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In the paper the generator coordinate method is reformulated to show its symmetry
conservation property. The equations for the eigenvalues and eigenvectors of an overlap
operator for the case of compact groups are derived. A rotational motion of an axially sym-
metric nuclear system is considered.
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1. Introduction

The generator coordinate method (GCM) is a well known standard method allowing
to find the energy spectra of many physical systems by solving the integral Hill-Wheeler
equation [1, 2]. This method, however, should be rather treated as a very powerful projection
method which simultaneously excludes the irrelevant variables from the wave function
of a system under consideration [3]. To show this property more clearly one needs to
reformulate the GCM approach as follows [4]. Let us denote a generator function by the ket

‘q> = !ql’ qza ceey q‘> (1)

and define the hermitian, non-negative overlap operator acting in the many-body state
space A :

N o= [51qu¢1> <4l )

where dg = 9(q)dq'dq? ... dg° stands for a volume element in the integral. For simplicity
in notation we assume that the operator 4" has only discrete spectrum (a continuous case
can be treated in the same way), i.e. '

Hlny = A(n) |n). 3)
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It is interesting that for the operator /4" one can define a “brother” operator 4", acting
in the space X', @ L3(Q) of the functions f(g):

(N can) (@): = QI dq'<{qlq">f(q’). ©)

The subscript coll means ‘collective’ because in most applications in nuclear physics the
space obtained by this procedure is a space of the collective motions.

Let us denote by w,(q) and 4, the eigenfunctions and the eigenvalues of A", respec-
tively. From the spectral theorem one can expand the overlap function as follows

418> = Y inWul@)wi(q). (5)

This decomposition allows to prove that the, so called, “natural states” in GCM defined
by the equation

Iny = {2,371 { daw() 19> (6)
are the eigenfunctions of the overlap operator (2), i.e.
A(n) = 2, @)
and the transformation
Uiw, = n) )

defined by the Eq. (6) is one-to-one and unitary. In other words, the spaces X, spanned
by the eigenfunctions {w,(¢)} belonging to the nonzero eigenvalues and X p = X Ind (n|H"
= PX" spanned by the natural states (6) are unitarily, i.e. physically, equivalent. This
important property is a base of application of GCM in description of a nuclear collective
motion. It is much easier to perform calculations and to interpret results in the space
A .n than in the equivalent many-body subspace A p.

2. Lie groups and symmetries in GCM

In many practical cases the generator function is of the form
le, 4> = T(2) lg), 9

where T(a) stands for an unitary operator representation of a locally compact Lie group
G in the state space X", « € G. The letter g represents a set of additional generator coordi-
nates. For this case the overlap operator can be written as a double integral

N = ); du(e) !]} dqT(a) lg) {(q|T*(a), (10)

where [ du(a) denotes an invariant integral over the group G [5]. Using properties of the
Haar measure one can prove by computation that the operator .4 is invariant under group
transformations, namely

T@AH THa) = #. (1
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This symmetry property of the operator .4 causes that its eigenvalues are dependent only
on the sets of quantum numbers 7 labelling the unitary irreducible representations of G and
the quantum numbers y connected with the collective variables g and they are independent
of the sets M of numbers distinguishing the basis vectors within the same irreducible
representation J

NIM; o> = AU IM; 1> 12)

The operator P which projects onto the many-body collective subspace ", = P, unitarily
equivalent to the collective space ', < L?(G v ), can be written in the form

P=Y [IM;x){IM;yl, Ady) #0. (13)
IMy

The invariance property (11) implies invariance of the projection operator P. The same
symmetry properties can be proved for the transformation U. However, it acts between
two different spaces and this feature must be expressed in a slightly different form, namely

T(@UTi(o) = U, (14

where T, (¢) = UT(e)U is a unitary operator representation of the group G in the
collective space A ;.

In the following we assume that the group G is a symmetry group of a hamiltonian H.
The collective many-body hamiltonian Hp can be obtained by the projection of H onto
the space A p

Hp = PHP. (15)

From earlier discussion it is obvious that Hp is invariant under action of the symmetry
group G

T(HpT (2) = PT()HT(a)P = Hp. (16)
Finally, because of (14), also the collective hamiltonian
#H = UTHRU a7

has the same symmetry group as the projected hamiltonian (15) and the original hamilto-
nian H.

Consider now the generator function of type (9) but with fixed variables g
o) = T@) |~ «€G. (18)

The invariance property of the Haar measure allows to write the operator A", in the
following form

(N oouf) (@) = zf; du(x) {—|T(x) | => (ox), (19)

where fe A .y = L*(G). For the compact group (below we consider only the compact
groups because for the noncompact case one needs to use more sophisticated methods
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of the group theory) by Peter-Weyl theorem [5] the eigenfunctions wy,, of A4, can be
expanded in the matrix elements of the unitary irreducible representations of G:

Wie(@ = ¥ i /dim (1) [Diax()]*, (20)
where dim (/) denotes the dimension of the irreducible representation I. After straight-

forward calculations, from (19) and {20) one obtains the set of equations for the eigenvalues
A(L, ¥) and coefficients chyx:

o J<=1Phd = _
Zcm{ dm (D —A(I)an} =0 @1
K

with the normalization condition Y [cyg|> = 1, where
K
Pyx: = dim (I) | dpu(o)Dygx(0) T(e)
G

are the projection operators [5]. Using the states (6) the eigenvectors of the overlap operator
A" can be expressed as

IMS = {A(D)}" 17 CMx_ pr =y 22
M) = {A(])} 4 \/dim(I) MK~ ) (22)

The collection of states (22), for non-zero eigenvalues A([), furnishes a basis of the many-
-body collective subspace . The corresponding basis in X', is given by Eq. (20).

3. The nuclear rotations

Now we consider the rotational motion of the axially symmetric nuclei with fixed
deformation. The generator function is assumed in the form (18) with an axially symmetric
internal state [—)

12> = RE) -5, 23

where R(Q) is the usual rotation operator and Q denotes the set of Euler angles. This choice
of the generator function allows to search for all possible rotational states contained in the
ket |— ). Using the formulae from (19) to (22) we obtain:

win(R) = V21 +1 Difo(®), (24a)
A(J) = sof(a,""x’ IR(Q) | —>Dis() (24b)

and
M) = {A()}~ 12 SOJ dQw, QR(Q) |-, (240)
(3)
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where
2 | 4 2=
1
J dQ = o J dQ, fdgz sin Q, jd93. (24d)
SO(3) o o 0

Note, that the expressions (24) are the same when we replace the group SO(3) by SU(2)
(one needs only to change one limit of integration from 2x to 4z and to double the volume
of a group manifold from 8n? to 16n2). The operator which projects onto the rotational
space ) p can be constructed from the states (24c)

P=Y |UM)J{JIM|, JeQ, (25)
M

where Q denotes the set of the angular momentum quantum numbers J which are allowed
by the structure of the internal function |— ). In the following we assume that the nuclear
hamiltonian H is rotationally invariant, then

{J'M'|PHP|IM> = &, 0uuE; (26)
with the rotational energy
1
E; = — dQ{—|HR(2) |- >D{5(2). 27
JA(J)j {—{HR(Q) | - >Doo(£2) 27
S0(3)

The projected, rotational hamiltonian can thus be written as

PHP = Y (E;—E,, )P’ +E, P, (28)
JeQ
where
P =Y UM)YJIM|, JeQ. (29)
M
The operator P’ is chosen in the Lowdin form [6]:
JP-II+1
P = I+ . (30)
JI+1)—I(I+1)
1eQ
I#J

Here, J? means square of the total angular momentum operator restricted to the collective
subspace X ,. Because of invariance property of the operators A", & .y, P and U one can
easily transform P’ to the space X ... It is enough to replace the operator J? by its realiza-
tion J2(Q) = U'J2U on the group manifold of the group SO(3), i.e. by its standard represen-
tation through the Euler angles. This transformation leads to the explicit form of the collec-
tive rotational hamiltonian in the space J . ;:

B JHQ)-II +1)
* = Z &= HJ(J+1) —I(I+1) +Eqs G

JaeQ

= Eg_s,+7 J“J’(Q)+ s [€3))
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where the moment of inertia

| IT [-Id+D] |
L, I8

1 (32)

g =42 Z (EJ_Eg.s.)

L TTT+D-Id+ D]
JeQ reQ IeQ i
}I’#J I#J ]

is explicitly dependent on the energetical structure of all levels in a rotational band. This
formula can be used directly to calculate a moment of inertia for a given band from the
experimental data instead of the phenomenological expression dependent only on the
first excited state in the band, i.e. £,. = 3/(E,+—E, ). For a ground state band satisfying
the standard energetical relations for a rotor both moments of inertia # and #,. coincide.
In other cases one obtains some differences.

As an example we consider a ground state rotations for the nucleus ®Be. The generator
function {Q2; a) is chosen in the form (23) with internal function parametrically dependent
on a deformation o generated by a scaling operator

X 0
S = Z (Zi i ~7F Z Z; é-z—j‘) . (33)

IQ,\

0z
The generator function is now given by
12; &) = R(Q)a™""* exp [ — (In a)S] (D), (34)
where
Do = (8)7 1 det i(¢ogy)*! (3%)

is the Slater determinant consisting of the usual three-dimensional harmonic oscillator
cigenstates in the Cartesian basis. The superscript 4 in (35) indicates that the four spin-
-isospin combinations occur with the same orbital states. Making use of the overlap func-
tions calculated by Arickx, Broeckhove and Deumens [7] one can immediately get the rota-
tional energies of the nucleus ®Be shown in Fig. 1. In the calculations a semi-realistic two-
-body interaction of BB1 force by Brink and Boeker [8] has been used. To have non-spurious
results the center of mass motion has been taken into account. In Fig. 1 the ground state
energy E, . is plotted as a function of the deformation parameter «. The minimal ground
state energy has been achieved for o, = 1.6 and E,, (1.6) = —50.33 MeV. The experi-
mental value of the binding energy is equal 56.7 MeV, however, BB forces do not contain
the Coulomb interaction and, in fact, one has to compare E,, (1.6) with ~ 60 MeV of
the binding energy increased by the Coulomb energy. For the equilibrium deformation,
we also plotted the rotational band obtained from the calculations and compared with
experimental data. The agreement between both spectra is good. In Fig. 2 the shape of
energy spectrum as a function of the deformation parameter o is shown. In the figure all
bound states obtained from calculations are plotted. One can observe strong compression
of a spectrum for the spherical case, o = 1. In this case only two excited levels are bounded.
When the deformation grows two additional levels 6+ and 8+ descend to the bound states
region.
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Fig. 1. The ground state energy of 8Be as a function of deformation «. The experimental and the caiculated
rotational spectra are compared. The experimental 0+ level is shifted to the calculated one

8* +
A 8 8 8
Be g+
> 30+
@D . 5* .
% 6 —6 6
W 20F
10 - _—['+ __4+ - [.+
4 — 4"
+
—-/2+___2+ 2* —’2: —'2‘
or o* 0* o* 0 0
o-=1.0 1.2 14 16 1.8

Fig. 2. The calculated spectrum as a function of deformation for 8Be nucleus

4. Summary and remarks

To obtain more complete spectrum of 8Be one has to consider the additional degrees
of freedom, e.g. one can treat the parameter « as a second generator coordinate. However,
because the scaling operator (32) generates a non-compact group the procedure given
above must be modified. This will be a subject of a subsequent paper. In this paper a general
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proof of the fact that the generator coordinate method conserves the symmetries of the
original hamiltonian is sketched. A method of construction of a many-body collective
subspace for a collective motion generated by a compact Lie group is presented. On the
example of nuclear rotational motion a more detailed procedure to obtain a correspond-
ing collective hamiltonian in the space J ., is shown. This procedure can be used for an
arbitrary compact Lie group. The general method allows for different approximations.
One possible approximation which conserves the symmetry properties of the general
formalism is the extended Gaussian overlap approximation {9, 10] succesfully applied to the
description of nuclear collective motion [11-12]. Another approximation scheme based
on the projection of a total hamiltonian onto a space spanned by the polynomials of a Lie
group generators is in preparation. It seems that this method could allow to use more
realistic then the single-particle hamiltonians without time consuming numerical calculations.
This program, however, requires further investigations.
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