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A . NON-PERTURBATIVE CONTRIBUTION TO THE VACUUM
ENERGY IN SUPERSYMMETRIC QCD
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It is shown that instanton-anti-instanton induce a negative infrared finite vacuum
energy in massless supersymmetric QCD. In the massive theory the same field configuration
induces no vacuum energy because its classical action diverges due to the contribution of the
mass term. Only if the scalar field is classically zero (in a background of an instanton-anti-

-instanton) a vacuum energy is found in the massive theory. However, it is negative and infra-
red divergent.

PACS numbers: 11.15Kc, 11.30.Pb

Supersymmetry breaking was studied extensively in the past few years [1]. Perturba-
tively such a breaking is not possible due to the cancellation between bosons’ and fermions’
contributions to the vacuum energy. Non-perturbative effects were also studied [2]. In
particular instanton’s contribution to the vacuum energy is found to be zero in SYM and
in SQCD due to the fermionic zero modes of the relevant Dirac operator in the topologi-
cally non-trivial background [2]. Instanton-anti-instanton configuration, however, has
a zero topological charge and there are no exact zero modes. As a-result instanton-anti-
-instanton contribution to the vacuum energy may not vanish. Indeed, it was shown in
previous publications [3, 4] that quantum fluctuations in a background of an instanton-
-anti-instanton induce negative vacuum energy, which may signify an explicit breaking
of supersymmetry if it is not cancelled by other non-perturbative effects. The induced
vacuum energy, though, is infrared divergent and a cutoff of the instanton (anti-instanton)
size was introduced to define the integrals. This by itself may be the source of supersym-
metry breaking found, because the bosonic and fermionic. zere modes form a super-
rhultiplet [5). This structure is spoiled by cutting off the instanton size, thus supersymmetry
breaking might have been introduced by hand.

In the following we will analyse a theory where such a cutoff is not needed. We study
the contribution of an instanton-anti-instanton to the path mtegral in massless SQCD
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In this theory the matter supermultiplet contains a scalar field which is classically non-
-vanishing. Its contribution to the classical action in a background of an instanton (or
anti-instanton) introduces a Gaussian factor which makes the integration over the instanton
(or anti-instanton) size finite. Quantum fluctuations around this configuration have a posi-
tive contribution to the path integral if functional integration over Weyl spinors in Euclidean
space is taken to be the square root of the determinant of the associated Dirac operator.
The induced vacuum energy is then infrared finite and negative. In the massive theory,
on the other hand, the same field configuration induces no vacuum energy because its classi-
cal action diverges due to the contribution of the mass term. The configuration &, = 0 has
a finite action; however, its contribution to the vacuum energy is infrared divergent. Thus
only if a finite action configuration, whose contribution to the path integral is infrared
finite is found, would it be possible to analyse unambiguously the breaking of super-
symmetry in the massive theory.

To be more specific we work with an SU(2) supersymmetric model, which contains
one matter and one anti-matter supermultiplets transforming under the fundamental
representation of the gauge group. The Lagrangian in Euclidean space-time can be written as

-?E = gSYM +gmattcr’ (1)
where gy is the super-Yang-Mills Lagrangian given in the Wess-Zumino gauge by
Lsym = % ForFay +A°iD, 2,00, (1a)
with F4, = 0,4%—0,4%+ge® 45 A4S, DY = §°°+ge*4;. A3 are the vector potentials and
A% are Weyl spinors. They are expressed in Euclideanised Weyl basis with Dirac matrices
being
£, 0
&P uauer 15 the matter field Lagrangian
gmtter = (@‘¢1)1‘@ ¢1 +(g:¢2)1@:¢2 + ‘5}-"@“2;4?’1
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\/2

+ ——(cb 11°®, — B31°07)° +hec. (1b)
d Ta
such that {y, ®;} (i = 1,2) form the matter supermultiplet, &, = 0,+ig4, —2— and 5

are the SU(2) generators in the fundamental representation.

Classically, the vacuum in Minkowski space is given by v, =y, = A =F,, =0
@, parallel to @3 in group space and 2,9,=0 (25, = 0). This last equation has an
integrability condition F,,®, = 0 which is trivially satisfied in the vacuum. The solution

is then &, = Pexp(—ig | A,dx,) (3), where the integral is along a path from ~co to
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x and v is a constant. The integrability condition guarantees the path independence of the
.solution. We compactify the Euclidean 3-space into S, in which case the vacuum configura-

tions are given by A4, = L U-'(x)0,U(x) where U(x) € SUQ2) and U(x) l—_;l———e» 1, and
g x| -+

?,(x) = &3(x) = U(x) (g) U(x) defines the set of maps S5 — SU(2) classified by IT,(SU(2))

= Z. The same maps (I15(S;)) classify also the vacuum configuration of the scalar fields.
Thus the scalar fields and the gauge potential are classified by the Pontryagin index,

n [6]. The vacuum is given by 0> = 3 €™n> and quantum mechanical tunnelling between

n=-—ow
vacua differing by one unit of topological charge is provided by the single instanton or
anti-instanton

Ia __ i nauv(x_xl)g . ia _ _2__ nauv(x—xz)v

- > - (2)
g (x=x)+el fog (x=x)’ e

and the scalar field configurations [2]

T (x xl)u v N 2 (xl"—xz)uru v
Pu= =i +91]"2<) o= O = 21" <0> )

which satisfy the field equation 92, = 0 (22®; = 0) in the appropriate background.
In the above 1,,,, 1., are the ’t Hooft symbols [2], x,, x,, 01, 0, are the locations and sizes
of the instanton and anti-instanton respectively and t,"; = (it 1).

As it was mentioned previously quantum mechanical tunnelling by these field configura-
tions in a supersymmetric model is completely suppressed due to the zero modes of the
Dirac operator, iy,D,, in the above background. In the absence of the Yukawa coupling
in (1b) we have six left-handed zero modes in a background of an instanton: 4 for the
gluino and 2 for the matter field

o=l g,
n [(x— x1)*+ef]?
Na 1 Q?/Z (+)3
)“(+a——'___— N 5P

L e

— [N
n 2 [ =22 + 03P

where x = 1,2, £ = 1, 2 are spinor and color indices respectively. For the anti-instanton
we have six right-handed zero modes

@

('I’(1+))xg = (i72¢(2+))xg =

5/2
/T( )aa \/2 02 e
(4ss ) 7 (%) & +Q2]2(

a-( )ﬂ
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I an — 1 lez 2 uﬂ a8 ( )
A = — iy G xS
g o3

<, &)

(B = (0,50 = ¢
' : \/2 [(x— xz) + @2 ]3/2
Here u'®, v'*) are unit vectors given by either (1, 0) or (0, 1).

When the Yukawa coupling is turned on A, y;, it,y, are no longer zero modes and
their contribution to the action becomes

210

J‘d‘txl‘l)ztal:udsz = J'd‘*xdsftn sea¥P1 = T/—i— (6)

for the instanton and a similar contribution for the anti-instanton. Thus {1, w} combine
together to form a massive Dirac spinor. (We denote the pair {y,, it,9,} by y. Together
they have only two spin components). A, on the other hand, stays as a zero mode because
jd“xdi’r “Assy = 0, since the integrand is odd under space-time reflections. As a result
quantum mechanical tunnelling is suppressed even when the Yukawa coupling is turned on.

In the absence of tunnelling in a background of one instanton or one anti-instanton
we are led to consider the -tunnelling in a background of an instanton-anti-instanton.
Without loss of generality we take the distance between the instanton and the anti-instanton
in the time-like direction, 4, = (x,—x,), = 49,,. Later we will integrate over its direction.
Then the instanton-anti-instanton configuration is given by

Al = ALO(R—1)+ALB(t—R), ™

where R, = % (x;+x,), = RS, and generality is not lost by taking the locations to be
such that ’55.1 = x, = 0. We later integrate over R, as well. In a similar way we can write
the expression for the classical scalar fields associated with the instanton-anti-instanton
configuration in (7).

Quantum fluctuations around this background yield one over the square root of each
bosonic determinant. For the Weyl fermions we first double the number of degrees of
freedom to generate Dirac fermions. We then define the functional integral over the Weyl
spinors as the square root of the functional integral over the Dirac fermions, thus getting
the square root of the determinant of the Dirac operator. The fermionic determinant has
12 approximate zero modes as listed in (4) and (5). In the limit of infinite separation 4 of
them (15", 1) become exact zero modes. The bosonic determinant has 16 approximate
zero modes associated with the invariance under translations, dilatations and group orienta-
tions of the instanton and the anti-instanton. These are factored out and treated by the
collective coordinate method. Factoring out also the approximate fermionic zero modes
we finally get the square root of the ratio of the non-zero modes fermionic over the bosonic
determinants in the background of an instanton-anti-instanton. In the approximation
of far separation this determinantal factor can be approximated by the product of the
determinantal factors of the instanton and the anti-instanton, and each is equal to one
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[2]. As a result we approximate the path integral by

d
™05 > 50~0) s )ZJd“ 22 g4y %dﬂdﬂk

2

(—2 ) (‘——‘-2 ) (x1— R) ®
X K(x;—x,, 04, 05, Q e 5E, 8
32(91) gz(Qz) PR

In Eq. (8) we integrate over the locations x,, x, the sizes ¢,, g, and the group orientations
Q,Qg of the instanton and anti-instanton respectively. g is the relative orientation of the
anti-instanton compared to the instanton and K(x; —x,, ¢, 0, Q) is the square root
of the fermionic determinant evaluated in the subspace of the fermionic zero modes listed

in (4) and (5) with ¢* in Eq. (5) replaced by ¢4 = Rjs® and with P being replaced by

(U(R)e)**. R is the rotation matrix of the relative orientation and U(R) is the associated
SU(2) representation. Sy is the Euclidean action

4n? 47>

——— + ——— +Sin 4?0 (0 +03), 9)
Fan * Fen TSmtin @+ @) (

Sg =

where the last term is the contribution of the scalar fields and it is this contribution which
eventually makes the ¢ integration infrared finite as was pointed out in Ref. [2]. S;,, is the
interaction action between the instanton and the anti-instanton.

To calculate K we double the number of fermions to get Dirac fermions and calculate
the determinant of the Dirac operator (including the Yukawa couplings) in the subspace
of zero modes. Therefore

0 0 0 A B O
0 0 Kt ¢c Db o0
0 Kt 0 00 O
2 _ 2
Ki=det| '+ 0 00 0| (10
Bt bt 0 0 0 K,
0 0 0 0 K, 0]

where the entries are all 2 x 2 matrices. In (10) we have picked up the dominant contribu-
tion to the determinant for large A. Thus the contribution of some of the matrix elements
to the determinant is zero only up to the leading order in 4-!. Using the fact that A", A()
(A5, 77) are exact zero modes in a background of an instanton (anti-instanton) we

find that
- 4 - 4 .
Jd"’xl(-)iD,,EulH) =i stxl(_) (— "2“ ’ X) A(+) (E’ Py x) ) (11)

where D, is the covariant derivative in the background (7). Then
A = [a*xID,5, A = 2iagi? 03 %0 0%, (12a)
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2
B = J‘ a*xiip, S D) = ‘/2 iad3?03%¢,6¢, (12b)
4 x(-) (+) \/i 5/2 3/2
C=|d*’iD, X, A0 = 5 iado} 0.0R (12¢)
~ AZ
D= J d*xAiD Z A = i(b 4) 03%03%0.0%, (129)
v
K; = ““‘ggi , =12, (12¢)
with
1 x2; x*
=— dx 5 yE 3 (13)
0 ( +—-—+g,) (x2+7+Q§)

and only the leading order terms in A~' should be kept for widely separated instanton-
-anti-instanton.

Expressing the relative orientation in terms of a unimodular four vector u, we find

det (c,08) = 1+8u?

2 2
j d0K = 3847%(0,0,)°a’ (—g%ﬁ> (-’?—Qz—z—v—> . (14)

Substituting (14) in (8) and integrating over dQd*R we get a factor 272 VT (space-time vol-
ume). We are then left with the integrations over g,, g,, and 4. To account for the 4 inte-
gration we have to know the interaction action. This was calculated in Ref. [7] to yield

then

210
41n :‘22 for 4 <g,o0,
Sint = 2
int = 133
i ( i ) (3—4u2) for 4> g, 0
g 4 +Q:+92

The effect of S,,, is to suppress the contribution of configurations which are not widely
separated. Thus we may ignore the interaction action and integrate from a minimal distance
4o up to co. We take 43 = y(0?+ ¢2) where y is some number which we estimate in the

following way:
( 24n%- )< (—S.) < ( 8n? )
expl — 55— )| <exp(—S) <expl —w—— |-
gar1y) ST a1y
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2 2

, 8n . . . .
Thus if we take — ~ 1 € —;, the interaction action can be ignored compared
g g

(x+1?

2
to the total action (which is

T
3 ) Using this we choose y to be
g

8 2
(x+1)* = T:?. (15)

Indeed, with this choice, if the interaction action is ignored, the integrals over g, ¢,, 4
produce a result which is very close to the bound found in Ref. [4] for the vacuum energy
in SYM theory. In view of the fact that the integrals we have here are very similar to the
ones appearing there, the choice (15) for the minimal distance should be reasonably good.

From now on we have fairly simple integrals to perform. We only need to use the
renormalization group equation

8n? 8n2
5 =5 3l
g0 gWw

Substituting (14)-(16) in (8) and keeping only the leading order terms in the coupling
constant we get

n gu. (16)

6VT [ 8n® \*/? pu'° 167
$0le™ 0% 2 s (—}) Ko exp - 2—1) )
354" \g" )/ v g
Or using the renormalization group invariant scale
— 1672
Agep = p*° exp( ) , (13)
e 20
we get for the leading order contribution to the vacuum energy
E(6 6 812 \*'? [ Agcp\°
O O 4( il ( QCD) Abeo. (19)
vV 35(4n°)* \g“(v) v

We would like to comment now on the mass dependence of the result. If we start
with a massive theory, we have the following mass term in the Lagrangian

gmnss = ¢Im2¢l +¢;m2¢2+wmez+@f'n$2 (20)

For this theory the vacuum state in Minkowski space is uniquely determined by ¢, = &,

=y =y, =4=0,4,= L U-1(x)0,U(x). Thus the Pontryagin index labels the gauge
g

potentials only. In Euclidean space the solutions (3) in a background of an instanton or anti-
instanton do not have a finite action as the mass term of the classical configuration diverges.
As a result tunnelling with this configuration is suppressed even in the background of an
instanton-anti-instanton, and the vacuum energy stays at zero. One may use instead the
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configuration & == 0 in the background of an instanton-anti-instanton. The determinant
to be calculated is then similar to the one in (10) with mass terms appropriately inserted.
Since the contribution of the scalar fields to the classical action is zero, an infrared cutoff,
0., over the 9, o, integrations is needed. The resulting vacuum energy is then similar to
(19) with m?g? replacing v~%. Otherwise one may seek a solution to the Euclidean equation
9P, = m*®, (¢, = ®3) which has a finite action. If such a solution is found and its
contribution to the action is as in (9), then it would be possible to find whether instanton-
-anti-instantons induce a vacuum energy in this massive theory. It is expected that for such
a solution the result (if non-zero) will be infrared finite.

We have thus demonstrated that instanton-anti-instanton induce vacuum energy in
massless SQCD. It is negative and infrared finite. The sign of the vacuum energy is fixed
by the fact that the functional integration over Weyl spinors is given by the square root
of the determinant of the Dirac operator. Dividing by the functional integral in a back-
ground of the vacuum (whichis lina supersymmeiric theory), we get a positive contribution
to the functional integral, thus making the vacuum energy negative. It is infrared finite
due to the contribution of the scalar fields to the classical action, which is An2v(ol +03),
and which makes the integration over g;, ¢, finite. The density of the vacuum energy
4qcp

v

is proportional to /1$cp, and could be used as an expansion parameter if v is large

enough.

In the massive theory the same field configuration induces no vacuum energy as the
classical action is not finite due to the divergence of the mass term. Only if a finite action
field configuration whose contribution to the path integral is infrared finite is found, would
it be possible to check unambiguously whether supersymmetry is broken or genuinely
preserved at the quantum level. In the massless theory, on the other hand, instanton-anti-
-instanton induce an explicit breaking of supersymmetry.
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