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ROLE OF THE RECOIL AND CENTRE-OF-MASS CORRECTIONS
TO THE STATIC APPROXIMATION IN THE BAG MODEL*
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The internal consistency of various methods of improving the static spherical cavity
approximation to the MIT Bag Model is investigated by studying electromagnetic current
matrix elements between boosted bag and the boosted hadron states. In the case when the
bag state is identified with the hadron bound in an external potential the consistency require-
ment fixes parameters of this potential altowing to calculate the improved values of the electro-
magnetic properties of nucleons.

PACS numbers: 12.40.Aa

1. Introduction

It is a common belief now that QCD is the correct theory of strong interactions.
Unfortunately, this theory is quantitatively effective only in the domain of asymptotic
freedom, and even the simplest questions about static properties of hadrons are still beyond
its predictive power. For this reason various models of hadron structure do not loose their
significance as it would undoubtfully happen if QCD could cope with the bound state
problem. Models of composite hadrons are at best “QCD inspired”, but essentially they
are just phenomenological. One of the most popular among them, especially in application
to the light hadrons, is the MIT Bag Model [1, 2, 3].

-Although formulated as a relativistically covariant classical field theory, it was reduced
to something much less ambitious during the approximate quantization procedure, and
under the name of Static Spherical Cavity Approximation (SSCA) is nothing more than
a specific phenomenological model of quark confinement. In this approximation only the
quark degrees of freedom are quantized. Quarks, described by the free Dirac equation, move
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independently in a certain region of space, or cavity, being confined to this region by an
appropriate boundary conditions. The positive volume energy stabilizes the system. In
the ground state, the cavity takes a spherical shape. These are the most essential ingredi-
ents of the model. It may be enriched by various additional terms in the expression for
the energy of the bag, but for the purpose of our investigations it will be enough to keep
only the volume energy and the kinetic energy terms,

2. The wave packet formalism

The bag state in the SSCA distinguishes the origin of the reference frame as the centre
of the bag and is obviously not translationally invariant. As such, it can correspond to the
hadron at rest, only as a rough approximation. Trying to improve this approximation one
has to answer the question what hadron state corresponds to the bag state, if it is not
hadron state of zero momentum.

In one of the first papers devoted to this problem, Donoghue and Johnson [4] proposed
to identify the bag state |B) localized at the origin with a wave packet of the appropriate
physical hadron:

B = | d*pd(P) Ip- €))
They determine unknown physical form factors by equating matrix elements of the relevant

quark current calculated for the bag state to the matrix element of the current calculated
for the wave packet (1). For the magnetic moment they obtain for example,

ot <%
#Bt He = Hproton (1 ""% B A (2)

m?

Solving this equation for 11,0, they obtain the “CM corrected” result

. <
#proton = ”Btatlc 1+%‘ 2 * (3)
m

The wave function ¢(p) enters through the expectation value of {p>> only. Independent of
the function ¢, the correction is obviously positive and its order of magnitude is determined
by the size of the bag. From the point of view of phenomenology, the positive correction
is just what is needed because, as it is well known, in the static approximation the MIT
predictions for magnetic moments are below the experimental values.

This clear picture was called in question in the paper of Carlson and Chachkunashvili
[5]. Making the same assumption that Donoghue and Johnson did, they took the formuta
(1) and inverted it to get

- 2E .,
P = —= | d>Re” "} B(R)), C)]
&(p)
where IB(ﬁ)) is the bag state centered at R (see also Ref. en.
With the help of (4) the authors expressed directly the physical form factors as integrals
of matrix elements calculated between shifted bag states. For the magnetic formfactor
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Gy, for example, they obtained:

oy (18X G 2E? e, . - -
Gu(gD < q) = jd3Rd3reW"<B(R ~ 1 NAJ0) [ B(R+L 1> &)
2m /., mo(z q)

Integrating numerically they found for the magnetic moment of the proton

Horoton = ‘u;tatica —015), (6)

so their correction is negative ! In view of the discrepancy between (3) and (6), it seems that
the basic assumption contained in (1) is not accurate enough. Actually, there are following
physical arguments supporting this statement: (/) the bag state on the left hand side of
(1) is an eigenstate of energy of quarks, while the right hand side is not, (ii) the bag state
is localized in space all the time while the wave packet spreads out indefinitely, (iii) in
a relativistic theory, the localized state in general can not be expanded into the positive
energy one-particle free states only. In other words, the bag state in SSCA is not on the
mass shell, while the state on the right hand side of (1) is. Having in mind the above limita-
tions of the wave packet method of restoring translational invariance, some authors [7-11]
tried to improve SSCA taking another point of view. Representative here are papers of
Guichon [7] and Goldflam and Betz [8]. They take a generally correct relation:

- -, 1 > ™ i—'; i -'I s T e ] *
PO Ip) = m[e(p )e(p)]”zjdsxe" {mIUN() (X, 0)U() im), (7
where o(p) depends on the normalization of state |p), and |m) is the physical hadron
state of the four momentum (m,0). The unitary operator U(7) boosts hadron to the veloc-

ity 0 = L. 1n this formula they substitute for |m)> the SSCA bag state
m

Im) = [(21)°6*(0)]"/%|B> (8)

getting the result which differs from the SSCA formula for the formfactors by the presence
of U(v) and U*(v'). Corrections which follow are called “the recoil corrections”. Numeri-
cally they are very small, in practice negligible. This led some authors [12] to the conclusion,
that within the accuracy of the MIT bag model there is no need at all to correct the SSCA.
However, the smallness of the “recoil corrections” has nothing to do with the question
of how big are the CM corrections, and does not solve the puzzle of the discrepancy between
the results of papers [4, 6] and [5].

3. The bound state approach to the CM motion and to the recoil problem

Another approach to the problem of correcting the SSCA was presented in our earlier
papers [13] and [14]. We proposed there to replace the hadron wave packet in (1) by a physi-
cal hadron bound in some external suitably chosen potential:

|B> 2¢ |h, bound state). €))
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The purpose of the present paper is twofold. First of all we want to present quantitative
arguments in favour of (9) in comparison with (1). Second, we would like to have a reliable
criterion allowing to select from a given class the best external potential in which motion
of the whole hadron is as similar as possible to the motion of CM occuring in the static
bag state. The method of achieving these two goals is suggested by results of Guichon [7}.
For his limited purpose of investigating recoil corrections he developed a method of boost-
ing bag states, which is exact up to the terms linear in velocity.

Taking (9) and boosting it to an arbitrary (but small) velocity we have an equation

|B(®)> = |h(®), bound), (10)

which is the identity with respect to v.
Taking Fourier transform of matrix elements of currents we obtain

] BPxe T BE) I(xX) 1B(@,)) = ] d*xe (h(B,), bound |J(x) |A(D,), bound ¢8))

which is now an identity with respect to 01, 7, and g. If the state |, bound) is replaced
by [m, 6) and if § = mv, — mo, than (1 1) is exactly the same as used by Guichon to calculate
his recoil corrections. If we put 7; = v, = 0 and replace |, bound) by the wave packet
of Donoghue and Johnson, we essentialy reproduce their results. If we finally take v, = v,
= 0, g arbitrary and keep |A, bound) we obtain equation used in our earlier papers [13, 14]
to calculate the CM corrections.

Eq. (11) with arbitrary v,, D, and g, treated as an identity with respect to these variables
provides a consistency check for either ansatz (1) or (9). It also defines corrected values
of physical hadron parameters and, in addition, allows to fix arbitrary parameters of the
external potential.

Expanding both sides of (11) up to the terms linear in vy, v, and g, we obtain for
either proton or neutron, a set of three equations for coefficients multiplying linearly
independent terms

oxg, ax(v;—0,) and 0, +bs,
which are present on both sides of the Eq. (11). The expansion of the left hand side is univer-
sal, but the expansion of the right hand side depends whether we take |4, bound) or |, wave
packet). Let us begin with an arbitrary wave packet defined by the profile ¢(p). In this case
we obtain the following equations

() =) ()]
() (E) (3))] i
()=l - (D) a»
‘ %)2> (14)
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where x, = 2.04... . For definitness we fix the relation between energy and radius of the
bag with volume energy and kinetic energy of massless quarks only.
The bag energy is then identified with the average energy of the wave packet.

E 4
m <—> = o, (15)
m Ry
The (12) and (12’) are identical with those obtained in [15]!. They are only slightly more
general than found by Donoghue and Johnson as they do not rely on the expansion of

M -
<E> for small {p?>. Corrections to x4 which follow from these equations are definitely

positive. Eq. (14) can only be satisfied, if the wave packet has zero width in which case
we are back at the static approximation, Eq. (13') is totaly wrong! The failure may be
interpreted as the proof that some transformation properties of the bag state and of an
arbitrary wave packet, are completely different.

Now let us examine (11) for a particular state |4, bound), namely the hadron bound
in an infinite square well of the scalar potential. This is the ansatz we used before in [13]
and [14]. Equations corresponding to (12), (13) and (14) are

( 1 ) 4xo—3 (mRB)=<1) Y(4Q+2Y —3) +(x,,) Q(4Q+2Y -3) (16)

—2/3/ 6x4(xo—1) 0/3[2QQ-1)+Y]  \x,/3[22Q-1)+Y]" (16"
( 1 )2x0—3 B 1) Q-Y)(22-3) Kp 2x3(Q—-1) (17
-2/3) 6(xo—1) (0 322(Q-1)+Y)] + (x,,)3Y[29(Q—1)+Y]’ a7
1=1, 18)

where ¥ = mR, o, Q@ = X2+ ¥? and x is the solution of the eigenvalue equation for the
massive spin 1/2 nucleon in the infinite square well

x

gx = ——.
Ex =i o-v

19)
In addition, there is an equation saying that the energy of the bag is equal to the energy
of the nucleon in the infinite well

4x, Q

= —. 20

From the formal point of view (15) and (16) form a set of 4 equations for 3 unknowns:
Ky Ko and ¥ = mR,,;. This is the overdetermined set, so strictly speaking there might be
no exact solution of these equations. We will look for the values of «,, k, and mR,y for
which (16) and (17) are satisfied approximately. For numerical reasons we determine
x, and k, from (16) and calculate right hand side of Eq. (17) for various R,.y. For a given

1 In this paper we have argued that for the relevant wave packet profiles it is allowed th substitute
<Elm) & (KmJED) 1, etc.
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TABLE I
RHS of Eq. (17) | RHS of Eq. (17) VIR

Y R
LES = 0.17 LHS = —0.12 e n mV<rp> | mRe

45 0.25 020 207 —1.94 421 6.92

5 0.22 ~0.17 211 ~1.99 417 7.09

55 0.19 —0.15 2.14 —2.02 4.09 724

6 0.17 —013 2.16 —2.04 3.96 7.36

6.5 0.15 —0.12 2.18 —2.06 3.80 7.46

7 0.13 —0.10 2.20 —2.08 3.60 7.54

Ryen o1 Y, values of k, and x, are determined through Eq. (16). Results are summarized
in Table I, where x, and x, are in nuclear magnetons and their experimental values are:
K, = 1.793, k, = —1.913, whereas m v/(r2) = 4.10+0.06 [16]. For Y in the range 6+6.5
(17) and (17') are quite well satisfied. The bag radius and the radius of the external well

seems a little bit too high, but the physical electromagnetic radius of the proton cal-
culated from the formula (21)

2x3 —2x3 +4x—-3

m*(ry> = (mRy)”

6x(2,(x0—1)
Y2 [4Q* - 4Q° +2Q%(443Y —2YH) —2Q(3+4Y —2Y?) +3Y(3-2Y —-2Y?)] 1)
6x°[2Q(Q~1)+Y]
Y 4x,—3 . 4Q-342Y
34 -1 " (mR ° L
T3k —3 5 (mRy) 2x0(xo—1) +29[2g(9—_1)+ Y]

(see Ref. {14]) is not too large. In view of the simplicity of our assumptions and of the fact
that we do not fit any of the parameters (except the proton mass which fixes the scale)
to the experimental values, the overall agreement is quite resonable.

The assumption that the hadron moves in an infinite square well of the scalar potential
is of course a drastic simplification. Even if it is true for quarks in the bag, the centre of
mass of those quarks will feel constraints turning on gradually when successive constituents
are reaching the boundary. Motivated by this intuition we studied the behaviour of the

Eq. (11) for the hadron state on the right hand side being a bound state in the harmonic
oscillator potential:

V = yoim3r?. (22)

For simplicity reasons we did not attempt to solve the Dirac equation in the harmonic
oscillator scalar potential, but used a very convenient and quite precise variational method

investigated by Franklin and Intemann [17]. The postulated wave function of the ground
state is

b \? 2 i
v \/ﬂ
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The variational principle fixes relation between energy parameters of the wave function
b, v and that of the potential A
m 1 1-8y* 415 4%
b 2y 1-34* °
m A+37) =8 +3599 Lo (EY
E - 9%(1-3y)+1-3y) -8y +52 Y’
Egs. (16) and (17) take now the form

1 4xy—3 (mRy) = 1) 1—8p2 415 4% . K\ 1+% 92 (25)
—=2/3) 6xp(xo—=1) " \0/ A+ (A-59D)  \x,/1+39%’ (25')

F Y 2%-3 N1 2y E  1-1y? L (%) b (26)
—2/3)6(xo—1) \O/|1+39* b 1439 ko) 14392 m’ (26")

while the Eq. (18) remains the same.

In complete analogy with the previous case we have 3 unknown quantities and four
equations. In Table II, which is analogous to the Table I one reads right-hand sides of (26)
and (26') for various values of y2. Again there exists a narrow range of y2 (0.028+0.031)
for which all four equations are satisfied with a good accuracy. The physical predictions
for magnetic moments and electromagnetic radius of the proton in this range are closer
to the experimental values than in the case of the square well, in accord with our intuition.

2 29

TABLE II
RHS of Eq. (26) | RHS of Eq. (26") A
2 i R

4 LHS =017 | LSH= 012 | P Ko | mV<rp> | mRg
0015 | 0.002 0.08 —0.07 214 | —2.03 2.84 7.43
0.02 0.005 0.11 —0.09 208 | -197 3.51 7.17
0025 | 0.008 0.14 —o0.11 202 | —191 3.77 6.92
0.03 0.014 0.16 —013 196 | —185 3.85 6.66
0035 | 0021 0.19 —0.15 190 | -1.79 3.84 6.40
0.04 0.032 022 —017 183 | —-1.72 3.79 6.13

4. Conclusions

The hypothesis that SSCA bag state corresponds to the hadron moving in the external
suitable potential was tested by examining the dependence of the current matrix elements
on arbitrary (although small) velocities of the states under consideration. The hypothesis
passed the test quite satisfactoryly which is not the case when the bag corresponds to a wave
packet of free hadron states. Once the test is completed, the free parameter of the external
potential is fixed what allows to calculate electromagnetic properties of the proton and
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neutron corrected for the centre of mass motion. The numerical values are already satis-
factory, but we believe that our method of improving SSCA may be applied satisfactorily
for more sophisticated and more realistic models than our simplified bag model.
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