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We quantizé canonically the scalar field in the theory with higher derivatives. We
show that the results are consistent with those obtained in the theory without higher deriva-
tives.
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1. Introduction

Theories whose Lagrangians contain higher order derivatives {1} can be rewritten
with lower derivatives provided new degrees of freedom are introduced [2]. An alternative
way of dealing with these theories consists in working in enlarged phase space [3] (in the
sense of the Hamiltonian formalism). In this case, velocities are also taken as canonical
variables.

The purpose of this paper is to show the consistency of this method by quantizing
the scalar field in the theory described in terms of higher derivatives. Contrary to the usual
case, the theory is now constrained. We shall see that developing the canonical quantiza-
tion in a consistent way, by using the Dirac formalism [4], the usual quantum commutators
are obtained.

QOur paper is organized as follows: In Section 2 we present main points of the higher
order formalism. The quantization of the scalar field is carried out in Section 3. In Section 4
we analyze the equivalence between the usual and higher order formalism using canonical
transformations. Section 5 contains concluding remarks.

2. The higher order formalism
Let us consider the following Lagrangian density

g = $(¢’ aqu’ auav(nv) (2’1)
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Cases with derivatives higher than second order can be dealt with in a straightforward
way by comparing with what is presented in this section.

The Euler-Lagrange equation of motion is obtained by the usual variational principle.
Namely

t2
Sl =56fdifdx¥g =0, (2.2)
fy

where one assumes that at the instants ¢, and ¢, the system is characterized by
Sp(t)) = dg(t;) =0,  dg(ty) = dg(t;) = 0. (2.3)

The equation of motion is then found to be

0% 5% 0% .
—— =8, = 48,0, ——— = 0. (2.4)
dp (0,9) 9(0,0,9)

A natural way of introducing canonical momenta in this formalism is to consider
variations in the action with only one of the end points held fixed, for instance

Sp(t) =0,  dg(ty) = 0. (2.5)

Variation is to be calculated for the actual motion [5]. The canonical momenta = and s,
conjugated to ¢ and ¢, respectively, are given by

8l = | d*x(nép+sdp), (2.6)

where d¢ and d¢ denote variations at ¢, = ¢. In the case of Lagrangian densities like (2.1)

we have
0¥ J 0% 0¥ 0L .
Ol = | d*x || — — —= =20, ——= | dp+ —= 69 2.7
op 0t Og 0(0:p) op

By comparing the last two expressions one obtains

g2 _00% ,, 9% (2.8)
o ot dg 0(0;9)
2
5= (2.9)
op

The next step is to define the canonical Hamiltonian. This is done by following the
standard way, that is

H, = | @x(np+s¢—2). (2.10)
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Considering a general variation of H, and using (2.8) and (2.9) we find that the canonical
Hamiltonian is a functional of ¢, ¢, = and s. (These will play the role of canonical variables
in the present formalism.) We can thus obtain the Hamilton equations of motion.

() o0H, 5%) OH,
= 2 x = o b
P on(x) (p os(x)
t(x) il 5(x) oA, 2.11)
#(x) = — , S(xX)=— —/——. 5
o¢(x) op(x)
Let A[g, ¢, 7, s] be some dynamical quantity. The total time derivative of 4 is
de (et 04, 04, o4 e
= = —_ — i+ —35]). .
Noo T 50 ¥ on " Tos )

Using the Hamilton equations of motion (2.11) we have

A={4,H)}, (2.13)
where

(A, H) e 0A 6H, + 0A 6H, J8A 8H, 64 6H, 514
= x| — —_—— e — —— )
e dp on  d¢p s on d¢p  Os bg (2.14)

is the Poisson bracket of 4 and H,. For any two functionals 4 and B, the Poisson brackets
will be defined analogously to (2.14). ’

.Expressions (2.11) and (2.13) show the consistency of the canonical Hamiltonian
defined by (2.10). An interesting point to be emphasized here is that Eq. (2.8) is not equivalent
to 6L/é¢p, where L is the Lagrangian of the system. These two expressions are equivalent
only when higher order derivatives are not present. If we want to interpret H, as defined
by (2.10) as the generator. of time translations via Poisson brackets defined by (2.14),
Eq. (2.8) is the appropriate way of defining n(x).

The fundamental non vanishing Poisson brackets are

{‘P\x)’ n(x’)}xo=xo’ = 53(;—;’)3
{9(), s(x )} xp=5y = 8(X—X'). (2.15)

Other brackets as {¢, ¢}, {rn, s} etc. are null at the level of Poisson brackets.

At this stage, the next step is to incorporate constraints into the theory. This is done
by following the standard procedure [4, 6]. We will ilustrate this procedure with the example
analysed in the next section.

3. Scalar field theory with higher derivatives
The scalar field theory is usually described by a Lagrangian density of the form

2’ =4 909+ V(). @.1)
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To make the theory renormalizable, we take V() in the form

V(g) = $m*¢’ +1 ig". (32
Instead of (3.1), let us consider

& =—-z90¢+V(p) (3.3)

It is obvious that .Z and %’ lead to the same classical equations of motion. We shall see
that both lead to the same quantum results too. Let us develop the canonical formalism
starting from (3.3). Using equations (2.8) and (2.9) we obtain the following canonically
conjugate momenta
o n=%9, 5= -%¢. (3.4
Both equations are constraints, which we rewrite as

X, =n—-Ltox0, X,=s+ipn0. (3.5)
The symbol ~ means weakly equal [4, 6]. The Poisson bracket of X; and X, is

{X1(%), X2} xomny = —0°(X—%"). (3.6)

The primary constraints X; and X are of second class. Thus, there are no secondary
constraints {4, 6]. The matrix C involving the Poisson brackets of the constraints X,
and X, is '

Clx, ¥') = (? - (1)) FE-7). G.7)
The Dirac bracket definition between any two quantities 4 and B is [4, 6]
{AG), BO2mrr = {AC), B} g s
~ § @yd®2{A(x), X1} x0=9sCii 0> 2) {X (2), B} 205, (3.8
We thus obtain the following fundamental Dirac brackets of the theory
{9’(3‘), n(x,)}go=xo' =3 53(2—_2'),
{é(x): s(x’)}l:o=xo’ = ';' 63(;"';')’
{¢('x)9 ?Z(_x')}"x)_o=xo' = 63(‘;—;'),‘
{s(x), A(x") 20 mnr = —% 8°GF=X). (39

The remaining brackets vanish. In all these brackets, the constraints can be used in a strong
way. It is easy to see that all of them lead to one of the following brackets

{@(x)s P Nap=rer = 8°(E=X"),
{9(0), P Nop=sy = 0'= {@(x), PN zp=s0 (3.10)
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The canonical quantization is carried out in a straightforward way with the i% prescrip-
tion for the above Dirac brackets. Thus

[‘P(x)a q.’(x')]xo=xo’ = ihéa(-;_}')s
[(P(X), ¢(x’)]xo=xo’ = 0 [q‘)(x)’ ¢(x')]xo=xo’s (311)
which are well known results for the scalar field.

4. Further analysis of the equivalence of the two cases

The theory described by the Lagrangian density (3.1) leads to a Hamiltonian formalism
in a phase space with two field canonical variables. For the Lagrangian density (3.3),
we have a phase space with four field canonical variables and two constraint relations. Hence
the degrees of freedom in both cases are the same, as it must be because, as a matter of
fact, both Lagrangian densities describe the same theory. Equations (3.11) confirm this
point of view.

It may be instructive to develop the case of the Lagrangian density given by (3.1),
working also in 4 phase space with four field canonical variables. In this case we also have
constraints and they are

Xi=n-9p=0, X,=5=x0, 4.0

where 7’ is the canonical momentum conjugate to ¢ and s’ to ¢. The constraints given
by (4.1) are second class. Following the same steps as before, one obtains the Dirac brackets

{@0(), 7' (¥) o=y = 8(x~X),
{90, PN Tpmsr = 8°E=X); 42
other brackets vanish. Again the result is consistent with what we have obtained previously.
We now construct the total Hamiltonian [4, 6] for these two cases. Namely
H = H.+ [d®x)X,, H' = H + |d’x}X], 4.3)
where 4; and A{ (i = 1, 2) are the Lagrange muitiplier fields. By imposing the consistency
condition that constraints cannot evolve in time, that is to say
X;={X,H ~0, X ={X,H}=~0, 4.9)

one obtains A, and A; in terms of the respective canonical variables (We do not obtain new
constraints because X; and X; are second class). The result is

.

A =n—-%¢p~0,
2

o'V
“12 = ""(S'f'% (P) aq)z

).I ’ . 0 - ’ azv
=g -0, i;= -5
1 l'4 2 a¢2

~Vis+i o)~ 0,

-V’ x~ 0. 4.5)
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Inserting back this result into (4.3), we obtain

. ov ov
H=|dx|ng+s{Vg+ —)+io— V], (4.6)
o o

e, )4 v
H = |&@x|@ -3 )p+G" -1 9 Vio+ —— | +Fe—-— -V . 4.7)
o dp

The (canonical) transformation
' =n+ie, s =s5+39 (4.8)

which is compatible with the constraint relations (3.5) and (4.1), leads to H' = H. Thus,
in the 4-dimensional phase space, the theories related to % and ¥’ are connected by
a canonical transformation.

5. Conclusion

We have studied the higher order canonical formalism for the scalar field theory using
the theory of constrained systems in an enlarged phase space. We have shown the consis-
tency of the method by obtaining the well known quantum commutators for the scalar
field. We have also shown that in this higher dimensional phase space there is a canonical
transformation linking the usual formalism to the higher order one.

We are indebted to Professor Ildeu de Castro Moreira for many useful discussions.
This work is supported in part by Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico, Brasil.

Editorial note. This article was proofread by the editors only, not by the authors.
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