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A brief review is presented of recent developments in the understanding of the can~
cellation of gauge and gravitational anomalies in string theory, in relation to modular in~
variance.
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One of the remarkable advantages of string theory over field theory is that it can not
only accommodate chiral fermions, but also knows how to avoid the chiral anomalies that
are usually a consequence of their presence. The fact that chiral anomalies cancel in seem-
ingly mysterious ways in certain ten-dimensional string theories was first observed in
[1]and [2], and the “miracles” were first understood in terms of modular invariance in [3].
This understanding has become even more necessary with the recent proliferation of new
chiral string theories in 10 and fewer dimensions. In this talk I will give a very brief review
of the results of [3], and discuss a few more recent developments.

"The basic idea of [3] was to isolate the chiral states of a string theory, and write down
a formula for their Chern characters. If one factorizes the full one-loop partition func-
tion 2, of a d-dimensional heterotic string into the contribution of the light-cone NSR-
-fermions ' and the remainder, one gets an expression of the following form (Here t is
associated with left-movers, representing the bosonic sector of the heterotic string)

4
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It is easy to see that the chiral states contribute to the partition function only via the Jacobi
d-function 9,. In fact #,(0fr) vanishes precisely for that reason: it receives equal but
opposite contributions from each chirality. The chiral partition function is defined to be
the factor of the zero-modes of the #,-functions, and can be calculated by taking in (1)
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#,(e]7) in the limit ¢ — 0. The chiral partition function is thus simply
gpchiral = [9/1(01%-)]4/2-11)1(1, f) (2)

It can be shown that, as a consequence of world sheet supersymmetry, the chiral partition
function depends only on 7, and not on 7. Hence all excitations of the chiral ground state
cancel completely in the right-moving sector.

The chiral partition function has a simple interpretation. It can be expanded in terms
of g = e¥™:

Posen = L did" ©)

The coefficient of ¢' is the chiral multiplicity of states with left mass L m? = I and right
mass my = 0 (the chiral multiplicity is the number of states of one chirality minus the
number of states of the other chirality). Note that only the / = 0 terms represent “physical”
states because of the closed string condition m; = my. All other terms represent states
that cannot propagate to infinity, but that do contribute to loop diagrams.

To study anomalies one has to extend the chiral partition function to a function that
contains more information, by replacing d, in (3) by the Chern character of the gauge and
Lorentz representation at the /' level (similar character-valued partition functions were
already used many years ago by Nahm [4], although for an entirely different purpose).
‘Such a function will enable us to use the relation between anomalies and the index theorem
to extract the anomaly. Consider a Weyl fermion in 2p+2 in the representation r = s*
® t ® g, where s* is a fundamental Lorentz spinor of positive or negative chirality, ¢ a ten-
sor representation of the transverse Lorentz-group and g a representation of some gauge
group G. The contribution of such a fermion to the anomaly can be derived from

+AR)T R\ p il

+ A( )rexp(zn) rexp(zn), “4)
where A(R) is the Dirac genus, and the other two factors are respectively the Chern char-
acters of the Lorentz-representation and the gauge representation of the fermion (R, and
F, are respectively the curvature and gauge two-forms in the representations ¢ and g).
The Dirac genus can be expressed in terms of the skew eigenvalues of R in the vector
representation, i.e. if

o diag (ixy, ~ixy, .., Xp41, —iX,41)
then

p+1

ARy = | |22
® = Hsinh D

i=1

To derive the anomaly one expands (4), and determines the coefficients of all terms of
total order p+2 in F and R, summed over all fermions in the theory. The reason for using
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representations of the transverse Lorentz group is that this automatically takes care of all

ghost contributions that one would otherwise have to include. Effectively, this means that

we only consider anomalies of an SO(2p) subgroup of the Euclidean Lorentz-group

SO(2p+2), i.e. we set x,,, = 0. One can covariantize the result afterwards, if desired.
The character-valued chiral partition function is defined as follows

iF iR
gchiral(Fa RIT) = z z G[r(l)]ql Tr [exp (—l—g-> exp (..l_.._t- J s
2r 2 0
i=—1 r@

where the first sum is over all levels, and the second one over all representations r(/) at
a given level. To count opposite chiralities with opposite signs, er is +1 if r constructed
from s+ and —1 if it is constructed from s

We define now the anomaly generating function < as follows

A(F, Rj7) = AR)P ;ui(F, Ri).

This anomaly generating function contains far more information than is needed for the
anomaly in the effective field theory. All we need is the coefficient function C(z) of some
term of order p+2 in F and R in the Taylor expansion of & (in 10 dimensions (p = 4)
examples of C(1) are the coefficient functions of Tr F¢ or Tr F* Tr R?); furthermore we are
only interested in the massless fermions, whose contribution is the coefficient of ¢° in such
a function C(z), viewed as a function of g.

The character-valued chiral partition function consists of two parts, the contribution
of the left-moving oscillators &, which build the transverse Lorentz representations ¢, and
the contribution of all other left-moving world sheet degrees of freedom. The latter include
in general some gauge current, coupling to the gauge representation g mentioned above.
The transverse oscillator contributions are the same in any string theory, and depend only
(in a trivial way) on the space-time dimension. For their contribution one gets without
much effort the following factor in the chiral partition function (with x,,; = 0)

P

P,(R) = H 2i sint.l ('x,-/2) )

which combines nicely with the Dirac genus when substituted in the anomaly generating
function. Notice that this function reduces to the usual light-cone partition function for
2p bosons in the limit x; — 0.

We have now obtained the complete R-dependence of the anomaly generating function.
Unlike the R-dependence, the gauge dependence is by no means universal: it depends on
the precise construction of the theory. In [3] the gauge dependence was computed for
string theories constructed out of free fermions (see e.g. [5-7]) with arbitrary boundary
conditions, and in [8] it was computed also for ten-dimensional string theories constructed
with self-dual lattices (the result of [8] has a straightforward generalization to the covariant
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lattice construction of four-dimensional chiral string theories [9]). It was pointed out by
Ginsparg, Moore and Vafa (see [10]) that (for non-abelian gauge groups) the gauge part
of the character-valued partition function can be expressed in terms of the Weyl-Kac
character formula [11]. This formula gives, by definition, precisely what was defined above
as the character-valued partition function. The left-moving gauge currents in a heterotic
string generate a Kac-Moody algebra, and the partition function is assembled out of the
Weyl-Kac characters of the representations of that Kac-Moody algebra. For the special
case of simply laced level-1 Kac-Moody algebras the result reduces to the one obtained
explicitly for lattice theories. If the gauge group consist partly out of U(l) factors, one can
write their contribution in terms of character-valued lattice partition functions, and use
Kac-Moody characters for the remainder. (In general the Sugawara tensor of the gauge
currents will not provide the complete central charge of the right-moving sector, so that
there will be additional F-independent factors in the partition function, corresponding to the
remaining central charge). ,

The crucial point in the argument is now that even though o/ may have a complicated
structure, it must have a simple behaviour under modular transformations. This follows
from the fact that the chiral partition function transforms as a modular function of
weight —p:

cT+

P cpiral (aT +5> = (cT+d) "2 picar(D)- )

From the explicit form of the gravitational factor (5) and from the transformations prop-
erties of the Weyl-Kac characters one sees that the character parameters F and R only
affect the modular transformation by a universal exponential factor. Hence one can

prove that (6) generalizes to
F R at+b
ct+d cr+d| er+d

= (ct+d) " exp [ﬁf;@ ((Z k, Tr Fi)-Tr (R2)>] (F, Rj7). N

a

Here Tr (R?) is to be evaluated in the vector representation. The sum is over all factors
in the gauge-group, and k, is the Kac-Moody level of a factor. The trace Tr (F%) is to be
evaluated on any representation, but with the representation matrices T normalized so
that Tr (T°T"%) = 26°°. For U(1) factors one normalizes the charge in the same way, and
chooses k == 1. The phase factor is usually referred to as the modular anomaly.

This formula generalizes the one obtained in [3] to higher level Kac-Moody algebras,
and should therefore be valid for any string theory that has been constructed so far. The
dependence on the Kac-Moody level agrees with what one finds in cases where the gauge
group can be regarded as a sub-algebra of a level-1 algebra. The derivation of the modular
transformation properties of the anomaly generating function given in [3] and [8] never
assumes that there are gauge fields in the string spectrum that correspond to F. In particular
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it may happen that only a sub-algebra of the level-1 algebra is gauged. One can then re-
express the result in terms of traces over the gauged sub-algebra, and in doing so one finds
that Tr F? is scaled by the embedding index k& of the sub-algebra. But the embedding index
is equal to the level of the Kac-Moody sub-algebra, so that one obtains precisely the factors
k, indicated in (7). A simple example where this happens is gauge symmetries in type-II
theories [12].

It is easy to see that because of the rescalings of F and R in (7), all anomaly coefficient
functions C(r) transform as follows

at+b _ 2
C(;[—-:J) = (Cf+d) C(‘E)a

if we ignore the modular anomaly factor. Hence C(z) is a modular function of weight two.
Theorems on modular functions tell us then that it must be a 7-derivative of a weight zero
modular function

d
C(7) = o P(7).

1t follows immediately that C(t) does not have a constant term, so that there is no anomaly.

This argument is not valid for those terms that are affected by the modular anomaly.
But those terms are proportional to )’ k, Ty F2—Tr R?, so that the remaining anomaly
must contain these terms as an overall factor.

The remaining anomaly should be cancelled by the Green-Schwarz mechanism.
This mechanism requires two terms to be present in the effective action. One is the familiar
Chern-Simons terms, which is the same in any string theory, and in particular independent
of the space-time dimensions. It can be derived from string tree diagrams [13], and yields
vertices with one B,, and two gauge bosons or gravitons. The other term results from a loop
diagram, is also linear in B,,, but has a total of p external gauge-bosons and gravitons.
Connecting these vertices with a B-propagator one obtains diagrams with the same number
of external gauge bosons and gravitons as the polygon anomaly diagrams, which cancel
the polygon anomalies up to local counterterms.

To verify this one can calculate this anomaly cancelling term by taking the zero-
-momentum limit of the string loop diagram. This calculation has been done in [14], and
one obtains the following expression for the resulting effective action

) (8)
2p-forms,

The function &/ appearing here is almost the anomaly generating function, but not quite:

- 1 1
F,Rjz, %) = —s —|T E Z 2 .
SA(F, Rjt, T) = exp [647:3 Imt( r k ,JF:—TrR )] H(F, Ri|1)

-1 d*z - _
S = | d***2x(—4gB ——— (F,R
j x(—4g >A(W jam)zd( %)
F
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(So far, this result has only been derived for covariant lattice theories, but the generaliza-
tion should be straighforward.). The extra non-holomorphic factor cancels the modular
anomaly, which is clearly necessary since otherwise the restriction to the fundamental
modular domain & in (8) would not be well-defined. However, this restoration of modular
invariance can only be obtained at the price of giving up holomorphicity, a property which
is not needed in (8).

One can now evaluate the modular integral in (8), because the integrand turns out
to be a total t derivative. As a result one finds that factor of B,, in the anomaly cancelling
term is precisely the same as the factor of Tr ) k,F 2_Tr R? in the polygon anomaly, with
the correct overall normalization to cancel it.

This verifies complete anomaly cancellation in the low-energy limit of string theory.
Of course there is a more direct approach, which is not limited to momenta much smaller
than the Planck scale, and that is to compute the polygon graphs directly in string theory.
Such calculations have been presented in several papers [15]. Because in heterotic string
theories there is just one diagram, it should vanish by itself. This makes the calculation
somewhat unsatisfactory, because one is certain to find zero even if one misses the anomaly
altogether.

The relation with the effective field theory approach sketched above, is that the effective
field theory contributions come from two limits of the domain of integration of the one-loop
graph: the fermion polygon loops in field theory correspond to the limit 7 — ico of the
string loop diagram, whereas the B-exchange diagram comes from the coincidence limit
of two graviton or gauge-boson vertices. In this limit the diagram can be factorized on
a B,, pole. This interpretation of the field theory diagrams in terms of the string diagram
has been verified in [16].

The anomaly generating function has been obtained in [3] by assembling it level-by-
-level. Although this is quite easy, there is another way of getting the result, which is more
satisfactory from a mathematical point of view. Just as one can derive field theory anom-
alies from the index of the Dirac-operator, one can derive the generating function for
string anomalies from the index of the Dirac-Ramond operator. This index can be calculated
by means of path-integrals of supersymmetric sigma-models [17-19], just as one can derive
the index theorem using supersymmetric quantum mechanics (see e.g. [20]). These should
be yet another way to discuss anomalies in string theory, namely by studying the sigma-
-model in gauge and gravitational background fields on a torus, using the methods of [21].

The anomaly generating function discussed above has made its appearance simultane-
ously in mathematics and physics, although it is used to attack different kinds of problems.
In the mathematics literature (see e.g. [22]) the gravitational part of this function is referred
to as the elliptic genus. For a discussion of this subject that is accessible to physicist see [18].

In physics the elliptic genus has so far had few applications beside anomaly cancella-
tion. One exception is [23], where it is used to compute holomorphic amplitudes in super-
symmetric string theories. In such theories there are certain amplitudes with one more
external line than the non-renormalization theorems would allow, which do not vanish
at one loop, but have a holomorphic integrand. Using the integrals evaluated in [14],
some of these amplitudes can be calculated exactly in a the low-energy limit, as was shown
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in [24, 25]. In [23] it was shown that these holomorphic amplitudes can be derived from
the elliptic genus, by making a “triality” rotation that takes the Green-Schwarz fields S° to-
NSR-fields ¢* in the PP-sector (i.e. with periodic boundary conditions along both homology
cycles of the torus).

I conclude with a few remarks about four dimensional strings. In four dimensions one
can have anomalies, but only if U(1) factors are present with a non-vanishing trace, since
the anomaly has the form (3 k, Tr F2—Tr R?) Tr F. It has been shown in [26] that the
presence of such a fermion loop anomaly (which of course is cancelled by the B-fieldy
leads to a Fayet-Illiopoulos breaking of supersymmetry. A closely related phenomenon,
caused by the anomaly cancelling term, is a Higgs-mechanism that generates a mass for
the U(1) gauge boson [27]. The anomaly cancelling term in four-dimensions has just two
external legs, the U(1) gauge bosons and the anti-symmetric tensor B,,, which in four
dimensions is equivalent to a scalar, and which becomes the longitudinal component of the
massive vector boson. Such supersymmetric vacua with a fermion loop anomaly are not
stable in four dimensions, but fortunately there are many vacua for which there is no such
non-traceless U(1) factor. For example, if one has a (level-1) Eg factor in the gauge group,
one can easily see from the general form of the anomaly that no such U(1)’s can be present
(the sumin ) k, Tr FZ% is over all factors in the gauge group, but there is no non-trivial Eg
representation that can have a U(1) charge and still be massles). This class includes all the
so-called (2, 2) string theories.

In conclusion, the present understanding of anomaly cancellation in string theory
is fairly satisfactory, and covers all sensible string constructions. It is often useful to remem-
ber that the anomalies do not just cancel, but that the fermion loop contribution has a very
specific form. This is often a useful check on fermion spectra, especially in some of the less.
transparent string constructions (indeed, there exist several papers with examples that are-
manifestly not anomaly free).

I would like to thank the organizers of the school for the invitation, Wolfgang Lerche,.
Bengt Nilsson and Nick Warner for several pleasant collaborations, J. Thierry-Mieg for
a discussion that started my interest in string anomalies, C. Vafa and P. Ginsparg for bring-
ing their observation regarding the Weyl-Kac character formula to my attention,

P. Goddard for pointing out the existence of Ref. [4], and A. Tseytlin for a useful
discussion.
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