242%, in the present case can be expressed in the form

2u® . 2a a 3z
V= — —— +Mz|1- T4N1—- — 2%}, 3.20
¢ a(l—a)+2a z[ 3(a-1)z] [ a-—lz] (3:20)
where M and N are constants of integration. From (3.18) is it clear that E? > Qand E? = 0
at the origin.
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Following the procedure adopted for Case I, we can evaluate the constants m, q, M
and N. For the sake of brevity we shall not give these expressions here.
The quantities P and g in this case are found to be

—2 —
8nP=y2[ 1-z  2a 1)]

1—a+az? 3a
2a(7—-
+Mzla—-3+ —f-(—--———a)z2
3(a—1)
1/2
7—a
+N(1—ai1z) {a—l-}- %_—1—222} (3.21)
and
2__10 6 4__ 2 21___ 2y _—v
815 = (a 2a+ )+a(2 2a)z _ f (1-z )e2 ., (3.22)
2R*(1—a+az*) r'(l—a+az”)

where ¢’ is given by (3.20). In this case we can also find the charge density ¢. But for the
sake of brevity we shall not give the expression for ¢ here.

Here it should be noted that when u = 0 our solution reduces to the EC analogue of
the solution discussed by Patel and Pandya (1986) and when o« = 0 our solution gives the
EC analogue of the solution discussed by Patel and Koppar (1987).

4. Some physical features of the solution discussed in Case I

Let P, and g, be the values of P and g at r = 0. Clearly we obtain

8nP, = Eli (a—1+2p), (4.1)

3
8130 = =3 (1-a). (4.2)

When K = 0, the spin disappears and P and o become the usual pressure and density
respectively. Therefore the central values P, and g, of P and g are given by

1
8nP, = =2 (a—1+2p)+16nAle™ ™ (4.3)
and
3 2 —2v
8o = o3 (1—a)+16ndie™ ™™, (449

where v, is the value of v at r = 0 and it is given by

1/2 _ 1/2
v B e ) T
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If B is negative, then (4.3) implies P, < 0 when 4, = 0. This is not a desirable feature
of the solution. Therefore we assume that f is positive. The physical requirements are
Py 20, 00—3Py 2= 0. (4.6)

The conditions (4.6) imply that the constant 4; has to satisfy the inequality,

(1—a-2p)e*" 3(1—a—p)e*™

<4l < 4.
16n?R? P 16n?R? @7
This inequality puts a restriction on the constant f. It is given by

0<B<2(l—a) (4.8)

From the result (3.5) it is clear that the density g, at the boundary r = b is positive provided

B <G, 4.9)
where G is defined by

b2 b2 -1 bZ -2
G = 2(1—a) (3— %) (’F) (1— -‘;T) . (4.10)

The ratio A = :Qican be easily obtained. It is given by
Qo

W=

A= (4.11)

23 )

2R? R 6(1—a)

The positive § satisfying the equation (3.9) is given by
L g b? LAY A U (@-1)b? e\ ([ _ ab? ke
ZP\R?) R R? 2R? 2Rz /" 2R?
bZ 1/2 ab2 -1/2
(=) (%)
R R

B
If a and (ﬁ) are given, we can determine g, A and G from (4.12), (4.11) and (4.10)

respectively. For numerical study we have selected the value @ = —2. For this value of
a and for various values of % satisfying 0 < —% < 1, the valyes of §, A and G are tabu-
lated in the following Table.

From the Table it is clear that 8, 4 and G are decreasing functions of % . Also A is

always less than 1. This in turn may mean that the density at the boundary is less than the
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TABLE

b/R B A G
0.02500 1 49823 0 99763 28734, 12036
0 05000 1°49301 0. 99059 7134.47705
0 07500 1.48440 0.97902 3135.06421
0.10000 L 47257 0.96317 1735. 87085
0. 12500 1.45772 0.94337 1088. 88155
0.15000 1.44012 0.92001 738.07833
0. 17500 1.42006 0.89353 527.19579
0. 20000 1.39785 0.86443 390. 94651
0. 22500 1.37383 0.83318 298. 12830
0. 25000 1.34833 0.80027 232.29630
0. 27500 1.32169 0.76618 184. 11110
0. 30000 1. 29422 0.73135 147..94599
0. 32500 1. 26622 0.69619 120. 24470
0. 35000 1.23799 0. 66106 98. 66859
0. 37500 1.20977 0. 62628 8l 62760
0. 40000 1.18181 0.59212 68. 00964
0.42500 1. 15429 0. 55879 57 01775
0. 45000 1. 12741 0. 52647 148.06874
0.47500 1.10132 0.49531 40.72803
0. 50000 1.07615 0. 46540 34. 66667
0.52500 1.05202 0. 43680 29. 63215
0. 55000 1.02902 0. 40954 2542838
0.57500 1.00725 0. 38365 21.90137
0. 60000 0.98677 0.35911 18.92915
0. 62500 0 96767 0.33589 16.41426
0. 65000 0. 95001 0.31396 14.27826
0. 67500 0.93385 0.29326 12.45763
0.70000 0.91931 0.27373 10. 90059
0. 72500 0. 90645 0.25531 9. 56476
0. 75000 0.89541 0.23792 8.41522
0. 77500 0. 88634 022148 7.42313
0.80000 0.87947 0. 20590 6. 56452
0. 82500 0.87510 0.19109 5.81944
0. 85000 0.87368 0.17693 5.17119
0.87500 0.87586 0.16328 4.60577
0, 90000 0.88275 0. 14995 4.11139
0.92500 0.89627 0. 13665 * 3. 67810
0. 95000 0.92035 0.12286 3.29747
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central density. This is a desirable feature of our solution. Asa = —2, we have 2(1 —a) = 6.
From the Table it is clear that the inequalities (4.8) and (4.9) are satisfied. Thus we have
a physically viable model of a charged fluid sphere in the EC theory.

We have done the numerical study of various parameters for ¢ = —2. But the method
is quite general and it can be applied to any negative value of a.

The physical features and the numerical estimates of various parameters of the solu-
tions discussed in cases II and III can also be obtained on the similar lines. We shall not
give these details here.

The authors are grateful to Professor P. C. Vaidya for many helpful discussions.
Thanks are also offered to Miss Neelam Mehta for her help in numerical calculations.

Editorial note. This article was proofread by the editors only, not by the authors.
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