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In this series of three lectures, baryon number violation at high temperatures in the
Weinberg-Salam model is discussed. The first lecture presents a discussion of anomalies,
and how this is related to level crossing of energy levels in the Dirac equation for fermions
in an external field. The second lecture discusses topological aspects of the Weinberg-Salam
theory, and some related two dimensional models. The sphaleron solution of these theories
is constructed. In the final lecture, the sphaleron is related to transition rates at finite tempera-
ture. In a simple quantum mechanics model, it is shown that sphalerons, not instantons,
are responsible for transitions at high temperature. The sphaleron induced rate is then
discussed in a solvable 1+ 1 dimensional model, which has many similarities to the Weinberg-
-Salam model. Finally, the result for the Weinberg-Salam model is derived, and is shown
to be large for temperatures 7 > 1 TeV.

PACS numbers: 12.15.Ji

1. Introduction

It has been long believed that baryon number non-conservation at a non-negligible
rate, if it exists at all, is a property of grand unified field theories, and should only be relevant
at energy scales E > 10'5 GeV. It is a remarkably well known fact, nevertheless, that in
the electroweak theory, baryon number is non-conserved as a result of the U(1) anomaly
[1-3]. The rate for this process was estimated by t’"Hooft at zero temperature [4], using
electro-weak instantons [5-7]. We shall discuss this result later in these lectures. The basic
conclusion from his estimate is that the rate is negligibly small. In terms of the electroweak
coupling o’ = g'*/4n ~ 1/40, the rate is

r/V ~ e‘ula' ~ 10—173.

To get the dimensions correct for this rate per unit volume, we must multiply
in some scale typical of electroweak theory, say the Z boson Compton wavelength
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~ 10732 lightyears. In any case, even after multiplying by a small space-time volume such
as 10128 year/lightyear?, the rate is so small that it is improbable that in the entire space-
-time volume of the universe, one baryon has decayed due to electro-weak processes. If
we were to naively extrapolate this rate from instantons to high temperature, the only
change we might expect is that the coupling constant would run with temperature, and there-
fore the rate never becomes significant in cosmology [8-9].

There has been a revived interest in baryon decay in recent years due to the realiza-
tion that there may be other processes which can cause baryon number change [10-12].
At high temperatures, a process which is called sphaleron induced decay exists [12-13].
It is a unique consequence of being in the high temperature limit of the theory, and in
fact the process is non-existent at zero temperature. The computation of the rate for sphaler-
on induced processes is still controversial, since it seems to contradict naive instanton
based arguments [14]. In these lectures, I will try to argue that these computations are
reliable, and that the rate for baryon number violation in cosmology becomes larger than
the expansion rate of the universe for temperatures 7 2> 1 TeV.

To understand that there may be new processes which induce transitions at finite
temperature which do not have a counterpart at zero temperature, we consider the simple
example of a pendulum at finite temperature [14]. This pendulum is shown in Fig. 1, and
the periodic nature of the pendulum potential is shown in Fig. 2. The potential is periodic
in the angular variable 8 which gives the angular displacement of the pendulum from its
rest position. Notice that the pendulum may classically exhibit small oscillations around
any of the local minimum, minima which are displaced by integer multiples of 2=,

Fig. 1. The elementary pendulum in a gravitational field
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Fig. 2. The periodic potential for the elementary pendulum
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corresponding to multiple windings of the pendulum. The pendulum has a topological
charge, which is the number of times the pendulum has wound around 27. If we define
the topological charge in Euclidian space, ¢ -» —it, the charge may be identified as

8
Q = | dix,
0

where § = 1T,

At finite temperature, with temperature large compared to the potential energy of the
pendulum, it is clear that the pendulum winds around easily. At such a high temperature,
the ensemble of states for the pendulum includes many states with energy larger than that
of the potential energy. For these states, the pendulum continually winds, and 6 samples
all possible values.

We shall study the pendulum in more detail in a later lecture. Here we shall only note
that if we tried to estimate the instanton contribution to the Euclidian action at finite
temperature, we would get a large contribution corresponding to a great suppression
of tunneling at high temperature, This instanton amplitude is ordinarily interpreted as
the amplitude for the system to make a transition which winds the angular coordinate
of the pendulum by a multiple of 2n. Recall that the amplitude of tunneling at high tempera-
ture (a result we shall derive in a later lecture) is

A~ e 5

where -the Euclidian action is
8
Sg = j (dt} #2+V(x).
0

Here § = 1)T where T is the temperature, and the potential energy of the pendulum is
V(x). At high temperature, the potential can be ignored compared to the kinetic energy
contribution. The instanton solution which changes topological charge is the solution
to the equations of motion which in the Euclidian time § takes the pendulum from 0 to 2x.
This solution is

x(1) = 2nt/p.
The action for this solution is

Sinst = 27Z2T

and diverges as T — co. The instanton induced rate therefore exponentially approaches
zero at high T

The reason why the Euclidian action and formulation of field theory is important
at finite temperature can be understood very simply. The ordinary path integral is an expres-
sion for the time evolution operator

lim,_, ,, {outle"|in},
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At finite temperature, we are on the other hand interested in
Tre ?H,

When this expression is converted to a path integral, we see therefore that the length in
time is finite, £ = f = /T, and it is Euclidian ¢ - —ir. The trace condition is satisfied
if for boson fields $(0, ) = ¢(B, r). For fermion fields, the situation is more subtle, but
it can be shown that ¥(0,7) = — ¥(8, 7). The relevant action is the Euclidian action in
a four volume (B, V), with fields satisfying these boundary conditions.

The outline of these lectures is as follows:

In the first lecture, I discuss in some detail U(1) anomalies and their physical interpreta-
tion. I derive the U(1) anomaly following closely the method of Fujikawa, which employs
path integral techniques. I derive the result for 2 and 4 dimensional gauge theories. I then
proceed to a heuristic discussion of the anomaly and level crossings of fermions in the pres-
ence of external fields. This allows for a physical interpretation of the anomaly as particle
creation in these external fields. I then provide a more systematic and rigorous derivation
of this result.

In the second lecture, following Manton, I use general topological arguments to show
that there should exist a deformation of fields which connects field configurations of different
topological charge in various field theory examples. I then argue that there should exist
an unstable solution which yields the local energy density at the saddle point of this field
deformation. This unstable solution, called the sphaleron, is explicitly constructed for both
the O(3) sigma model in 1 +1 dimensions and for the electro-weak theory in 3+ 1 dimen-
sions. I explicity show that the electro-weak sphaleron has topological charge of }.

In the third lecture, I show that the sphaleron is relevant for the computation of the
transition rate between field configurations of different topological charge, and in the
electro-weak theory provides a mechanism for changing baryon number. Following the
analysis of Affleck [32], I derive expressions for the transition rate at finite temperature.
These expressions are then used to compute the rate for the electroweak theory in a range
of temperatures where weak coupling methods are valid. Finally, following the classic
analysis of Mottola and Wipf [20] I use the O(3) sigma model in 1+ 1 dimensions to argue
that the rate should be unsuppressed even at high temperature where the weak coupling
methods fail. The rate is estimated in the electro-weak theory when weak coupling techni-
ques are no longer reliable using intuition gained from study of this model. Finally, I discuss
the apparent contradiction between instanton estimates of transitions rates and sphaleron
estimates, and their possible resolution.

2. Lecture 1. U(I) anomalies, and fermion level crossing

2.1. Fujikawa’s derivation of the U(l) anomaly

In this first section, we shall derive the U(l) axial anomaly using the technique of
Fujikawa [15]. As a result of this derivation, we shall show that this also implies a non-
-conservation of baryon number in electro-weak theory.
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To derive this anomaly, we consider a single species of massive fermion interacting
with a gauged vector potential. (I shall first consider a left-right symmetric theory, and then
later generalize to the case where there is a left-right asymmetry as is the case for the
Weinberg-Salam theory). The generalization to multiple numbers of fermions, and theories
with scalars is straightforward, and we shall not carry this out. We shall also assume the
theory has been continued to Euclidian space so that the path integral,

§ [dA] [d¥] [dP]eSF¥:4

is well defined. This analytic continuation takes ¢t — —it, 4° > —i4° and y° - —§°,
The path integral integration measure for the vector field is

[d4] = 1L, .d45(x).
The integration measure for the fermions is Grassman. The action is
S = {d'x¥Y[—iy' D+m]¥+1 Fo Fe.
Here
D =20d—igr- A
and
Fi, = 0,A5—0,A%+gf*P'4)A4}
To derive the anomaly, we use that the path integral should be invariant under a change

of integration variable. We make a local change of variable corresponding to a local U(1)
chiral rotation:

P(x) — &1NP(x)
and
P(x) - P(x)e">,

This induces two changes in the path integral. The first is the change in the action. The
second is a change induced in the integration measure. It is these two separate changes
which must compensate one another. The change in the action is:

85 = (0,2(0))Ty"ys ¥ +2ima(x) Py ¥.

To understand the effect of a change in the functional measure, we need to know
some properties of integration over Grassman variables. The first thing we need to know
is that the only nontrivial integral for an N-dimensional Grassman space is

fday ... daya, ... ay.
Now under a change of variables,
a; = E}Cuaj,
we have

aj ...ay = det(Ca, ... ay
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since by the Grassmann algebra {a,, ¢;} = 0, which also implies 47 = 0. In order to make
this integral invariant under the coordinate parameterization, it must be true that

I1da; = det (C)™' [] da,.
Under the infinitesimal chiral transformation above, the matrix C is
C = {I+ia(x)s}o(x—y).
Using
Indet C = Trin C,
we finally have to evaluate
det (C)™! = exp {Tr In (1 +iays) '}

In this expression, the trace is over the coordinate and spatial indices of the operator C.

In general, the computation of this trace is fraught with ultra-violet divergences, and
is ill-defined. To properly compute it, we must regulate in a gauge invariant way. This
is most easily done by evaluating the trace in a basis which uses eigenstates of the operator

y: DO, = 1,9,.

We must evaluate for infinitesimal o
det (C)7" = exp {—i( | dxa(x) Xk: Bl(x)ysDi(x))}-
The evaluation of the sum over k& is singular for large k. We regulate it with a cutoff M,

Xk: <P75(X)vs¢’k(x) = limp o Ek: @PZ(X) exp [~ (/M )2]y5<pk(x)

= Trys exp [—(y * DIM)*]6(x— y)
d%

= My yox | =g €7 Trys exp (= [D*D,+% g*[+*, v ]t - F,IM?).
sy (27!)“ gl 4 I

In two dimensions, the gamma matrices are the 2x 2 sigma matrices which we can
choose as y, = 0, 71 = 0,, and ys = ¢5. The first non-vanishing term from expanding
the trace arises therefore from

Zk: ¢11:("))’5q5k(x) = limy, 71{ g2 Trys[y*, 7] - F,,
N
M? | (2n)?
2

- & Trt- &F
4

exp (—k*/M?)
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In two dimensions, we see that we only get a contribution to the U(l) anomaly from
the U(1) part of the gauge group. For example in an SU(2) gauge group, the trace over
the group indices vanishes. Therefore for abelian gauge theory in 1+ 1 dimensions, we have

2
g
E Pl(x)ysPu(x) = — ki

k

In the four dimensional gauge theory, we have to expand to second order in
the F* term to get a non-vanishing result:

2
Z @I(X)’))5¢k(X) = limM—mo ig_é Tf [yS([Y;u YV]Fuv)z]

k

1 d*k
| A exp (— K M?
X oME J(zn)‘* exp (—k7/M7)

2
g ad puv

Here F® denotes the dual of F,

~-d __ 1 Aa
I’uv =7 euv}.aF .

We may now require that the change in the measure factor of the integration cancels
the explicit change induced by the chiral rotation. (There are two identical factors from
the integration measure, one from the [d¥] and the other from [d¥].) As a consequence,
we derive the anomalous equation for the axial vector current, which in 2 dimensions is

G”Wy"ys‘ll—2mi_‘l7y5 = —ig*(2n)e- F
and in 4 dimensions
6M-‘I7'y"y5¥’—2mi¢y5‘l’ = —ig?/16n*FF".

The factor of i in both these expressions may be removed by analytically continuing back
to Euclidian space. ,

For the baryon plus lepton number current anomaly in the Weinberg-Salam model,
the analysis of the anomaly is a little more complicated by the left handed nature of the
interaction with the gauge field. In the analysis presented in this lecture, we shall consider
the Weinberg-Salam model in the limit that the Weinberg angle is zero Oy, = 0. We shall
therefore ignore electromagnetic interactions in our analysis, that is we consider a non-
-abelian gauge theory of left handed quarks and leptons interacting with SU(2) vector
fields. We could include the effects of the electromagnetic interactions if we chose to, but
it complicates our analysis, and it shall be deleted. It causes no essential change in our
conclusions.
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If we niake a U(1), B+L rotation of the fermion fields, the action changes by
3S = (0,Ux))¥y*P.

The Higgs and vector meson couplings are clearly invariant under this transformation,
and make no contribution to the change in the action. Also, the right handed fermion
fields in the path integral measure do not couple to the gauge fields, and therefore when
the change in the measure due to these right handed fields is computed, there are no contri-
‘butions. It is now a straightforward repetition of the analysis done above to prove that
the change in the measure is

dp - dp exp {iN,g'*/16n> | d*xa(x)F5"Fi5(x)}.

‘The factor in the exponential is 1/2 what it would have been for the case of a pure vector
theory. Here N, is the number of fermion generations.
The anomaly in the baryon plus lepton number current becomes

3,041 = Neg'*/16n*FF°.

(If we had included the contribution from the electromagnetic fields, we would have also
included a FF*+F, F3, term on the right hand side of the previous equation.)
The contribution FF® may also be written as a total divergence,

gz
2.~ FF% = 9, K"
32n? #

The Chern-Symons number current is here
2

K = s (P W= 4 g e WIWIW),
¥/

where W is the W boson field. The current
Jp+L—2NK

is conserved, but gauge dependent. The total Chern-Symons charge

2

0= jdtKo = 3‘; ZJ‘d‘*xFFd
T

is non-zero in Euclidian space for those fields with non-trivial topology, that is, instantons.
Other fields give no contribution to Q. The integral of the divergence of the Chern-Symons
current, which is proportional to FF? is of course gauge invariant, and this measures the
amount of baryon number production.

Notice that in this derivation, no anomaly can arise in the B-L number current. This
follows because the change in the measure factor associated with a chiral rotation for the
fermions cancels that for the bosons.
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2.2. A physical interpretation of the anomaly

The chiral anomaly relates the current of fermions to external gauge fields. It requires
that in the presence of classes of external fields, the fermionic axial charge, or in the case
of the Weinberg-Salam model B + L, is not conserved. It is useful to have a physical intuitive
picture of how this actually takes place.

Qualitatively, we can understand the anomaly by studying what happens to the Fermi
sea in the presence of an external field. Consider the case of massless fermions. The Fermi
sea is labeled by eigenstates of ys. In Fig. 3, a half filled Fermi sea of states with ys = +1
is shown. Due to the the chiral invariance of the equations of motion, for every state of
positive chirality y5 = 1, there is a partner of negative chirality.

Now suppose we try to make a transition which produces a particle of positive chirality
together with an anti-particle, that is a hole in the Fermi sea of negative chirality. This
corresponds to pseudo-scalar meson production, and is forbidden by the chiral invariance
of the equations of motion.

We may however try to do this by turning on an external field, and adiabatically shifting
the energy levels. We might turn on an external vector potential which raises the energy
of positive chirality states, and decreases those of negative chirality. Then it is possible
that the occupation of the energy levels may change. For example if by applying an external
field we may make a transition of one of the negative chirality states into a state of positive
chirality, we may end up with the situation shown in Fig. 4.

We just argued however that such a situation, which corresponds to pseudoscalar
meson production is not allowed by the equations of motion. How is it that we succeeded
in making the pseudo-scalar meson? The way this happens is because in theories which
after quantization and regularization maintain the chiral symmetry there is a doubling of
the spectra. This happens for example in the lattice, where the energy is related to the mo-
mentum by E ~ sin k. There are two low energy states, corresponding to a state with
k ~ 0 and a state with k ~ =n. The second state is at the bottom of the Fermi sea, and still
has small energy. In this case, when an external field is applied, the states of small momen-

)/5:4..] )‘/5:_]
-0 - -—O--
- —o- - --o--

SRALLE
A

Fig. 3. A half filled Fermi sea for massless particles. Here the eigenstates of ys = +1 are shown in the two
columns
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Fig. 4. The result of applying an external field to the fermion system. Here we have made a transition of
a state of negative chirality from below the Dirac sea into the continuum, and Dirac sea downward creating
a hole in the Dirac sea

tum do as described above. However, the states of momentum k ~ n do the opposite,
that is, there is a negative chirality particle and positive chirality hole created. Therefore,
we produce a pseudo-scalar meson and its parity doubled partner, and therefore, therefore
U(1) chiral invariance is maintained. The basic point is that here chiral invariance does
require a doubling of the spectra, but the chiral doubled partners are at opposite ends of
the Fermi sea.

In realistic theories, we do not wish to have an energy momentum spectral relation
where large momentum particles have small energy. Therefore, realistic regularization
schemes invariably break chiral U(1). They have the effect of making after regularization
the contribution from states of large momentum ignorable. Therefore, after regulariza-
tion, our naive arguments about level crossings in external fields do in fact lead to the conclu-
sion that chiral symmetry is broken. This observation leads to the physical origin of the
U(1) anomaly.

I shall now derive the U(1) anomaly from these physical considerations using the
example of 141 dimensional massless QED. I will follow closely the beautiful analysis
of Ambjorn, Greensite and Peterson [16]. The action for this theory is

S = [ dx¥P{y- (—i0—eA)}¥+% F,F*.
In the analysis that follows, we shall work in the gauge
A° = 0.

The gamma matrices for 141 dimensional fields theory have been described above.

In the analysis that follows, it will be useful to regularize the axial vector current by
split pointing the current. We shall first check to see that this regularization method repro-
duces the results of Fujikawa’s analysis, as it must. I let ¢ be a parameter ¢ < 1 which in the
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end of our computations we take to zero. The split point chiral U(1) split charge is

Q1) = [ dxdyd(x— ) PHx, 075 ¥(y, 1) exp {ie § dv' A (x', 1)

with
B 1

—x2/2¢
° 2nme

This definition provides a gauge invariant method for splitting the points apart in the two
fermion fields which define the current operator. This splitting makes the definition of the
chiral charge finite and well defined for any finite value of e.

‘We may now use the equations of motion on this expression for the split point current.
We find

d
5, 250 = ie fdxdyﬁe(x— ) (x=y)

x { = 0.4, (x, O¥(y, D +0,A.PN(x, )5¥(y, )}

Now for matrix elements of fermion fields in the vacuum, as finite temperature expecta-
tion values, or as matrix elements between the in and vacuum in external fields, the short
distance singular behavior of these operators is determined by the vacuum expectation
value. Now

1 .
O1PH(x, D¥(y, 1) 0> = f d*kj(2m)* Try° (———) gy
7P
= 0.
On the other hand, for the other expectation value, we have
1
COIHGx, 1y ¥(y, 1) 03 = j dKJ(2m)? Tr 5! (-_) i)
7P

1

i
T (x;—y1) ’

We find therefore in the limit that ¢ — O that the axial charge satisfies the anomaly
equation

d
2; 250 = fefz J‘dde(x, t)

which is the same result derived in Fujikawa’s method.

Now we shall consider massless Dirac fermions in the presence of an external field.
The purpose of this exercise will be to demonstrate that the number of particles which cross
levels in the presence of this external field is precisely the value given by the chiral U(1)
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anomaly. The field we shall consider is
Ai(x, 1) = O)A.

We expand the Dirac field in terms of creation and annihilation operators as
dk .
P(x,t) = ooe {u (b, +v_ (Dt}

The Dirac equation for the spinors v and v is
idu, = vs(k—eA(t))u,,
i0v_; = ys(k—edA(Dv_,.
For t < 0, the spinors in the previous equation are given by
u(t) = e~ U = ul®(y),
v (1) = €9 = v ).
Here w, = |k|. Notice that ¥ and v are helicity eigenstates
ys = sign (k) u”,
508 = sign (k) vi2..
For time ¢ > 0, the energy levels labeled by k become shifted as
E, = |k|—esign (k)A.

As shown in Fig. 5a, the states of positive and negative helicity are shifted as shown in
Fig. 5b.

Those positive helicity and positive energy states with energy 0 < E; < e4 are now
occupied, and negative energy states with energy 0 > E, > —eA are now unoccupied.
Compared to the vacuum in the absence of an external field, there are now particles and
anti-particles present. To count the number of such states, we imagine the system is in
a box of length L. The spacing in momentum between these states is therefore 2r/L.

ql bl --o-- --0--
--o-- --o-- — - 0= =
E . —~—
T ——— —_—— * :> . .

Fig. 5. a) The energy levels of the Dirac equation in the absence of the externally applied field. The two axes

correspond to positive and negative helicity. b) The energy levels in the presence of an external field. Here

positive helicity states cross into the continuum and negative helicity states are shifted down forming holes,
or anti-particles



261

The chirality change is the number of particle plus the number of holes created. We find
6Q = 2eA[(2n(L)

L
=L J dx Ja,Al(t)
n
[¢]

e
= — | d®xF4,
211:.[ x

This is precisely the expression for the anomaly as derived by the method of Fujikawa.

We can see this anomaly also directly arise from our point split definition of the chiral
charge. In this case, we evaluate the charge in momentum space for time ¢ after the turn.
on of the external vector potential. We obtain

[ dk  _k—enr?
{0141Q510;,> =L | —e (k=AY 00, IOy st (1) + d_pdt ot 1 () sv i (8) 10,,>

e HEmeDE (tyysv_a(D)

e~ # e gign (— k).

2n
" dk

2n
" dk
J 2=
Now we can see the nature of the possible singularity of dealing with an unregulated theory..
If we for example in the previous integral first took the limit ¢ — 0 before doing the integral,.
then the above integral would be of the form + oo from the upper half integration range:

and —oo from the bottom half, and would therefore be undefined. We see however, that:
this integral is

ed
L 2
<0in‘Q5‘Oin> = — J dke—ie(k—eA)
2n
~eA

L2A
=—2e
2n

= 0Qs.

We could carry out precisely this same kind of analysis for the 4 dimensional gauge-
theory, although the conclusions and analysis are here essentially the same. There is a po--
tential problem with interpreting the change in the axial vector current in terms of level
crossing when there is radiation in the final state. As has been shown by Christ [17], the
anomaly is still true. However, what happens is that instead of all the anomally being.
associated with the levels which have crossed, some of the anomally associated with radia~-
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tion fields has to be defined to be part of the vacuum charge and is hidden in a normal
ordering term in the definition of the chiral charge. This is a consequence of the fact that
at late times, the fermion fields are propagating in the presence of the radiation field, and
in some sense cannot be thought of as true asymptotic states. (If the vector potential is
a constant at large times as was the case above, then the field tends to a gauge transforma-
tion of the vacuum, and the asymptotic states are in this sense well defined). We shall not
further concern ourselves with this subtlety here.

3. Lecture 2: topology and energy barriers

3.1. Introduction

In this section, we shall analyze some topological aspects of various theories. In.
particular, we shall consider systems with multiply periodic potentials, that is where there
are degenerate minima. Conventional perturbation theory is done as an expansion around
one of these minima. We shall here discuss how these multiple minima are classified,
as well as the energy barrier which separates these minima. Following Manton, we con-
struct a topological argument which proves the existence of this barrier. We construct
classical unstable static solutions of the equations of motion (sphaierons) which allow
an evaluation of the height of this barrier.

The relation between topology and stationary phase points may be seen in a simple
example. Consider the torus shown in Fig. 6. We can consider height as a function of posi-

HEIGHT

Fig. 6. The stationary phase points on a torus. There is a class of noncontractible loops on the torus shown
‘ with the dashed line, which passes through the two stationary phase points
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tion on the surface of the torus. Because the torus is compact, there must be a minimum
at the point P, and a maximum at the point P;. This is not surprising since any compact
object, for example a two sphere, must have such a maximum and a minimum,

What is surprising about the torus is that the topology of the torus also requires the
existence of two stationary phase points, denoted by P, and P,. To construct a topological
argument, consider the class of loops, an example of which is shown by the dashed line
in Fig. 6, which thread around the torus and are required to pass through the point P,. On
each such loop, there is a maximum of height. The minimum value of all such possible
maxima gives the height of the point P,. Therefore, there must exist a stationary phase
point P, which is a maximum as one passes around the loop, and this is the maximum which
is the minimum of all maxima, of a variable which parameterizes different loops.

In field theory models, the classification of different possible minima, and the barriers
between them is useful since we may in general make transitions between these different
minima. We shall later see that in the electro-weak theory for example, the transition
between topologically distinct minima of the effective potential give changes in baryon
number.

The pendulum model is a useful example of a system with many local minima. These
minima are characterized by the angular variable of the pendulum as shown in Fig. 2. If
we attempt to deform the coordinate of the pendulum from one of its minima to another,
we must pass through a local maximum in energy, and this energy is the height of the
barrier between the two local minima. There is a static unstable classical solution of the
equations of motion along the path of deformation which corresponds the top of the barrier.
We call this solution the sphaleron. We have

Ebﬂrier = V(xsphll)'

This will be generally the case in field theory models. When there is a stationary phase
point of the energy, then there should also exist static, unstable solutions of the classical
equations of motion, sphalerons. If it can be argued that the sphaleron lies on a path of
deformations of classical fields which connect two minima of the effective potential theory
with different topological characteristics, then the sphaleron gives the height of the energy
barrier between these minima.

3.2. The O(3) sigma model in 1+1 dimensions

The 141 dimensional O(3) sigma model provides the simplest field theory model
for topological charge changing processes [18, 19-20]. (There has been an analysis similar
to the one of Mottola and Wipf for the U(1) Higgs model in 1+ 1 dimensions, with similar
conclusions [21].) The action for this theory is

1 R A
S = 28" Jvdzx((?,‘n - 9,n).

The field n is a unit 3-vector
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This theory bears a remarkable resemblance to gauge theories in 3+ 1 dimensions.
In particular, this theory is scale invariant and asymptotically free. At high temperatures,
a mass gap of order g*T develops for the scalars, in analogy to the situation in non-abelian
gauge theories for the magnetic correlation length [9, 22].

Finally, and most importantly, there is an anomaly in this theory for fermions. To see
this, we may extend this model in a supersymmetric way, including Majorana fermions
in the adjoint representation [23-24]. The action for this theory is

1 o
5= 50 j Px{L @Gn) +1 P =iy DV, +3 (TR)?)

with the constraints that
nn® =1,
n¥, = 0.
It is possible to show that in this theory that the axial vector current,
Js = Eijk';iqjﬂu‘?sq'k
is not conserved
2

i ~ ~ “
0,5 = & e, - (0,1 x 0,n).
¥4

The quantity
1 “ R R
Q= > szxemn *(0,n x B,n)

is the topological charge for this theory. The topological charge density may also be written
as the divergence of a current

3,K* = g,n - (3,nxd,n),

where we can choose
K# = 2" cos @ 0,9.

We have here written the unit vector n as
n = (sin @ cos &, sin O sin &, cos O).

There are of course instantons in this model [18]. The instantons have topological
charge n, and in terms of the redefined variables
z = t+ix
and
ny+in,
- 14+n,
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are the simple meromorphic functions
n
Z— aj
W, =c¢ .
' Z - b]
i=1

Anti-instantons have z — Z. The action (+) and the topological charge (—) are in terms

of w given as
4o 1 ow oW, ow o
2 v ez oz T oz ez

The above expressions for instantons are valid at zero temperature. At finite tempera-
ture, care must be taken to maintain periodicity in Euclidian time under ¢ — 1+ 8. Single
instanton solutions are nevertheless easy to construct by taking a; = a+ jBand b ;= b+jB.
The result of doing this is

sinh n(z —a)/B

¢ sinh n(z—b)/B

The existence of Euclidian space equations of motion for this theory should be
expected. The gauge group is O(3), corresponding to the 2-sphere S,. The two dimensional
manifold may also be parameterized as S, by a stereographic projection of the variables
in the plane into the angular variables of the sphere. The winding number of the instanton
corresponds to the mappings of S, — S,.

Ordinarily, instanton solutions are interpreted as tunneling solutions between degen-
erate vacua. (Solutions of classical Euclidian equations of motion correspond to tunneling
processes in the WKB approximation.) We shall here explicitly construct a path of non-
-trivial topology which allows for a transition over a barrier between these vacua. If we
view the parameter which labels that path u as time dependent, then the path so constructed
will make a transition by one unit of topological charge, and therefore corresponds to
a process which if dynamically realized would change chiral fermion number.

We must be a little careful here about what we mean by transitions between different
vacua. What we precisely mean here are changes in classical fields between a classical field
oriented uniformly in one direction to the same field by intermediate fields which change
winding number. A uniformly oriented classical fields has zero classical field energy.
However, as a consequence of Coleman’s theorem, in 1+ 1 dimensions, the ground state
has a disordered ground state, and the expectation value of the classical field must vanish.
We shall cure this later by introducing a term into our action which explicitly breaks the
rotational symmetry, and allows therefore for an expectation value for the field.

Consider the following mapping of the configuration space to vector n:

n = (sin g sin 6, sin? p cos 6-+cos? g, sin p cos p(cos §—1)).

This mapping satisfies
® n? = 1, and is continuous in its arguments
o for fixed u, 6 is the azimuthal angle of a circle S,
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@ we have
n(y, 0 = 0) = n(u, 8 = 2m)

=(0,1,0),
=00 =n(u=r0
=(0,1,0)

@ cach point on S, occurs for at least one (u, 6), and if n is not the point (0, 1, 0),

then u(n) is unique '

@ as u ranges from 0 to = and 4 from 0 to 2x, this mapping has topological winding

number 1.

The first four items above are essentially obvious, and easy to show. To show the fifth
point, it is straightforward to show that the mapping above comes from the points of
intersection between a plane and a 2-sphere as shown in Fig. 7. This figure clearly shows
that the mapping corresponds to looping a 1-sphere around the 2-sphere, and we expect
it has non-trivial winding number. If we let u and 6 parameterize our configuration space
and let u = u(r), the topological charge density is

1. . R 1
e’"s—n n-(0,nxdn) = o sin u(1 —cos 6).

Integrating this over all theta, and between 0 << u <<y’ gives

3Q = 1 (1—cos i).

For i/ = m/2, the topological charge is 1/2. In the initial and final configurations, we have
a uniformly oriented field configuration. We would naively expect that the top of the barrier
corresponds to i/2 unit topological charge.

For the 1+1 dimensional O(3) sigma model, it is difficult to construct an explicit
sphaleron solution which corresponds to the top of the barrier. Moreover, as a consequence

P,COSK = pysinu = COSK

Fig. 7. The intersection S, between the plane and the two sphere S,. The points on the plane are parameteri-
zed as p,cosu—p,sinp = cos
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of Coleman’s theorem, we can never spontaneously break a continuous symmetry in 141
dimensions, so saying that the vacuum corresponds to a field pointing in some specified
direction is without content. To be able to analyze these aspects of the problem, it is con-
venient to modify the O(3) model. We do this by explicitly breaking the symmetry, and
modifying the action to

S = éjdzx{% (@n)? + 0*(1 —ny)}.

Adding this last term to the action breaks the scale invariance of the action, and therefore
allows for the existence of static solutions which are stable under scale transformations
(which may be unstable under other modes), and will therefore allow the sphaleron to
exist.

For temperatures

T < o/g?

the mass gap generated for the scalar boson propagator is sufficiently large so that weak
coupling methods are reliable. To see this, suppose we are at high enough temperature
so that the theory becomes effectively one dimensional. That is, in the action it becomes

B
a good approximation to take j' dt ~ B, and ignore time derivatives. Then, the action
1]

becomes
S = f;lﬁ de{% @n)* +(1 —ny)}.

Here we have rescaled the spatial coordinate x by w to make it dimensionless. It is now
clear that the coupling constant of this one dimensional theory is

g? = g*l(w)

and weak coupling techniques are valid when T < w/g2. At temperatures larger than this,
the relevant scale in the problem becomes the magnetic mass, and then

g* =gBg*T)~ 1

so that perturbation theory is never valid.
This is parallel to the situation in the electro-weak theory. At temperatures

My < T < My/g*

weak coupling techniques can be shown to be reliable by a scaling argument identical
to the one given above for the O(3) sigma model in 1+ 1 dimensions. At higher temperatu-
res, infrared singularities are cutoff by a magnetic mass of order g27, which however invali-
date the use of weak coupling methods.

We can now easily construct the sphaleron of the O(3) sigma model. Consider the
mapping above where we allow 8 = 6(x). The analysis of the topological charge goes



268

through as before, and such a field has topological charge of (1 —cos u)/2. We can now
minimize the energy with

n = (sin 6(x), cos 6(x), 0).
The action for this configuration is
S = sin® p/g? { dx {3 (d0/dx)* + w*(1 —cos 0)}.

This action, which is the same as the energy for a static configuration, has a maximum
at gy = n/2, corresponding to being at the top of a barrier for changing topological charge.
Extremizing the action yields the sphaleron

Bppar(x) = 2 sin” '(sech wx)
and the energy of the height of the barrier
Esphal == 2w/g2.

Although we have found an explicit sphaleron solution in this theory, we are not
guaranteed that there might not exist other solutions with a lower barrier height. Therefore,
at best we can only be convinced that by finding such a solution we get an upper bound
on barrier height, which we shall later see corresponds to a lower bound on transition
rates. Finally, unless small fluctuations are carried out around the sphaleron, the sphaler-
on itself is of zero measure in its contribution to the path integral. We cannot a priori

rule out the possibility that summing over such fluctuation gives either a zero or numerically
very small result.

3.3. Topology and sphalerons in electro-weak theory

In electro-weak theory, we can classify topologically inequivalent vacuum field con-
figurations. Recall that if we have any field configuration, then a gauge transform of that
field configuration has identical energy. There are gauge transformations which can be
continuously connected to the identity transformation, and for fields which are such trans-
forms, we can fix a gauge by a continuous transform of the fields.

There may be transformations which cannot be continuously shrunk to the identity
however. For SU(2) gauge theory in 3+ 1 Euclidian dimensions, we can see immediately
that this is the case. If we consider gauge transformations which for large spatial
Ix| behave as

Iimlga_.mg(x) =1

then the set of points, E; of X, may be mapped into S; by a stereographic projection.
On the other hand the group manifold of SU(2) is also S;. Therefore, there should be
a mapping of S; — S; with a winding number n. Gauge transformations with non-zero
winding number may not be continuously distorted into the identity element.

The energy of SU(2) gauge theory as a function of the fields therefore has a structure
analogous to that of the pendulum as a function of the angular coordinate of the pendulum,
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Fig. 2. As a function of the fields, there must be a set of local degenerate minima cor-
responding to topologically inequivalent lowest energy field configurations. The fields
may be distorted between one minima and another, and in general there is a barrier between
these minima. The labels in each minima are not of physical significance, since the fields
there are in fact pure gauge.

There is a topological charge associated w1th the gauge theory. It is

2

g yRg—
= d*xFF
Q=52 J ¥

and a Chern-Symons current

2
g ppe.

BT 32

The value of the Chern-Symons charge is gauge dependent but clearly the integral of its
four divergence is gauge independent, and it is this change in Chern-Symons charge which
measure the amount of B+ L violation,

5JB+;_ = szaK.

(The relation between the amount of B+ L violation and the Chern-Symons charge was
discussed in the first lecture.)

There are no instanton solutions in the broken symmetry phase of electro-weak theory.
This is because of the non-trivial vacuum expectation value for the Higgs field. There
are of course field configurations with non-trivial winding number. Also, as a consequence
of the vacuum structure and the topological classification discussed above, we expect that
there may be transitions between these different vacuum field configurations.

We can provide an estimate for the action of field configuration with non-zero topolog-
ical charge. Recall that in the electro-weak theory, ignoring electromagnetism as we shall
do throughout these lectures,

S = [ d*x{} Fi,F* +(D,®) (D*®)+ V(®)}.

Here the Yang-Mills part of the action is for SU(2) vector fields. The Higgs field is a complex
SU(2) doublet, and the potential ¥(®),

2\2
V(&) = A (qs*«p- %)

has a minimum at a non-zero value of & which we take by convention to be

where
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is an elementary isospin —1/2 spinor. We have here ignored the fermion contributions
to the action.

The contributions from the scalar fields are always positive. Therefore a lower bound
for the action is provided by the SU(2) vector field strength. On the other hand, we have

(F+F%* = 2(F*+FF?
so that the lower bound is
8n”
g2
Since o' = g2/4n ~ 1/40, we expect that the contributions of such configurations to the
Euclidian path integral should be small.

We can now study the stationary phase point which separates topologically distinct
minima of the electro-weak theory. We begin by noting that the Higgs field is of the form

Red,
Im@,
Red,
Im@,

S >

0.

Now as in the case of the O(3) sigma model, we make a topologically non-trivial map from
the spatial manifold onto the field space as

sin p sin 6 cos ¢
sin g sin 0 sin ¢
sin? p cos 6+ cos® u
sin p cos p(cos —1)

&(p, 0, ¢) =

As was the case for the sigma model, the set of points
x(u, 0, ¢) = (sin u sin 0 cos ¢, sin y sin 0 sin ¢, sin? p cos 84cos? u, sin p cos p(cos 6—1))

corresponds to the intersection of a plane with a three sphere. This mapping is clearly
topologically non-trivial, and takes the vacuum expectation value of the Higgs field at
u = 0 into the vacuum expectation value at u = .

We can write

¢(,ua 0’ ¢) = I/u—1/2'
It is straightforward to show that

_ e™(cos p—isin gcos §) sin psin e
~ \ —sin psin ™ e *(cos pu+isin pcos )"

The matrix ¥ can be thought of as a gauge transformation. We can write the vector field
resulting from this gauge transformation as

T A, = (-’—aV) vl
g
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To see that a field configuration with this topology has a non-trivial winding number,
we must compute the topological charge. We let the parameter u(z), where we assume that
u(—o0) = 0 and u{o0) = n. We also need r dependence of the field configuration so that
it will have finite energy. We here will let the field configuration be

ds(ﬂ, r, 0’ ¢) = [l_h(r)] (S—iu cos ”> +h(r)Vu-1/2
A =f(r)—i—6V'V'1.
g

Requiring the solution to have finite energy implies
lim, ,oh(r) =0, lim,,  h(r) =1,
lim,,o f(r)/r =0, lim,, f(r) =1.

Notice that for u = 0 and for u = =, these fields are those of the vacuum.

We can now compute the topological charge density. For 0 < u < n, after a good
deal of algebra, one can prove that 0 < Q < 1. At u = =/2, the topological charge is 1/2.

It may also be shown that the Ansatz above for the fields provides a solution of the
equations of motion. This is non-trivial because of the assumed spherical symmetry of the
fields f and A. The energy function has its maximal value at u = =/2. The solution at this
value of p is therefore the sphaleron of the electroweak theory. It is the classical solution
half way between two different topological sectors of the theory. (We have not proven
here that this solution truly corresponds to the stationary phase point. However, it is possible
to do this.)

At u = n/2, the energy functional is

I A (A 2
E—Jd xg2r2(<dr) + F(f(l“f))>

v* ((dh\%> 2 2 mt 2

Minimizing this equation with respect to f and g gives the sphaleron solution.

The form we have written the sphaleron in is perhaps not the simplest for further
analysis. The expression can be simplified a bit by making a gauge rotation and a custodial
SU(2) right transformation. To understand the custodial SU(2) right transformations,
we first note that ordinary SU(2) left transformations rotate the Higgs doublet as

¢i b ¢i+i87ij¢j
The custodial SU(2)g transformation, which is also a symmetry of electroweak theory

in the absence of electromagnetic interactions, is an SU(2) symmetry where the Higgs
doublet is relabeled as

2,

D,)°
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We can simplify our expression with the transformation

; 01
=1 o)

0 —i
UR:(——i 0).

The vector field is unchanged by the U, transformation.
After such a transformation, the sphaleron is of the form

and

Ai=2"95:
and
@ = J2oh(E)r - Tu_y),
where

& = gur.
This form for a static solution of electro-weak theory was originally proposed by Dashen,
Hasslacher and Neveu [25], and was discussed by Soni [26], and Boguta [27].

This Ansatz for the sphaleron has the nice property that it is invariant under a com-
bined rotation plus gauge transformation plus custodial SU(2)g transformation. It is not
however invariant under rotations plus gauge transformations alone. To see this first notice
that under a rotation plus a gauge transformation, the vector field can remain invariant.
Under the same transformation, the scalar field rotates. This rotation may be undone by
a SU(2); rotation.

The sphaleron is not a stable solution of the electro-weak theory. To investigate
stability, we can do small fluctuations in the presence of the sphaleron. Since the sphaleron
is invariant under R 4+ SU(2), +SU(2),, we find that the small fluctuations may be expanded
in a partial wave expansion. We will not show, but it is indeed possible to show, that there
is a single unstable mode which is a singlet under R+ SU(2)g +SU(2), {20]. Al of the non-
-singlet modes and radial excitations of the singlet mode have positive semi-definite energy.

There is a set of six modes which are zero energy. Three of these correspond to
translations of the sphaleron, and three to a R4 SU(2), transformation. Neither of these
two transformations may change the energy of the sphaleron, so therefore the small fluctua-
tions must give zero energy modes. In Appendix A, we discuss the construction of these
zero modes.

The sphaleron may be easily constructed numerically. There are no known analytic
solutions. The energy of these solutions may also be evaluated. For 0 < 4/g? < o, the
sphaleron energy is

4nv
E_=—A,
g

sp

where 1.52 << 4 < 2.70. For i/g? = 1, we have 4 = 2.07.
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We can also directly evaluate the topological charge of the sphaleron. We already
evaluated this in general, but it is useful to directly compute it here. In order that the only
contribution to the Chern-Symons charge comes from K?°, and not the divergence of K, we
work in a gauge where K — 0 at spatial infinity. We can do this by a non-singular gauge
transformation,

U@F) = exp [iO() - 7],

where 0 < @ < m as 0 < r < 0. We assume that at large r, @ — = sufficiently rapidly
that the Chern-Symons current vanishes rapidly enough that there is no surface contribu-
tion to the topological charge. Under this gauge transformation, we have

_[1-2fJcos ©—1

A? ia >
grz il
1-2f}sin@
+ [ f]j (5“,1‘2—'1‘,4“,)
gr
1 d@ rir,
g dr r*’

This expression for the vector potential may now be inserted into the expression for the
Chern-Symons charge, with the result

Ocs = % -

We have seen in this lecture therefore that in electro-weak theory, there is a path
which connects vacua of different topological charge, and hence baryon number. There
is a path of deformation of the fields which connects these different minima. There
is a barrier along the path of deformation, and an unstable static classical solution of the
equations of motion which allows the computation of this height has been presented.

This solution of the static equations of the motion has 1/2 unit of Chern-Symons charge,
and is the sphaleron.

4. Lecture 3: the sphaleron and baryon number change at finite temperature

In the previous lecture, I showed that there exists a finite energy barrier between
topologically distinct vacua, and the transitions between these vacua in the electro-weak
theory induce a change in baryon number. Naively, we might expect that the rate of transi-
tion would be of order [12]

IjV ~ T*ke ™7,

The factor of T* is to give the rate per unit volume the correct dimensions. The exponential
factor is the requirement that states of the system have sufficient energy to transit over
the top of the energy barrier. Notice that at low temperatures, this process of charge change
decouples, and at high temperatures it decouples.
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Of course to compute the rate, one must know the prefactor x, and since this factor
may have a non-trivial temperature dependence, the rate itself may be greatly modified.
The rate itself might even be zero if by some circumstance k¥ = 0.

We can see that the factor.x may have a strong temperature dependence. At finite
temperature, the Z-boson mass is temperature dependent,

My = My0)v1-(T/T),

where T is the critical temperature of the electro-weak theory at which the SU(2) symmetry
is restored [28-30].

At high temperatures, by the scaling arguments presented in the last lecture, the only
size scale that the sphaleron may depend upon is the Compton wavelength of the Z-boson.
This assumes we are at temperatures M, < 7, so that the Euclidian time integral in the
action may be integrated out. We may or may not choose to work in the perturbative
regime where T < My/g?. The only scale available to parameterize the sphaleron size is
1/M,, and this diverges at the critical temperature. Therefore, if we were to make a ditute
sphaleron gas approximation, where the rate is estimated by the decay of a single sphaleron,
we might expect that the rate prefactor k would have to vanish as 77— 7. The sphaleron
size has become much larger than a typical thermal wavelength.

For T > T, the situation is even more mysterious. Here there is no sphaleron solu-
tion at all. At such temperatures, of course the three dimensional coupling constant which
parameterizes interactions for the high temperature theory

_ ﬁaT
T My(T)

%)

has diverged at T = T,.. Of course, for high temperatures, the coupling constant does not
really diverge. Presumably the theory is cut-off at a size scale typical of a magnetic screening
length, d ~ 1/g2T [22, 9]. Due to the smallness of this magnetic screening length, perturba-
tion theory has however broken down, and our semi-classical picture in terms of transi-
tions across tops of energy barriers are no longer sensible.

In this lecture, I shall explore the formalism for computing finite temperature sphaler-
on induced transitions. In the first section, I review the analysis of Linde and Affleck
[31-32], for computing transition rates at finite temperature. In the second section, I discuss
the application of this formalism for the computation of the transition rate in the O(3)
sigma model. I analyze the transition process in the perturbative and non-perturbative
regime. In the next section, I present the results of a similar analysis applied to the electro-
weak theory, and estimate the rate for baryon number changing processes at high tempera-
ture. I show the rate per particle is 9-10 orders of magnitude faster than the expansion
rate of the universe at a temperature just below that of the electroweak phase transitions,
and argue the rate is larger at higher temperatures, even when the SU(2) symmetry is re-
stored. In the last section, I address some confusion concerning an apparent discrepancy
between the rate predicted by sphalerons and that for instantons.
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4.1. Transitions at finite temperature

There are two regions where the formula for transitions from a metastable to a stable
state, or between degenerate states, at finite temperature are simple. The first simple case
is when the temperature is small compared to the mass scale of any particles in a theory.
In this regime, the transition proceeds by quantum mechanical tunneling.

To understand the tunneling computation, consider the potential drawn in Fig. 8.
At temperatures small compared to the frequency of oscillation at the bottom of the po-
tential in the unstable minimum, we expect that there is only a very small probability for

V
H 2
~F — w_

Vv

V”~ 2 0
NG
X
XO

Fig. 8. A potential with a metastable minimum. The height of the barrier is ¥V, and doing a Gaussian
approximation around the metastable minimum gives frequency of wo, and around the maximum iw-

a state to make a real transition over the top of the barrier which separates the metastable
state from the stable state. Therefore the process proceeds by tunneling under the barrier.
The rate for each state to make a tunneling transition is I'(E) = 2 Im E. Taking the Boltz-
mann average, we find

I =2ImF,

where F is the free energy of the system.

It is straightforward to compute the free energy in a dilute gas of instantons. In a dilute
gas, the free energy is the sum of all of the separated instantons, and exponentiates. In this
way, we find

F/V ~ exp(-sinst)'

In the electro-weak theory, of course instantons are not true solutions of the equation of
motion, and we cannot in general include their effects so trivially. Nevertheless, as discussed
in previous lectures, for processes which involve topological charge change, it must be true
that S > S,,,,. For such processes at temperatures small compared to particle masses,
we therefore have that the rate, up to a prefactor, is less than exp (—Sj,,)- The prefactor
has been computed for the symmetric theory where instantons are true solutions of the
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equations of motion, and the prefactor cannot compensate the suppression due to instan-
tons [4].

The other simple limit is where the temperature is of order or large compared to the
height of the barrier. When the temperature is large compared to the barrier height, we
expect unsuppressed transitions. In this temperature range, in the electroweak theory,
we will find however that it is not possible to compute the decay rate by weak coupling
methods. However, if the temperature is T <C ¥, this process may be computed by weak
coupling methods. Here we simply compute the rate of transitions of states over the top
of the barrier. In our later computations, we shall assume that T> M, since this consider-
ably simplifies the analysis. In general however it may be possible that the rate of processes
going over the top of the barrier may dominate over tunneling processes even for somewhat
smaller temperatures [34]. It is obvious however that at some sufficiently small tempera-
ture, it must be true that the tunneling process becomes dominate, simply because the
tunneling process does not turn off at zero temperature.

We can estimate the rate for going over the top of the barrier in Fig. 8 when T'> w,.
In this limit, we expect that classical thermodynamics should give the correct result. The
rate of making transitions over the top of the barrier is

Ir= <5(x _xbarrier)e(v)v>’

where v is the velocity operator. This expectation value is simply the flux of probability
over the top of the barrier. We can compute this as

. J dpdx €Xp { ”ﬁ{é— p2 + V(x)})é(x _xbarricr)vg(v)

r [ dpdx exp (- B2 p*+ V(D)D)

Wy
~ 9

e 8o,
2n

We have denoted the height of the barrier as V,, and the frequency of small fluctuations
around the metastable minimum as . To do the integral, we expanded the denominator
above in Gaussian approximation.

We can now relate this expression for the rate to Im F. To do this we take the expres-
sion for the free energy and expand it around the top of the barrier, and around the minima
in the metastable configuration.

ImZ

Im § dpdx exp (= B[5 p*+Vo—F 0_x"])
§ dpdx exp (= [} p* +5 0ox’])
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In this equation, the factor of w.. is the rate of decay in small fluctuations at the top of the
barrier. The factor of 4 comes from properly defining the analytic continuation of the
integral over x so as to be convergent.

We now have a relation for the rate as

w_
r~ —ﬂImF.
T

We shall use this relationship throughout our analysis. It should be carefully noted that
this formula has been derived in Gaussian approximation. I know of no valid derivation
beyond Gaussian approximation. (The derivation we have given here can be put on a more
firm mathematical footing, as it was in its original derivation [33].) In field theory, the
Gaussian approximation is equivalent to weak coupling, and this will limit the quantitative
range of validity of our results. For the electroweak theory, we shall be able to make quanti-
tative conclusions in the narrow range of temperatures below T,

MAT) <« T €« MAT)Jo'.

It is true that for a temperature dependent mass, there is always a solution for this equations.
in a range of temperatures below T,

The derivation for high temperatures must be extended now to systems with infinite:
numbers of degrees of freedom for it to be useful for field theory. In the Gaussian approxi-
mation for both I' and Im F there is the same correction for each new degree of freedom

fdp'dx’exp (B3 p*+3 0% ?]) o

fdp'dx' exp(—B[L P +L0x?]) o’

Therefore the relation between the rate and free energy is not affected.
For systems with infinite numbers of degrees of freedom, we can write down an explicit:
formula for the decay rate,

w_ ImZ,,,,; . det, ®2\'* _
barrier Im( $ 0 e BVo

n Z, n det; ©*

oo sinh (B06/2)\ _pv, | ©@- D0 oo ,
2 1 (H sinh (B')2) )e 2 (H o' >e ' ®

In the last line we have taken the limit 7> w.

(o)

4.2, Transition rate in the O3) sigma model

We will now evaluate the transition rate for topological charge in the O(3) sigma
model. We shall always work in the region where T> w, where @ was the symmetry break-
ing term in the action, in order that high temperature methods may be used. We shall
consider two separate regions. The first is T < w/g?, where weak coupling techniques may
be used, and the second is T > w/g?, where strong coupling analysis is required.
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In the weak coupling region, we must compute the decay rate, which is given as the
last formula of the previous section as

o_ det, w2\1/2
Im L4 g e~ PEw,
det; @

To compute the determinant, we need the modes of small fluctuations. We can get these
modes by letting
1
J1+u?

n= (sin (€,pp +0), €08 (E4pp +0), 1).
Using this in the O(3) sigma model action to quadratic order in small fluctuations gives
the equations of motion

d2
Hu = {_ e +o? (1-6 sech? wx)}u = A

d2
Hy = {— = +w?(1 -2 sech? wx)} v = Ajv.
X

The operator H, corresponds to fluctuations which are in the direction of the loop
variable which changes topological charge, and is orthogonal to the direction of the ‘orbit
of the sphaleron. We expect this operator to have a negative eigenvalue. There is also a zero
mode associated with a rotation of the sphaleron. Explicit analysis confirms that these are
in fact the only zero and negative mode for u. The operator H, has no negative mode, and
a zero mode corresponding to translations of the sphaleron.

We could at this point compute explicitly the determinant of small fluctuations. This
has been done by Mottola and Wipf [20]. We can however extract all of the essential features
of the result without ever doing the explicit sum over eigenvalues. These features follow
from the result of Eq. (o), (B).

To analyze the rate, we first must clean up one factor with which we have been a little
sloppy. That is the factor of zero modes in Eq. (®). This has been discussed much in the
literature, and we shall not repeat the formal analysis here. We only must notice that the
determinants relevant here come from small fluctuation in the 1-dimensional theory, not
in the 2-dimensional theory. Therefore, upon scaling all variables in the 1-dimensional
theory so that they are dimensionless, scaling by w, we have

8= vy (II‘_"_"> e,
2n w

The product over frequencies has the zero modes deleted. Here the factor N, is the number
of zero modes, which is two in this case, and g, is the coupling constant of the reduced
dimensional 1-dimension theory

g = Tg*|o.



279

The factor of NV is a dimensionless normalization integral for the zero modes, N, and the
volume of the symmetry group associated with the zero modes V. Up to a constant, this
group volume is the ordinary volume of space, V, times @ to make it a dimensionless
volume. The frequency w.. is a constant times o by dimensional reasoning. The remaining
product over frequency is dimensionless, and has no dependence on g2, so it is a constant.
We find therefore that the rate per unit volume is

IV ~ o?gy2e PEen « (g2 T)%a; 2o FEeen,

The corrections to this formula are constants with no dependence on T, w or g.

The formula for the rate is written in a very suggestive way. The factor in front g2T
is the mass gap of the theory at high temperatures. What happens when the temperature
becomes so large that g, ~ 1? Notice that E_, ~ 1 /a3 so that this formula tends to M;p.
We will now show that this smoothly maps onto the result we expect for T> w/g>.

To understand the transition rate at high temperature, recall that the dynamics
is described by a 1-dimensional field theory,

S = %ﬂ f dx {1 (@n)* +(1—ny)}.

The 1-dimensional coupling constant is becoming large, so the system is becoming disor-
dered. It is no longer a good approximation to imagine expanding around a single sphaleron,
as the semi-classical limit is no longer relevant. A thermal coherence length 1/g*7 is much
larger than a sphaleron size 1/w.

It is clear that as T'— oo, the disordering of the system implies that topological charge
changing processes are very probable. If we were to introduce a field into this system and
give it a coherent twist, we expect it to dissipate in a time 1/g27. Since transitions happen
on a distance scale of order 1/g2T, we conclude that at asymptotic temperature, the rate
of topological charge changing processes is

ryv ~ (g*7)%
4.3. Baryon number change in the electroweak model

The analysis of baryon number violation in electroweak theory follows the lines which
we have just analyzed for the O(3) sigma model. We will first work in the region where
weak coupling methods are applicable

MyT) < T < MyT)[a".
Actually, within this region there are two subregions. The first is
MAT) < T < My(T)N<'.

In this region, the Debye screening length, the distance over which electric interactions
are screened in a media,

RDebye = 1/‘/;; T
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is much larger than the size of the sphaleron. In this range of temperature, we may ignore
Debye screening. It is this region for which I shall present results in this lecture.
For

MATNo < T < MyT)/o

we are still in a regime where weak coupling techniques may be applied. There is a technical
complication in the analysis of the decay of the sphaleron. Due to the Debye screening,
it is difficult to establish an electric field in a media. Therefore, the sphaleron slows its
decay to avoid setting up a singular field strength. This reduces the electric field energy
since E ~ 1/t, where ¢ is a characteristic decay time. The electric field energy is reduced
as [ dtE* ~ 1/t. On the other hand the topological charge is unchanged by this slowdown
since | dtEB ~ 1.

The single sphaleron decay rate is affected by Landau damping and Debye screening
in this temperature range {13]. It is less clear how this affects the overall rate for topological
charge changing processes [35]. Perhaps the factors responsible for the density of sphaleron
states cancel the suppresion due to the slowdown in the rate of decay of a single sphaleron.
It is difficult to know because derivations of the transition rate rely heavily on Gaussian
weak coupling methods, and when Debye screening becomes important these Gaussian
approximations break down. In any case, in this lecture we address the computation of the
rate when Debye screening is unimportant.

At high temperatures, the dynamics of electro-weak theory should be that of a three
dimensional theory. Upon rescaling coordinates and fields to make them dimensionless,

(r,) > gur,t) (4,9 - v(4,P)
the electro-weak action becomes at high temperature
1 3 2
S; = - d°xL(A, @, A/g").
3

Here all explicit dependence on v has disappeared. The three dimensional coupling is

, T
2M, "

a3=a

In this derivation of the three dimensional effective theory, we have not been careful
about defining the action S;. The problem is that when quantum corrections are computed
for the three dimensional theory, the four dimensional structure of finite temperature
corrections to the three dimensional action are important. These come from ultra-violet
divergent diagrams of the three dimensional theory, and the four dimensional nature of the
true underlying theory can and does cutoff the divergences of the three dimensional theory.
This has the effect of making all renormalizable terms in the three dimensional gauge theory
temperature dependent in a way which may be only computed in the four dimensional
theory. After insertion of these temperature dependent masses, the divergen ce associated
with the four dimensional theory are canceled. (For the 1+ 1 dimensional the ory, this only
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results in logarithmic renormalization of the 1 dimensional theory.) In electroweak theory,
we find

My(T) = MO)V1-T/T?

where

1
N

In the remainder of the analysis in this lecture, we consider the case 1/g? ~ 1. We have
no a priori reason to expect a rapid dependence on this variable, and it is little known.
Setting A/g* = 1 has the advantage that there is no parameter in the theory which is small
or large except the three dimensional coupling constant.

Following the analysis of the last section we may now easily estimate the rate for topo-
logical charge changing processes. We have an overall factor of w; ~ M, in front of our
expression. There is a factor of the volume of the zero mode group, and zero mode normali-
zations NV, a factor of g}°, and a factor of order one with no dependence on the coupling
constant, to leading order when the coupling is small, arising from the contribution to the
determinant from non-zero modes. We let this last factor be x ~ 1,

We find for the rate therefore

. O — —— _e
ry ~ > (NV),85 S PP x i

o . —  [«T\?
~ — NNV | — ) a3 % #E» x .
27 47

From the Appendix, we have for 4 = g that
Ny, ~26, (NV)o~ 53x10%

In Fig. 9, the rate of baryon number change is plotted using the result above. Notice
that at a temperature of order T ~ 1 TeV, where the three dimensional coupling constant
is small enough a3 ~ 0.1 so that weak coupling methods should be reliable, we have a rate
per particle which is about 10 orders of magnitude faster than the expansion rate. Therefore
B+ L non-conservation cannot be ignored in electroweak theory in cosmology.

What happens at temperatures larger than the symmetry restoration temperature
of the electroweak theory? At a; = 1, we see that our result tends to

I ~od*T* ~ Mp,,,

where M,,,, is the distance scale over which magnetic interactions are screened in electro-
weak theory at temperatures T > T. This result is similar to that for the 1+ 1 dimensional
0O(3) sigma model, and is very suggestive. It is also possible to make a guess about the rele-
vant field configurations through which there are transitions, and come to a formula the
same as above [13]. To do this estimate one must integrate over field configurations which
are not solutions of the equations of motions, and which also are in a region where semi-
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Fig. 9. The rate of baryon number change in the electroweak theory as a function of temperature. The

rate per particle is about 10 orders of magnitude faster than the expansion rate of the universe whena; ~ 0.1.
This is at a temperature of T~ 1 TeV. Here Ajg? = 1

-classical methods are unreliable. Nevertheless, it is plausible from what we have seen so
far that such a formula might be true.

As discussed above, we expect that as T — T, the sphaleron becomes of infinite extent,
and should decouple in the dilute gas limit. We see that this in fact happens in our expres-
sion. As T — T, the three dimensional coupling constant o5 is diverging, and the factor
of a3 7 — 0. This conclusion while consistent with our intuition on the sphaleron solution
is probably misleading. In precisely this region, weak coupling methods break down, and
although there is probably not a simple classical thermal transition. The dilute gas is prob-
ably not dilute. Presumably it is easy to get over the top of the barrier with solutions which
do not skim through the saddle point.

4.4. The problem with instantons

At first sight, it would appear that there is no contradiction between the estimates
using sphalerons and those of instantons for the rate of topological charge change in electro-
weak theory. The instanton estimate is in Euclidian time, and is used to compute a quantum
tunneling probability. The sphaleron can be thought of in real time as used to compute
the rate of transitions of particles over the top of a barrier.

The problem arises if we consider the amplitudes which describe baryon number
change. Such an amplitude is given generically by (gqqql) where g is a quark field
and / a lepton field. Actually in theories with multiple generations we need three quark
fields for each generation and a lepton field for each generation. The amplitude {qqq/>
can be computed in Euclidian space and then analytically continued back to Minkowski
space.

In Euclidian space, the only sector of the theory, where there is a non-zero amplitude
for this process is in the winding number one sector of the theory. This can be seen by doing
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a space-time independent baryon number rotation as in the first lecture. Therefore by the
bound we proved on. the action in the winding number one sector of the theory (second
lecture), we know that

IKqqal)| < e Sims,

Therefore the rate must be tiny.

The problem with the above argument is that I believe it is true. It is also irrelevant.
The sphaleron is intrinsically a multi-particle process. The sphaleron has a size of order
1/M,, and a typical Fourier component of the sphaleron wave function has momentum
M. On the other hand, the sphaleron has energy M,/a, and therefore sphaleron processes
on the average should involve transitions involving 1/x quanta. The typical matrix element
which is large, I claim, is {qqqld'*®'/*}.

To see that this is consistent with the sphaleron analysis, suppose the final state distribu-
tion of particles is Poisson distributed. The probability of decaying into a state with n
particles is therefore

n
_

P,
n!

The sum over all n is
Z P, =1

This Poisson distribution is consistent with the facts as we know them about the
sphaleron and instanton processes. For small n, the rate is P~ e <" ~ e/, typical
of an instanton process. For n ~ {(a), the rate is of order 1.

For classical decay processes, coherent states, etc., we expect that the decay products
are Poisson distributed. This assumption is not too bad. One can question whether the
thermal system is sufficiently equilibrated so that a large classical excitation such as the
sphaleron is ever excited. Recall however that this is precisely what we have computed
when we computed the rate of change of topological charge. The only assumption we made
was that the W, Z and Higgs fields were in equilibrium, an assumption which should be
very good is cosmology where the expansion rate is slow. We did find a suppression, in
addition to the Boltzmann factor, for making a sphaleron, but this factor involved a few
powers of « and was not sufficient to take the sphalerons out of thermal equilibrium at high
temperatures.

We can understand the equilibrium argument from another perspective. If the Higgs,
W, and Z fields are in equilibrium, then as a consequence of detailed balance the rate of
producing sphaleron, R4 is related to the decay rate for the sphaleron as

_ o~ BEspn
Rprod =ée °® Rdec‘

We expect the sphaleron decays in a time of order 1/M;. The rate of production is therefore
substantial in cosmology for M, < T < E,;,, and naively should be large for higher tempera-
tures.
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Even if the Higgs, W and Z fields are not in thermal equilibrium, the formation rate
can be estimated, and a result similar to the above obtains. This result is at first sight
surprising, and one is tempted to say it must be wrong. After all, in a thermal ensemble,
nuclear states are not often made even though their Boltzman factor allows it. Several
comments are in order about this apparent contradiction. First, the sphaleron is composed
of bosons, and their distribution functions are more singular at small momenta, and the
sphaleron itself is composed of low momentum quanta. Second, for a nucleus, the typical
binding energy is very small compared to the mass of the nucleus. It is very difficult to
assemble a nucleus in its ground state because the overlap of thermal distribution functions
with the nuclear wavefunction is so small. In the case of the sphaleron, an explicit computa-
tion shows this is not the case [14]. Finally, the sphaleron itself is a collective excitation
of presumably very many states, and the quantity to compare the probability of making
a sphaleron to is the probability of having an assembly of excited nucleons with a typical
nucleon momenta of the order of a7, a probability which is not so small as the probability
to make a nucleus in its ground state.

The proof of the sphaleron pudding is in its eating however. There have now been
a variety of computations of sphaleron induced rates at high temperature, and in contra-
-distinction from instanton estimates, a large rate results.

5. Appendix A: sphaleron zero modes

In this appendix, I discuss and derive expressions for sphaleron zero modes. 1 first
discuss global gauge rotations of the sphaleron and of the vacuum. At spatial infinity,
the sphaleron fields approach

Zsp—>0, P, +J20r T
and the vacuum fields are
Ape =0, &, =02

Global gauge rotations change @ in both cases. We fix this gauge degree of freedom by
requiring that the fields have the behavior of the above two equations. Any small
fluctuations, when combined together with the original sphaleron solution must preserve
the behavior above.

First consider translations. We rescale the fields as
ro>gor A—-vA ® - vd

so that our rescaled fields and coordinates are dimensionless. With these dimensionless
fields, translations give

04 = (¢ V)4, +DA4,

80 = (¢~ V)@, +iA®.
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Here the gauge transformation A is chosen so that the boundary conditions on the small
fluctuations are satisfied,

k(). o
A =2—£€—)r'axr,
¢
where

f¢&)
612 *

k@) =¢ fdé'
g

When the contribution of zero modes to the path integral is evaluated, we must
compute factors such as the normalization of the zero mode. For these modes, we find

a factor of
1 12
v-T1GJer)
2n

For the tran slational zero modes we may evaluate the normalization integral. We find

0

3/2
Ny = {% jdf (-&8—2 [(f+k—2f1) +(f— k=& )]+ [*(1—K)* +3 (fh')2]>} .
0

For the case where J = g2, we have N,, = 26.

For rotations, 67 = & x r, we again must make a gauge rotation to preserve boundary
conditions. We find that

04 =2 1—;{[&’(? CD) =28+ &) (7 D)+ - 8)]
50 =0,

We find the normalization integral for rotations to be
Neow = {32 | dEQ=1'P"
(4]

For the case where 1 = g2, we have N, V,, = 5.3 103, We have used that the volume
of the rotation group for SU(2) is 8xn2.
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