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In these lecture notes we discuss an analytic calculational scheme for SU(N) gauge
theories in a finite volume. We will mainly concentrate on pure SU(2) gauge theory. The
method relies on using an effective Hamiltonian for the zero momentum modes. The noto-
rious problem of Gribov horizons is evaded by encoding the topological nontrivial nature
of configuration space into boundary conditions for the zero momentum modes. This system
then allows us to compute the low-lying energy spectrum in volumes up to about five times
the size of the scalar glueball. These continuum results agree in general well with the lattice
Monte Carlo results. We discuss in some detail the resolution of a discrepancy with Monte
Carlo results for the T3 glueball.

PACS numbers: 11.15.Tk

1. Introduction

This will be an exploration of the femto-universe [1]. A universe with the topology of
a torus in which we will study pure non-abelian gauge theories. Asymptotic freedom will
guarantee that perturbation theory is accurate in the early femto-universe (small volumes).
But we wiil follow its expansion (volume dependence) to the point where the interactions
become strong in the hope to be able to peek beyond the edge of this universe.

One might wonder why we choose the volume to be a torus (a cube with sides of length
L and periodic boundary conditions on the fields). The main theoretical reason is that on
a flat background no mass term for the gluon is generated, due to the background curvature.
It is therefore expected that more of the infrared behaviour, which is so characteristic for
non-abelian gauge theories, will survive in a small volume. One indication that there might
be some truth in this statement is that the finite volume “string tension” will be close to its
value in larger volumes. A more technical reason is related to how ’t Hooft [2] introduced
gauge fields on the torus, relaxing the periodic boundary conditions to have a twist. This
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allowed him to define electric and magnetic flux quanta and enables one to calculate electric
and magnetic energies without having to use singular operators.

Employing perturbation theory was hampered by a technical obstacle which is unavoid-
able if one wants to evade a dynamical mass for the gluon. This problem was spelied out
explicitly first in the context of lattice gauge theory [3], but it was Liischer’s [4] analysis
in the Hamiltonian framework which provided the basis for further development. The
problem occurs only in the sector with zero magnetic flux and although, in the presence of
magnetic flux (twist in the spatial directions), perturbation theory is much easier {5, 6],
it also dynamically introduces a gluon mass term. Nevertheless, a detailed calculation
of the spectrum in the presence of magnetic flux [6] is important in deciding in how far
the spectral properties are specific for the finite volume, the reason being that one expects
(if confinement is realized [2]) that in the large volume limit both cases will yield the same
spectrum.

However, we will restrict ourselves to zero magnetic flux, in which case the vector
fields can be chosen periodic, not only for the reasons mentioned above. Equally important
is that this enabled us to compare our results with existing lattice Monte Carlo data,
pioneered in the finite volume and Hamiltonian context by Berg and Billoire [7].

In Section 2 we discuss the intricacies of the classical vacuum, which forms the basis
for the expansion in the coupling constant. Section 3 discusses how the definition of electric
flux is related to the gauge symmetries. In Section 4 we display the extension of Liischer’s
effective Hamiltonian as a preparation for the non-perturbative analysis in Section 5, where
we address the issue of Gribov horizons. This leads to a detailed discussion in Section 6 of
our choice of boundary conditions in configuration space and we show how a discrepancy

with Monte Carlo results for the T; glueball is resolved. Section 7 concludes with a discus-
sion.

2. The classical vacuum

The general principle of the calculation is based on a Born-Oppenheimer type of ap-
proximation, integrating out the ““fast”” fluctuations to be left with an effective theory for
the “slow” fluctuations. These “slow” fluctuations will include the set of the minimal
classical energy configurations, which for pure gauge theories on a torus with periodic
boundary conditions (7, is the unit vector in the i-direction):

AdX+LS) = A% (1)

forms a Z-labelled set of connected 3r-dimensional subspaces [8] (r is the rank of the gauge
group, for SU(N) r = (N—1)). To be precise, one component is described by the spatially
constant abelian vector potentials. The other components are related to this one by a gauge
transformation g: T3 — G, where G is the gauge group, and

g+ Lf) = g(3), )
[g]4u(X) = g(D)AF)e(X) ™ —ig(*)dg(¥) ™", 3)
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which is homotopically nontrivial, i.e. PeZ, P # 0:

247?

1 e e

P=_— f Tr (8(X)dg(¥) ™). @
T3 .

The various components which we will call vacuum-valleys [9] (also called toron-valleys

{3]) are thus labelled by P and separated by a classical potential barrier of order 1/(Lg?),

where g is the coupling constant. The classical potential energy is given by

V(A) = ELgZ f d*x Tr (F3(x)), (5)
T3

Since V(A4) is positive semi-definite with the lower bound saturated by 4 = 0, a vacuum-
-valley is specified by V(4) = 0, or F; ,-(55) = 0. One then easily shows [8] that up to a periodic
gauge transformations, Eq. (2), 4,(X) is spatially constant and takes values in the Cartan
subalgebra (i.e. is abelian). However, this space is a multiple cover of the vacuum-valley.
One can show [8] that gauge transformations are on the vacuum-valley represented by the
Weyl group #~ and the translations over 4 with respect to the standard basis of the dual
weight lattice A. Hence, each connected component ¥ of the vacuum-valley is isomorphic
to the orbifold (R/A)3/#, i.e. three copies of the torus R/A, with the action of the Weyl
group acting simultaneously at each copy, divided out.

For SU(2) we can do without all this formal terminology. The abelian spatially constant
configurations are

- C, o,
Ai(x) = 5 M

and this set is invariant under abelian periodic and non-abelian constant gauge transforma-
tions:

g2(¥) = exp (—2nix - kos/L),
g-(X) = o,. (8)
These gauge transformations imply the following transformations of C:
[g]C = C+4nk,

[¢-1€ = -C (9)

and hence each vacuum-valley component is the orbifold 73/Z,.
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3. The electric flux quanta

Clearly we should take the parameters of the vacuum-valley as ‘“‘slow” parameters
and integrate out the degrees of freedom transverse to the vacuum-valley. However, the fact
that ¥~ is an orbifold should make us cautious to what happens at the fixed points of the
Z, action., One easily finds these fixed points to be given by 2C = 4nk, hence there are eight
inequivalent fixed points. They correspond to configurations invariant under a larger
subgroup of the gauge group than neighbouring configurations: 4 = 0 is invariant under
all constant gauge transformations, whereas neighbouring points are only invariant under
constant abelian gauge transformations. This leads to zero energy modes in the transverse
fluctuations and prevents one from simply integrating out the transverse degrees of freedom
in a quadratic (one-loop) approximation. Indeed if we expand around 4 = 0, the potential
is quartic in the spatially constant gauge fields:

- c ¢ o,
AR = —Li =75 (10)
1
unartic = - 2g2L Tr ([ci’ cj]z)' (11)

We consequently have to take the additional degrees of freedom of Eq. (10) over Eq. (7)
into account as “slow” variables, which is exactly what Liischer did to derive his effective
Hamiltonian [4]. Furthermore it is clear that at the fixed points the potential valley is widest
and consequently, in perturbation theory wave functionals will peak at these points. How-
ever, there were eight fixed points and we shall now illustrate how their presence is related
to the electric flux quanta.

There is a symmetry of the Yang-Mills Hamiltonian which maps these fixed points
into each other:

- o

he() = ex 5 Xk oy 1
X} = [—" _ 1,
o p m— (12)

[1]C = C+2nk. : (13)

Despite the fact that kg(X) is not periodic (note however that gy = h33), it does preserve
the periodicity of the gauge potentials, the reason being that kz(x) is periodic up to an
element of the centre Z; of the gauge group G:

he(x+Lf) = (= DFhz(%). (14)

It is sometimes advantageous to consider, in the absence of fields in the fundamental
representation, the gauge group as G/Z; (i.e. for SU(2) we rather consider SO(3) as gauge
group). Then Az (X) is strictly periodic, however, it is a homotopically nontrivial gauge trans-
formation, due to the fact that 7,(G/Zs) = Z; and the fact that the torus is multiply con-
nected. The homotopy of a gauge transformation is therefore classified by Z2 x Z (Z cor-
responding to the Pontryagin index P in Eq. (4)). Wave functionals are representations
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of this homotopy group. For SU(¥), Z; = Zy and the representations are labelled by the
electric flux e € Z3 and the theta parameter 6 € [0, 2n]:

¥:o([g]A) = exp (iPO)¥;(A),
¥2o([h]4) = exp (2nik - ¢/N)¥zo(A). (15)

In the following we will neglect the 6-dependence, which amounts to neglecting tunnelling
through the classical potential barrier separating two components of the vacuum-valley.
But the ¢ dependence can be addressed within one connected component of the vacuum-
-valley as we see from Eq. (13). The reason that ¢ corresponds to electric flux can be found
in ’t Hooft’s original paper [2].

As we mentioned before, the perturbative wave function peaks at the fixed points of
the Z, action, which we will call the quantum vacua. This is not obvious since the classical
potential vanishes along the vacuum-valley. However, one easily shows {4, 9] that (away
from the fixed points) the transverse fluctuations induce an effective potential barrier, which
prevents the wave functional to spread to the other quantum vacua. Hence, to all orders
in perturbation theory there is a degeneracy in the electric flux e, which will be lifted by
tunnelling through the quantum induced potential barrier [8,9, 10]. (There remains a degen-
eracy in #, lifted by tunnelling through the classical potential barrier separating two
components of the vacuum-valley.)

4. The effective Hamiltonian

We will first discuss Liischer’s effective Hamiltonian [4] relevant for perturbation theory
around A = 0, obtained by integrating out the spatially non-constant modes. In the Hamil-
tonian formulation [11] used by Liischer, one introduces gauge fixed coordinates for configu-
ration space in the Coulomb gauge

f)kAk = 0. (16)

This leads to a nontrivial integration measure, closely related to the Faddeev-Popov deter-
minant, given by:

o(4) = det’ (—5,D,(4)), @7
where D,(A) is the covariant derivative. This measure is absorbed in the wave functional
V(4) = o(4)'*¥(4). (18)

In many respects this is similar to using spherical coordinates for the L=0 sector, albeit
in an infinite dimensional setting.

Since the non-zero momentum modes (g) are in lowest order occurring quadratically,
the wave functional is approximately given by

P(4) = B()xrer(9), (19)
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where x;(¢) is the product of the ground state wave functions for the non-zero momentum
modes g. The effective wave function @(c) satisfies an effective Hamiltonian (H,,;) equation
and there exists a method developed by Bloch [12] which allows one to construct H to
all orders in perturbation theory [4]. In general, the effective wave function @(c) will no
longer have the simple relation to ¥(A) given in Eq. (19), but to the order we are interested
in, this relation is still assumed to hold (with y;1(9) now the exact ground state wave function
for the non-constant fields, or the ground state for the Hamiltonian where the ¢ degrees
of freedom are frozen).

We will now give the result {13, 14] for Hy, referring for the derivation to Ref. [4)
or for a Lagrangian approach to Refs [8, 13] (the latter is much easier, but hides the informa-
tion on the wave functional, which we will make use of further on).

- ., 0
LH (c) = —3 (g (Ly+ay)™ ! 5c% + Vi) + Vo) + ..., (20)
4 sin®(n-r2) -
|4 = —3 - a— -2 N
11(e) o Z s i (21)
TED
gZ(L) 2 ,
W,2(c) = 3 [(4¥},1(c))" 424V} 1(c)4V,,4(0)], (22)
3 3
1/2 62
r; = [Z C'i‘cai] , 4= Z 5;5 s F‘i‘j = -3ade?Cj‘,
a=1 i=1 !
Vi(©) = (g7 L)+ o) (F5) 4+ aa(Fiied)* + oy (Fic))® +as(det ¢)?, (23)
11
g L) = - o In (LAys)~ 157 In[=2 In (LAy)]+ .. 24

where the numerical constants are given by:
@, = 2.1810429 - 1072, «, = 7.5714590- 1073, ay = —1.1130266 - 10™*,
a, = —2.1475176 - 107%, a5 = —1.2775652-107°. (25)

There are a few things worthwhile noting. g(L) is the running coupling constant at u = 1/L,
V1(c) vanishes whenever F{; = 0 or equivalently whenever ¢ is an element of the vacuum-
-valley. Therefore Vm(c)+21?1 is the one-loop effective potential along the vacuum-
-valley [4, 9], with 2 7| coming from integrating out the transverse spatially constant modes,
which is possible for [r|> g*/> [8].

The low-lying spectrum (the energy levels for which LE — 0 as g — 0) is now directly
determined by the spectrum of H,, and to lowest non-trivial order in g we have:

H
LH 4(c) = — 3 702 2‘g'2'Tf Lew ;1) (26)
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A simple rescaling of the fields with g*/® shows that LE = 0(g*'®) (due to the quartic
nature of the potential) and LE has a perturbative expansion in powers of g/>. Since
Eq. (26) is non-integrable [15], Lischer and Miinster [16] used Rayleigh-Ritz perturbation
theory to determine the spectrum. The various states are classified according to the irreduc-
ible representations of the cubic group O(3, Z). There are ten irreducible representations,
five for each parity: The singlets AT, A7, the doublet E* and the triplets TS, T, The
mass of a particular state is given by the energy difference of the appropriate level with the
ground state (which is the lowest A7 level). A remarkable result was that the E+ state was
lower in mass than the A+ glueball.

In the infinite volume the states are to combine into angular momentum multiplets.
The decompositions into the irreducible representations of the cubic group are as follows
[17]: 0% = 4%,1% = TE, 2 = E* @ T7, ... . Hence there has been some confusion
whether or not the tensor glueball would be lighter than the scalar glueball. For this we
clearly have to go to larger volumes and we will next study the level-splitting as a function
of the electric flux as a next step towards that goal.

5. Beyond the Gribov horizon

For increasing volume, which through Eq. (25) is equivalent with increasing coupling,
at some point the energy levels will approach the height of the induced potential barrier
separating the eight quantum vacua in one component of the vacuum-valley. Beyond this
point the perturbative approximation breaks down and energy levels will split into four
different levels. Because of the cubic symmetry two of these are threefold degenerate
and are labelled by e = (1,0, 0), (0, 1,0), (0,0, 1), resp. ¢ = (1, 1, 0), (1,0, 1), (0, 1, 1).
The two other levels are labelled by e = (0,0, 0), resp. ¢ = (1, 1, 1). The semiclassical
evaluation of these level slittings was the subject of Refs [8, 9, 10], but will not concern us
here, since we intend to go beyond where this analysis would be valid.

Since the vacuum-valley is contained within the set of constant vector potentials, one
would, as a first attempt, try to incorporate the other quantum vacua by simply expanding
H, around the other fixed points. A first sign that this is impossible is that one easily
verifies that ¥, ;(¥) has a conic singularity at 7 = 27k, exactly the one which was subtracted
in Eq. (21). Secondly, at exactly these quantum vacua, ¢(4) will be zero because this is where
the covariant derivative has zero-modes (note that in Eq. (17) the zero-modes were not
taken into account, which is what the prime in this equation stands for). This means that
the other quantum vacua lie on the Gribov horizon [18] on which ¥ vanishes due to the
rescaling in Eq. (18). One easily shows that ¢ not only vanishes at the quantum vacua,
but on the whole planes r; = 2n. However, this singularity is similar to a coordinate
singularity one would get in choosing local coordinates on the south pole of a sphere, trying
to extend them to the north pole. In other words, the Gribov horizons occur just because
configuration space is topologically non-trivial [19] and we simply avoid these singularities
by choosing local coordinates around each quantum vacuum with appropriate transition

-~ 2o .
functions [20]. The coordinate patches are centred at A™ = —L~—23 with the gauge

b4
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fixing 8,4, +i[A™, A,] = 0, which is equivalent to ak([h;'.’]A,‘) = 0. Thus the local coordi-
nates in each patch are related by the (homotopically non-trivial) gauge transformation
hy and consequently the Hamiltonian in each patch is of the same form. The transition
functions connecting two patches simply describe a change of gauge. Yet, the infinite
dimensional setting has prevented us up to now to implement this rigorously. The patches
described so far would for example not provide a complete covering of configuration
space, for this also coordinate patches around [g]A}?’, where P(g) # 0, have to be included.
But since we are at this point concerned with the case where §-dependence is neglected we
will assume the wave functional to be localized along the vacuum-valley.

6. Boundary conditions in configuration space

The method we will follow amounts in, the strongly simplified example of the double-
-well anharmonic oscillator, to the following. The equivalent of the gauge transformations
hz is the parity x - —x and the equivalent of the electric flux quantum is the parity eigen-
value of the wave function. The Hilbert space with definite parity can now alternatively
be specified by the space of the square integrable wave functions on Rt = {x|x > 0} (the
half-line) supplemented with Dirichlet or Von Neumann boundary conditions: # = #+
@ -, #+ = {¥ e L}R")| 3, ¥(0) =0}, o# = {¥ e L*(R")] ¥(0) = 0}.

Since we know how the symmetries act on the vacuum-valiley coordinates it would be
most natural to derive an effective vacuum-valley wave function. As we discussed before
this is not possible near the quantum vacua, but it is to a good approximation possible
in the overlap regions of two coordinate patches around C; = + . To consider this effective
vacuum-valley wave function we parametrize the vacuum-valley by Eq. (7) and choose the
gauge {4]

D(C)4, = 0, (27)

with,D (C) the covariant derivative in the background of a vacuum-valley configuration,
One easily finds the eigenmodes for the transverse fluctuations to be given by:

q;(x) = v}; exp (2nm x/L) (28)
with the gauge conditions (v = (vf +iv?)/\/2):
@Qan £ Cviz = 0,
2angis =0, (7 # 0). (29)

In lowest order the Hamiltonian is quadratic in the transverse fluctuations:
T E { o= z+z(27m+C) o212 +3(2nn — ) legsl® +3 @rn)(viz } (30)

Hence, to lowest non-trivial order (cf. Eq.(19))

P(4) = (Oxzv), (31)
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with x; a product of ground state harmonic oscillator eigenfunctions. It is now imperative
to note the & (v) is invariant under the gauge transformation A; and is even under the
one-particle parity transformations:

mAE) = (S 1)’ A5,
7% = (—1)x,. | (32)

Consequently, as long as the wave function decomposes as in Eq. (31) (for which we do
not have to insist x;g, to be purely harmonic), the symmetries induced by 4; and 7; will be
represented on the reduced vacuum-valley wave functional:

$(C+2nk) = (—1)F(C),
¢ C) = pd(©), (33)

where p; = +1 are the one-particle parities.

We now look for subgroups of order two, which leave a hypersurface of codimension
one fixed. The direction normal to the hypersurface will provide a situation analogous to
the double-well anharmonic oscillator. For these subgroups we take the Z,’s generated by:

T, = [h3] > m, (34)

which map C; » 2n—C; and C; - C; for i # j. The associated boundary is hence at
C; = n which leads to:

HC+1f}) = p(—1)"HC—1f) (35)
at C; = or:

$(Ci=m) =0 for p(-1"= -1,

F)
% (Ci=m) =0 for p(—1%= +1. (36)

This choice of boundary conditions is due to Vohwinkel [21] and implies that the boundary
conditions used in Ref. [13] are only correct for states with all one-particle parities positive,
that is for the state 4, A5, E" and e; considered in [13, 14].

The states 7;" and T, have two out of the three one-particle parities negative (where
T(;,z is (anti-)symmetric under interchanging the two negative parity directions). In view
of Eq. (36), the states we labelled 77", in Refs [13, 14] have effectively electric flux in the
two directions of negative parity and it is therefore misleading to call them glueball states.
Recent Monte Carlo results in intermediate volumes [22, 23] have impressively confirmed
the choice of boundary conditions in Eq. (36) for both the T, (zero units of electric flux)
and what was called the 77, state in Ref. [23] (the state, with electric flux in both of the
negative parity directions, which is symmetric under interchanging these two directions.
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Fig. 1. Comparison of the pure gauge SU(2) mass ratios as a function of z = ma,+L between the lattice Monte

Carlo data [22] and the intermediate volume analytic calculations [13, 14, 21] for 4/ f/mA1+, ME+[MA +,

my,+/ma,+ and my,,+/my,+. The dashed line gives the infinite volume prediction for the latter ratio,
assuming a string tension of (ma,+/4)?

This is the state which was labelled T, in Refs [13, 14], the analytic results follow hence
from these references). In Fig. 1 we exhibit these results by comparing mass ratios as
a function of z = m,. L coming from the Monte Carlo and the analytical calculations.
In this figure K is the finite volume “‘string tension”, which is defined as the energy of electric
flux divided by the length L.

We would intuitively think that adding electric flux to a state will increase the energy.
This is why we generalized the boundary conditions in Refs [13, 14] without further thought
to be independent of the one-particle parities. However, we now see that adding electric
flux to a T5 state will drastically lower the energy, which is surely an artifact of the inter-
mediate volume. The T, state therefore continues to surprise us, but our original claim
that in intermediate volumes the T, has the lowest mass of all glueball states is false. We do
confirm that the E* state is slightly lower than the scalar glueball up to z ~ 5 as was first
observed in a Monte Carlo study [24, 25]. However, it remains true that in these intermediate
volumes the E* and T; are far apart and thus rotational invariance is still badly broken.
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Recent Monte Carlo results [22] provide evidence that for z > 5 these two states rapidly
merge, with £ having the largest variation (see Fig. 1).

Let us now consider the negative parity states. Here we immediately run into a problem,
since parity cannot be implemented on the vacuum-valley as is obvious from Eq. (9).
Gauge invariance forces the effective vacuum-valley wave function to have positive parity
[21]. This implies that negative parity states have a transverse wave functional which behaves
nontrivially under a parity transformation. Hence, at least one of the transverse harmonic
oscillators is in an excited state. There are infinitely many possibilities and clearly we have
to take the ones with the lowest transverse energy. However, within the approximation
of Eq. (30), where these various transverse states are non-interacting, this choice is discontin-
uous when crossing C; = =. The reason is that the two transverse energies |C| and |2nf;— C|
cross at C; = n. Including the interactions between the crossing levels will remove the
discontinuity. But things are even further complicated by the fact that the excitation spec-
trum of Eq. (30) is degenerate (not only at the crossing points). We should also not forget
the possibility that the transverse wave functional could be odd under the gauge transforma-
tions /7, although we do not expect this to be the case. If, however, one can still decompose
the wave functional as ¥Y(4) = ¢’(é)xf-c*](v), with a single transverse state dominating,
then yz, carries the negative one-particle parities and we would have for ¢’(5) the same
boundary conditions as in the positive parity case:

§(Ci=m =0 for p(~D"=+1,

2— (Ci=mn)=0 for p(—1)= —1. 37N
aC;

For A7, A; and E~ these are the boundary conditions used in Refs [13, 14, 26]. For T, ,
the boundary conditions used in Ref. [26] would correspond again to a state with two units
electric flux. In Table I we compare with the Monte Carlo results of Ref. [22]. Especially
the E ™ results agree well with Eq. (37). However this would make on expect the 4; results
to agree better than they actually do. Furthermore, T, agrees better with the boundary
conditions of Eq. (36). It should be remarked though, that the interaction between the cross-
ing levels can lead to appreciable corrections of the effective potential used in the analytic
calculations, certainly at the larger values of g, which are employed. In an appendix we
analyse a simple model for crossing transverse energy levels to illustrate some of the issues
involved.

We should also not forget that these calculations are expected to have only a limited
range of applicability, which for higher mass states will be restricted to a smaller range in
z. For the states considered in Fig. 1, the method seems to be valid up to z = 5. But,
integrating out non-zero momentum modes is expected to yield a good approximation
only for those states for which the mass is smaller than the typical momentum separation
2n/L (i.e. the mass ratio should be small w.r.t. 2n/z). We agree with Vohwinkel [21] that
this is the most likely explanation for the predictions of the T and the A; states (where
there is no ambiguity in the boundary condition) to fail. From z = 1.5 onwards m/m,.
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TABLE 1

Comparison of the Monte Carlo [22] data (a) and the analytic results for the boundary conditions of Eq.
(39) (b) and the boundary conditions of Eq. (36) applied to the negative parity states (c) (both of type IA
[13]). my,+ and mg+ are the first excited glueball masses

az mAl-/mAl-; mE-/mAl+ m—rz—/mA,+ m’A1+/mAl+ m;3+/mA1+
+0.10 ' +0.06 +0.05 +0.02

3.85 2.19__0.70 2.95+0.16 3.02_0.13 1.56_0.29 1‘59—0.16

+0.13 +0.14 +0.02 +0.02

4.20 1.94+0.06 2.89_ 0.62 295 0.27 1.49 _ 0.06 1.79_ 0.19
+0.08 +0.14 +0.06 +0.03

5.27 1.74__0.35 2'48—1.38 2.54_1‘40 1.11+0.08 1.87_0_13

b

3.701 1.673 2.966 4.018 1.691 1.651

4.037 1.547 2.849 3.905 1.612 1.622

5.134 1.260 2.592 3.650 1.422 1.502

c

3.701 2.969 5.126 2.827

4.037 2914 5.044 2.708

5.134 2.794 4.853 2.452

surpasses 2n/z. This, however, is testable by doing Monte Carlo calculations at these small
values of z. The other cause for the analytic method to break down was discussed previously
in Refs [13, 26] and is related to the energy levels flowing over the potential barrier separat-
ing two vacuum-valleys. This is where the degeneracy in 6 will be lifted. We expect though,
that these two mechanisms are intimately connected.

We conclude this section by displaying how we implemented the boundary conditions
of Eqs (36) and (37) on the wave function of Liischer’s effective Hamiltonian (Eqs (20)-(24)).
For this it is useful to point out that &(c) has a decomposition along the vacuum-valley,
similar to Eq. (31): ‘

o(c) = HOxz(vis) (38)

and one can show, that at least to some order, ¢(C) in Eq. (31) and Eq. (38) do coincide
[8, 13]. This motivates the following choice of boundary conditions:

)=0 at r=0 if p(-1%=-p,
0 ) .

— ()N =0 at r=0 if p(~1)"=+p, (39)
r;

where p is the overall parity (p = [] p,). The additional factor r; in the second line of Eq.
(39) is due to the radial nature of the coordinates r;, giving rise to a Jacobian factor. The
choice of boundary conditions in Eq. (39) allowed an efficient way of implementing
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a Rayleigh-Ritz analysis, providing both upper and lower bounds on the energies. We
refer to Ref. [13] for further details. Since the boundary conditions are formulated gauge
invariantly, it is possible that their validity is also guaranteed away from the vacuum-
-valley, but we have presently no convincing argument for this, except for pointing to the
remarkable agreement with Monte Carlo results.

7. Discussion

We have seen that the effective Hamiltonian for the zero-momentum gauge fields
gives a detailed description of the non-perturbative dynamics of pure SU(2) gauge theory
in a finite cubic volume, smaller than five times the size of the scalar glueball, which is about
0.7 to 1 fermi. In Fig. 2 we summarize the structure of the spectrum in a schematic fashion,
illustrating the lifting of the various degeneracies. In the first step this leads to the glueball
masses, in the second it gives us the energy of electric flux and the final hurdle, waiting
to be taken, will yield the 0-dependence of the energy levels.

Especially in the positive parity sector for states with masses smaller than three scalar
glueball masses the agreement between the analytic and the Monte Carlo data is rather
satisfying (see Fig. 1). Even the excited 4] and E* masses give a fair agreement (see Table I).

.s’ z
m= 0"—91:3’ AE=0($_L.-’. Y ,4# |
.
L
‘ .
—
/ pe
/
,,,‘-‘1-———
7 #=(,1,1)
/:,?// m -
0 ——£-"" a3 :':: B
%"k:% ja
—_—

Fig. 2. A schematic overview of the spectrum for SU(2) pure gauge theories in a finite volume. In lowest

order one has the “spin waves’ with an infinite degeneracy, lifted by the interactions of the zero-momentum

modes giving glueball masses of order g%/3/L. The eightfold degeneracy due to electric flux is lifted by tunnel-

ing through a quantum induced potential barrier, giving a further splitting of order exp (— 12.4637 .../g)/L.

Finally, tunnelling through classical potential barriers separating two components of the vacuum-valley
will lift the degeneracy in 0 giving a splitting of order exp (—8xn?%/g?)/L
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Good agreement was also found for the ratios of the energies of different units of electric
flux [24, 27], which provide a rather sensitive test for the formation of electric flux tubes.
Any state, say with two units of electric flux (e.g. ¢ = (1, 1, 0)) is expected to have a mass
\/QGL (where ¢ = lim; ., K(L)) in sufficiently large volumes [2]. In Fig. 1 the dashed line
corresponds to the large volume prediction my,,./m,,. = \/2z/4. Up to now, this expected
string behaviour has not been observed and it forms a clear challenge for the Monte Carlo
calculations. Further recent Monte Carlo data, largely for z > 5, can be found in Ref. [28].
It confirms the near degeneracy of the E* and T states, which combine to form the tensor
glueball. Furthermore, these data confirm the near constant behaviour of \/K/m,,., which
together with the small volume results is therefore almost constant from z = 1 onwards.
This we believe can hardly be accidental (although there is certainly no flux tube formation
below z = 7 [27]), for some speculations see Refs [13, 26]. One might now also be reaching
volumes which are large enough to test the large volume predictions of Liischer for the
string tension [29] and the glueball masses [30], which are quite crucial for establishing
full control over any infinite volume mass estimates. However, much remains to improve
in the accuracy of the Monte Carlo data before a realistic comparison becomes feasible.

An obvious generalization of the analytic work is to go to the more realistic gauge
group of color SU(3). Analytic work in small volumes exists [31, 32], but the intermediate
volume calculation remains to be done. Finally including dynamical fermions would bring
us one further step closer to reality. For massless fermions and small volumes a first analysis
in this direction has recently been completed [23, 33] indicating that the glueball spectrum
for the mass ratios is remarkably independent of the number of fermion flavours.

Remarkable is also the result obtained for asymmetric tori [34]. Taking two sides
much larger than the third and studying the energy of electric flux in the third short direction
as a function of the renormalized coupling constant at the scale set by the short direction,
seems to yield a critical value of the coupling in the limit of infinite asymmetries, which is
then related to the deconfining temperature by the two-loop beta-function. This method
gives an approach to the deconfining temperature from within the finite volume deconfining
phase, in which the described analytic techniques are used. These techniques break down
in the actual limit to be taken, but the evidence gathered is tempting.

In conclusion I hope to have convinced you that finite volume gauge theories is fun and
that it is physics. It would be nice if somebody like Casimir [35] would come along to think
of a real experiment, but in the meantime we are more than happy to compare with that
other “experiment” called Monte Carlo. Of course, what we should do is look beyond
the edge of the femto universe and use lattice Monte Carlo calculations as our telescope
to map out carefully “where no one has gone before”.

To the organisers I would like to say dziekuje bardzo for inviting me to their wonderful
school in the Tatry mountains. I thank the participants for their interest and discussions.
My gratitude also goes to Jeff Koller, Chris Michael, Mike Teper and Claus Vohwinkel
for discussions and correspondence concerning the 7, glueball.
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APPENDIX

In this appendix we discuss a simple model for what can happen when two transverse:
energy levels cross. We study the Hamiltonian

2 a2
H(x) = — S e +1 G+ D) +n(x) g,
n(x) = (s, 0, x). (A1)
This Hamiltonian is invariant under the Z, group generated by 6; o 7, where n(x) = —x.

When & = 0, the Hamiltonian splits into two identical harmonic oscillators, one shifted
by one unit to the right, the other shifted an equal amount to the left and each level is two--
fold degenerate.

This result is quite different from a naive application of the adiabatic approximation.
For +x < 0 the transverse ground state has an energy (x + 1)%/2 such that the effective:
potential would be given by V(x) = (|x]—1)?/2, which is the double harmonic oscillator.
Its spectrum is for g # O clearly non-degenerate. The reason for this discrepancy is of course:
the crossing of the transverse energy levels for ¢ = 0 at x = 0, where the adiabatic approxi-
mation breaks down. :

This can be nicely illustrated in an explicit calculation. We find the following results.
for the transverse eigenfunctions and eigenvalues (see Fig. 3):

X[jJ:c,e] = ga(x)vi9 ge(x) = €Xp (_ i“e(x)az/z)s
) = 1P+ D VP4 (A2

where v+ is the spin-up and v~ the spin-down spinor and «,(x) is the angle of n(x) with:
the z-axis. We fix the 2z ambiguity of « by demanding a,(c0) = 0, from which it follows.
that o,(—o0) = sign (¢)r and more importantly

a(x) = sign () —a(~x), (A3)
or

8x) = sign (8)a,8,(—X)o. (A4)y

This implies the following transformation properties of the transverse eigenfunctions under
the Z, symmetry:

Xiner = Esign (01X .. (A.5)

The Z, eigenvalue is therefore —sign (¢) for the transverse ground state (and the opposite
for the excited transverse state). The fact that this eigenvalue depends only on the sign of
¢ is a direct consequence of Berry’s phase [36], since the adiabatic evolution from x = —o0
to x = co along a path with ¢ > 0 and back along a path with £ < 0 forms a closed path in.
configuration space (x, ¢), encircling the point of level crossing at x = ¢ = 0 once.

We conclude that when ¢ # 0, such that the adiabatic approximation is valid for suf-
ficiently small values of g, the symmetry of the effective wave function ¢(x) in
Y(x) = ¢(x)x(x,e; is determined by the sign for the off-diagonal coupling. The effective
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Fig. 3. The transverse energies and the angle «,(x) for the Hamiltonian in Eq. (A.1) ate = 0 and ¢ = 0.5,
to illustrate the intricacies of the adiabatic approximation in the presence of crossing transverse energy

levels
wave function satisfies the equation:
2 32
g ddx)
=5 o HA9() = Eg(x) (A.6)

and in the case of negative parity states in the SU(2) finite volume calculation we have
substituted for A, (x) its limit for ¢ —» 0, because of our ignorance of the precise value
for &(g).

Finally, just for the fun of it, let us show how the limit ¢ — 0 is to be taken properly.
Let |#) and [¢) be two spinors. We wish to evaluate {x3| ® {&| exp (—iHT)In) ® [xo),
which can be written as the path integral

xT T T

fQX(t) < &lg(x1) exp (5""‘;2 Jﬁ(t)zdf) Pexp [— i f {Az(x(t))+iAe(x(t))}dt]gs' * (x0) I,
Xo 0 0

(A7
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where A(x) is the diagonalized transverse Hamiltonian and A(x) is the U(1) “adiabatic
gauge field” [36]:
A(x) = diag (4,(x), 27 (x)),

d

A(x) = i(X[t:,a]‘ [Xfx,61002- (A.8)
dx
One easily shows that
. 7
lim A,(x) = —i ) d(x)o,, (A.9)
-0

which will cause the spin to flip whenever x(¢) passes through zero. A straightforward
computation gives:

xr T

orn2
f @x(1) (¢l exp [i f {’;(;) 1 )+a3)2} dt] ind (A.10)

X0

for the path integral of Eq. (A.7) in the limit & —» 0, which is easily seen to be what one
would obtain by putting ¢ = 0 from the start.
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