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After a brief historical and contextual introduction to random networks of automata
we review recent numerical and analytical results. Open questions and unsolved problems
are pointed out and discussed. One such question is also answered; it is shown that the size
of the stable core can be used as order parameter for a transition between phases of frozen
and chaotic network behavior. A mean-field-like but exact self-consistency equation for the
size of the stable core is given. A new derivation of critical parameter values follows from it.

PACS numbers: 05.90.+m

1. Introduction

Random networks of automata have recently received some attention from workers
in theory of automata, in neural networks, and in disordered systems. They were introduced
by S. Kauffman as simplified models for the complex genetic regulatory system that guides
cell differentiation in embryonic development, and ensures metabolic stability; see Sect. 2.
Compared with the regular networks of automata studied by Wolfram and others, random
networks differ by being non-homogeneous and infinite dimensional; see Sect. 3. Compared
with spin glass models for neural networks, random networks are more primitive objects,
which in some ways resemble spin glasses more than they resemble neural networks, sce
Sect. 4. In Sect. 5 the stable core of a random network is defined. A mean-field-like but
exact self-consistency equation for its size is derived, and from this equation critical param-
eter values are found. This is a new, promising approach: it appears that critical exponents
and many network properties in the frozen phase may be computed as due to fluctuations
in the size of the stable core. Also, the self-consistency equation may be generalized to give
the distribution of local magnetizations. In Sect. 6 Monte Carlo results for random networks
are reviewed and compared with analytical results for spin glasses. Section 7 presents
analytical calculations for a special case: the totally connected random network. One
characteristic probability distribution is found from its moments, another is found numeri-
cally from a stochastic recursion relation. Several other results for this case are reviewed.

* Presented at the XXVIII Cracow School of Theoretical Physics, Zakopane, Poland, May 31 —
June 10, 1988.
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Section 8 presents another analytically tractable case: that of connectivity one.
It is explained why many quantities are analytically computable in this case, and a number
of results are reviewed. Section 9 contains the conclusions.

2. Kauffman’s model

In Fig. 1 each circle represents a chemical reaction. Each reaction depends on other
reactions in the same environment. Dependence between reactions is denoted by an arrow
going into the dependent reaction. To keep things as simple as possible we shall say that
reaction no. i either takes place (o; = 1) or does not take place (¢; = 0). We shall also
let time be discrete and let the reaction rate o; of reaction no. i be a function of the reaction

1ates G,y Ty o> Ojxqy at time #:
o (t+1) = fi(0;,0(0), G50 D)5 -5 T (D)- ¢y

Here ji (i), ..., jx(i) are the numbers of the reactions that reaction no. i depends on. f; can
be any Boolean function, since the products of, e.g., reaction number j,(i) may either be
necessary for reaction no. i, or they may inhibit it. And they may have this effect in a way
that depends on the values of 6;,), ..., 0. S0 while we have kept the description of the
individual reaction as simple as possible, we have left their possible interdependencies wide
open.

If we were to describe a specific network of N chemical reactions, we would have to
specify the dependencies (j,(i), .., jx()))i=1,..x and the Boolean functions (f);-y,..5. This
was not the goal Kauffman set himself, when he formulated his model [1, 2]. He considered
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Fig. 1. A random chemical reaction net
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the protein synthesis of genes and argued that this process probably is an all-or-none binary
process. His goal was to investigate whether metabolic stability and cell differentiation
in embryonic development require the genetic system to be precisely constructed: has evolu-
tionary history selected only highly ordered reaction circuits which alone insure metabolic
stability, or are stability and differentiation processes to be expected even in nets of
randomly interconnected regulatory circuits as the probable consequence of mathematical
laws for random networks? Put in other words, the question is: are living things, in the
parts that were assembled first in evolution, like precisely assembled automata made to
a design that is the result of evolutionary selection, or are they like randomly assembled
automata, whose characteristic behavior reflects their unorderly construction, no matter
how evolution selected the surviving forms?

Kauffman addressed this question by studying the statistical properties of randomly
assembled Boolean networks: he fixed N and K and chose for each i j (i), ..., jx(i) at random
in {1, 2, ..., N}. He also chose fi(5,, ..., o) at random in {0, 1} for each input (o, ..., og).
With a sample network thus defined, he followed the time evolution of random initial
configurations on a computer using Eq. (1) for dynamical law. The results he compared
with experimental data on living things in the following way: the number N of elements
in the random networks is identified with the number of genes per ¢ell in an organism.
There is a practical problem in doing this: the estimated number of genes in a cell starts
around 2000 with bacteria and ends around 40, 000, 000 with Trillium, the small plant
which is the “banana fly” of plant genetics. Nets this size one cannot simulate, so the
comparison is done mainly with extrapolated simulation data. Quantities compared are:
number of cell types per organism with number of different limit cycles per net, see Fig. 2,
and cell replication times in organisms with cycle lengths in random nets, see Fig. 3.
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Fig. 2. Log number of cell types plotted against log estimated number of genes. The theoretical curve shows
log number state cycles against log N [1}
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Fig. 3. Correlation between quantity of DNA per cell and cell cycle time. Also plotted is state cycle length
as a function of N in K = 2 nets either using all 16 Boolean functions of two inputs, or excluding tautology
and contradiction [1]

The purpose of this Section was not to convince you that Kauffman’s model is the
ultimate answer to the mystery of life. It was only meant to explain why a certain class of
random Boolean networks is often referred to as “Kauffman’s model”.

3. Comparison with regular networks of automata

Maybe you are acquainted with the cellular automata studied by Steven Wolfram
and others [3]: Boolean variables g; are arranged in a regular lattice in 1, 2, or more dimen-
sions and develop in time according to a law like Eq. (1), where (j,(i), ..., jx(?)) fall in
a neighbourhood of i which is independent of i, see Fig. 4, and the function fis also chosen
not to depend on i’'. Such regular networks can mimic partial differential equations in
a primitive form. Eq. (1) would mimic a first order equation w.r.t. time. Higher order
equations are obtained by letting o(t+ 1) depend on variables at time 7, 1—1, ...

Fig. 5 shows results obtained with such a regular network of automata [7]: on a 1024
by 512 hexagonal lattice hard spheres move along links or sit on sites, and collide at sites
according to simple, deterministic rules that conserve momentum. In each time step a mov-

! The intermediate situation, where the variables are arranged in a regular lattice and receive input
from their neighbours, but the functions f; are chosen at random, has been studied [4-6], but will not be
discussed here for lack of space.
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ing sphere moves one lattice spacing and collides, if there is another sphere to collide with..
Boundary conditions are periodic in the vertical direction. Spheres keep coming in through:
the left boundary with a specified average density and disappear at the right boundary.
In the resulting current a flat plate has been inserted. After 5000 time steps the matter flux
averaged over 16 by 16 sites is as shown in Fig. 5. One sees a Von Karman street to the right
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Fig. 5. Two dimensional flow around a plate for a Reynold’s number of order 70 after 5,000 time steps..
The direction and modulus of arrows are proportional to the mass flux on a 64 by 32 grid [7]
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of the plate, as one would, if Navier-Stokes equations were solved with the same boundary
conditions.

This primitive network of automata has several advantages over finite element methods
applied to Navier-Stokes equations; e.g. high speed of computation, numerical stability,
and simple boundary conditions at obstacles inserted in the current [7].

I hope this one example has convinced you that cellular automata can describe physical
systems. The reason they are interesting for physics is that they are much easier to program
on computers than differential equations are; especially on highly parallel special purpose
computers.

Now let us do a simple estimate showing what kind of physical system Kauffman’s
model is related to: when (j,(5), ..., jx(i)) are chosen as shown in Fig. 4 it is clear that Eq.
(1) can propagate a signal across the lattice with a maximal velocity of one lattice spacing
per time step. Generalizing to a d-dimensional lattice, the number of variables that can have
received a signal from a certain variable grows with time as . On the other hand, when
(1@, ..., jk(@) are chosen at random as in Kauffman’s model, each variable will on the
average send its output to K other variables, each of which sends output to K variables,
none of which are identical, when N is infinite, and K is finite. So the number of variables
that can have received a signal from a certain variable grows with time as K*. This exponen-
tial growth with time is faster than ¢° for any value of d. For this reason randomly connected
networks are sometimes called infinite dimensional networks. As opposed to finite dimen-
sional networks of automata infinite dimensional networks have received little attention
until recently.

An infinite dimensional system may also arise through a mean field description of
a finite dimensional system with long range forces. Quenched, random interactions occur
in spin glasses. The Sherrington-Kirkpatrick (SK) model is a mean field theory for spin
glasses [8]. A number of properties of this model may be computed by the replica method
developed by Parisi and collaborators. (For a review see {9].) Since the SK-model and
Kauffman’s model both are infinite dimensional and have quenched random interactions,
let us see what else they have in common. In the thermodynamic limit the configuration
space of the SK-model is broken into free energy valleys separated by infinitely high energy
barriers. From the Ising model in its magnetized phase you may be familiar with two such
valleys: magnetization ‘up’ and ‘down’. The SK-model has an infinity of such valleys,
and their relative sizes vary from sample to sample. The quantity Y, expresses this multi-
-valley structure: the bar means ‘sample averaged’, and for a given sample Ypis the probabil-
ity that P randomly chosen configurations belong to the same valley. Kauffman’s model
also has a multi-valley structure, and even so for finite N: since configuration space is finite,
of size 2", any initial configuration will in time develop onto a limit cycle. The set of configu-
rations ending up on the same limit cycle is its basin of attraction. So configuration space
is broken into basins of attraction of various sizes, see Fig. 6 for a symbolic representation
of this picture. This is a multi-valley structure like that of the SK-model, and Y} is defined
for Kauffman’s model in obvious analogy with the definition for the SK-model. Fig. 7
shows Y, plotted versus ¥, for Kauffman’s model with K ranging from 1 to 4 and N ranging
from 5 to 240. Each point represents an average over 10,000 samples from a Monte Carlo
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Fig. 6. Highly symbolic representation of configuration space as a rectangle with area 1 broken into basins
of attraction with areas W, s == 1,2, ..., each basin containing a limit cycle as attractor
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Fig. 7. Y; versus Y [10]. Each point represents an average over 10,000 samples. The full curve represents
the mean field result for spin glasses: ¥s = Y(1+ Y)/2. The dashed curves are bounds ¥? < Y; < Y that
Y: must satisfy
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simulation [10]. The line passing through the points is not a fit! It is the theoretical relation-
ship for the SK-model [11-14]:

Y, = V,(1+Yy)/2. @

An obvious question is: do the points fall on the line? If they do, we have discovered a new
law of universality, which connects a thermodynamical system having energy and tempera-
ture with a rather primitive deterministic automaton having neither. The answer is given
in a subsequent Section.

4. Comparison with neural networks

Take another look at Fig. 1, and let now each circle represent a formal neuron, which
may be in one of two states: ‘firing’, o; = 1, or ‘quiescent’, o; = 0. When the connectivity
K is large, Fig. 1 resembles the pattern of connections in neural network models. So, to
clarify similarities and differences, let us compare Kauffman’s model with spin glass models
for neural networks, like the Hopfield model. (For a recent review see [15].)

Such models attempt at most to describe local properties of organic networks, since
all neurons are treated equivalently with no directional flow of information through the
network. The network may be thought of as a small chunk of ‘brain-matter’ with its neurons
connected in a way that leaves no surface. The functions f; in Eq. (1) are usually threshold
functions depending linearly on the inputs through a connection matrix C, which expresses
synaptic efficiencies; e.g.

N
Jilo) = 0( _Zl Cijaj_n)- 3)

The synaptic efficiencies C;; and the thresholds 0; are 1cal variables that adapt in learning
processes, whereas the time evolution in Eq. (1) for fixed C;; and 0, describes a process
of recall or association,

The step-function and the linear dependence on ¢ in Eq. (3) is chosen with an eye on
the properties of a real neuron. Very crudely described, it gives a thresholded response to
the weighted sum of activity in the neurons it receives input from. This restricts f; to a limited
subset of all Boolean functions of ¢, as Eq. (3) shows. This is an essential difference between
the networks of Kauffman and Hopfield: Hopfield’s network has Boolean variables and,
in a dilute version [22], random connections. But even when the learned patterns stored
in C;; are random, f; is not a random Boolean function, as it is in Kauffman’s model.

5. The stable core in random Boolean networks [23, 24]

When the number of variables N is infinite, Kauffman’s model has two phases:
a ‘frozen’ phase in which almost all variables evolve to a constant value which is independent
of the initial configuration, and a ‘chaotic’ phase in which a finite fraction of variables keep
changing their values, and the average length of limit cycles grows exponentially with N.
This was first seen in simulations [1, 2]. Then it was proven by looking at the time evolution
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of overlaps between configurations in an annealed version of the model [17]. Subsequently
the annealed model was shown to be equivalent in the thermodynamic limit to the quenched
model described here [18].

In this Section we describe the phase transition using the relative size s of ‘the stable
core’ as order parameter. The stable core is the set of variables ¢; which develop in time
to a constant value that is independent of the initial configuration. Any variable o; can
belong to the stable core for one of K+1 mutually exclusive reasons, see Fig. 8:

(0) o; is updated with a function f; which depends on variables (o;,;), ..., 6k that all are
in the stable core. Since j,(i) was chosen at random, this situation occurs with probabil-
ity s

(1) o; is updated with a function f; which depends on variables that all but one are in the
stable core. f; happens to be a Boolean function which is independent of the variable outside
the stable core, when the K— 1 variables in the core that f; depends on have their ‘stable’
values, i.e. the constant values they evolve to. This situation occurs with probability

KSK_ 1(1 -S)pla

‘where p, is the probability that a random Boolean function of K variables for given values
of K—1 of the variables is independent of the K'th variable.

CONFIGURATION  SPACE

STABLE CORE

S 972083

Fig. 8. Symbolic illustration of Eq. (4)
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(k) 5, is updated with a function f; which depends on variables that all but k are in the stable
core. f; happens to be a Boolean function which is independent of the k variables outside
the stable core, when the K—k variables in the core that f; depends on have their ‘stable’
values. This situation occurs with probability

(f) KK =94,

where p, is the probability that a random Boolean function of K variables for given values
of K—k of the variables is independent of the other k variables.

K) ...
Since the relative size s of the stable core is also the probability that a variable s, belongs
to it, we can sum the probabilities above to an equation for s:

K

k=0

where p, = 1. Clearly s = 1 solves Eq. (44) for any values of p,, ..., px. Division of Eq. (4)

by 1—s gives
K
s+s24+ 45K = K sKok(p k! I
= K =% "pe )

Eq. (5) is also solved by s = | provided

pr=1-—. (6)

We shall soon see that this is a critical condition for the network. The slope of the r.h.s. of
Eq. (4)ats = 1is K(1—p,), and at s = O the r.h.s. equals py. Hence, if p, < 1— /K there
is a second solution to Eq. (4) in the interval [py, 1] besides the solution s = 1, see Fig. 9.

When there is more than one solution to Eq. (4) in the interval [0, 1], we must look to
the time evolution of the network to pick out the relevant solution. We introduce ‘the stable
core at time t°, meaning those variables ¢; which at time ¢ have attained ‘stable’ values.
Let s(7) denote the relative size of the stable core at time 7. Then it is clear that s(z) is non-
-decreasing. It is also clear that s(1) = pg; any variable ¢; updated with a constant function
/i has reached its stable value after one update, no matter what the initial configuration
was, and this is the case for only such variables. Finally one may convince oneself that the
evolution equation for the stable core is

K
s(t+1) = Z (f) SO K1 =s(0) py. M

k=0
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Fig. 9. Graphical representation of Eqgs (4) or (7) for p, < 1—1/K (a), and p; > 1—1/K (b). The curves
are for the case K = 3, p = 0.7 (a), and p = 0.9 (b) [23]
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The evolution described by this equation is an iterated map. Fig. 9 shows that the smallest
of the solutions to the fixed point equation (4) is attractive, hence the relevant one. The two
solutions shown change role at the value for p, given in Eq. (6), which is therefore the critical
condition.

When the functions f; are chosen at random to be 1 with probability p and 0 with
Plobability 1 —p, we find p, = p*+(1 —p)**, and the critical value for p is

—
Peritical = 7 (1 + \/1— E) for K >=2. ®)

The symmetry w.r.t. p = 1/2 in Eq. (8) is due to the equivalence between the values 0 and
1 for o. For K = 1 critical behavior occurs only for p, = 0 [19].

A subtlety: p, was defined essentially as the probability that a random Boolean function
of k variables is a constant function. This it is with the probability p, just given, only if the
k variables are independent. Suppose in the case (k) described above, some of the k variables
not in the stable core, happen to be identical. Then p, is not as given above. In the case
k = 2 e.g. the function XOR is constant, if its two arguments happen to be the same
variable. Fortunately, in the limit N — oo we may neglect this complication in the evaluation
of p,, since the probability that some of k randomly chosen input variables happen to be
identical is O(k(k—1)/(2N)).

Fig. 10 shows the size s of the stable core as a function of p in the case K = 3. We sce
two phases: the frozen phase characterized by s = 1 for p > p.ijjjea = 0.78867 ..., and
the chaotic phase characterized by s < 1 for p < pcriicar

0
0.50 0.75 1

p

Fig. 10. The size of the stable core as a function of p in the case K = 3 [23]
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Notice that the time evolution in Eq. (7) is a resuit of the ‘synchronous’ or ‘paraliel’
updating of the variables chosen with Eq. (1). But the self-consistency Eq. (4) is independent
of the particular time evolution chosen with Eq. (1). Had we instead chosen ‘sequential
updating’, or ‘random sequential updating’, or any other algorithm that sooner or later
will update any variable in the network, then Eq. (4) would still be valid, and consequently
so would the phase structure just found.

The recursive reasoning applied here to the size of the stable core applies also to the
distribution P(m) of local magnetizations in the network. Define the local magnetization
mgt) as the sample averaged value of spin i at time t: my(t) = (S(t)>. Then we can define
P(m) as the relative frequency of local magnetizations with value m. P, is related to
P, much like s(r+ 1) is related to s(t). As a matter of fact Eq. (7) is contained in the this
relationship [24].

6. Monte Carlo results for Kauffman’s model [10]

Let us return to Figs 6 and 7. The square in Fig. 6 represents the space of 2" configura-
tions of a sample network. It is broken into basins of attraction with relative sizes W;: if Q
of the 2% configurations eventually end up on the s’th limit cycle, then we define

W, = Q2" ®

W, is also called the weight of the s’th attractor. Clearly, for each sample network we
have

1=3W, (10)

and the probability that P randomly chosen configurations eventually end up on the same
limit cycle is

Y, =Y W (11)

For the sake of brevity, we write ¥, as Y. Does the value of Y, vary from sample to sample?
Obviously so, it may seem, since each sample is created with different random connections
(1), ... jx(i)i= ...~ and different randomly chosen functions (f);-; . . But it is not
obvious in the limit N — oc: Y, could be a self averaging quantity, like the magnetization
of a ferromagnet, the pressure of a gas, etc. Alternatively, Y, could simply be zero: suppose
the typical number of configurations in a basin of attraction remains finite or grows with
N slower than 2V, Then by Eq. (9) W, would vanish for infinite &, and Eq. (10) would be
satisfied by an infinite sum over infinitesimal weights W,. For P > 1 we would have Y, = 0.

Let [T, denote the frequency distribution for Y,. ITp has been studied numerically
through its first moments [10]. The first moment of IT,, written IT, is just Y. Fig. 11 shows
Y for K= 1,2, 3, 4 and N ranging from 5 to 240. Except in the case K = 2, which from
Sect. 5 we know is critical, a limit value seems to be reached by Y for large N. Are the finite
values for Y at N & oo self averaging? The measured standard deviations for ¥ are shown
in Fig. 12. Within the error bar the standard deviations are constant at large N. So we
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conclude that Y is not self averaging, except in the case K = 2, which is undetermined:
if for K = 2 Y — 0 for N — oo, the standard deviation for X = 2 must also go to zero.
In Fig. 12 it does not do this. Neither does it go to a constant value. So N is not large
enough, as is often a problem in simulations of critical systems.

After the Monte Carlo simulations discussed here were done, the quantities shown were
calculated analytically in the limit K infinite [20]. The results in this limit are also shown
in Figs 11 and 12, and show that Y is finite and not self averaging. Details about this calcula-
tion are given in Sect. 7. Subsequently, Y, and other quantities have been calculated analyti-
cally for K = 1 [19]. At a critical point Y and Y» were found to vanish in the limit N — co.
Some details are given in Sect. 8.

Now look at Fig. 7 and also Figs 13 and 14, which are of a similar kind, and compare
the Monte Carlo data for Kauffman’s model, shown as points, with the theoretical predic-
tions for the SK-model, shown as full lines. Do the points fall on the lines? Have we found
a new universal property, common to very different systems with quenched disorder?
Alas, no: the points represent averages over 10,000 statistically independent samples of
quantities distributed in the interval {0, 1]. So the standard deviations on the values plotted
are smaller than 0.005, which is approximately the size of the plotted points, If this argument
does not convince you, look at the one cross in each of the figures 7, 13, and 14. These
crosses represent the exact analytical results for the limit X infinite, N infinite, and are not
on the curves for the SK-model. After the Figures 7, 13, and 14 were made, the quantities
shown have also been calculated analytically for the case K = 1 [19], and do not coincide
with the results for the SK-model either, as we shall see in Sect. 8.
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Y

Fig. 13. ¥, versus ¥ [10]. Full curve repreesnts Y, = Y(1+7)(2+Y)/6 [11-14]. Dashed curves are bounds
Y3 < ¥, < Y. Otherwise like Fig. 7
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Fig. 14. Y2 versus ¥ [10]. Full curve represents ¥3 = Y(1+27)/3 [11-14]. Dashed curves are bounds
Yz < Y2 < Y. Otherwise like Fig. 7

All is not lost, however; it may still be possible to find universal properties in these
models: the Monte Carlo results just discussed were all measured with the probability
p set to the value 1/2. For that value of p Kauffman’s model is in its frozen phase for K = 1,
critical for K = 2, and in its chaotic phase for X = 3, 4, ... One may have more success
finding universal behavior, if networks with different connectivities K are compared at
equivalent rather than identical values of p, e.g. at the critical values given in Eq. (8).
This has not been done. What would one find ? The results for K = 2, as shown in Figs 7,
11-14 and, hopefully, results for K = 3, 4, ... on top of a line connecting the results for
K = 2. The latter results differ at most a few standard deviations from the curves for the
SK-model, though in a systematic way. But even if Kauffman’s model at its critical points
does differ from the SK-model in its multi-valley structure, it would be a very nice result
if this structure showed universal behavior in its dependence on K and finite N.

How is such a Monte Carlo simulation done? As follows: choose values for N and K.
Generate random connections j(i) in {l,...,N} fork=1,..,Kand i=1,.., N, and
choose fori = 1, ..., Nand input = 1, ..., 2X f(input) at random in {0, 1} with probability
p for the value one. The variable input enumerates the 2" possible different inputs to f; - ji, (i)
and f,(input) are stored in arrays, and represent a sample network. Since Y is the probabil-
ity that P randomly chosen configurations eventually end up on the same limit cycle, that
is exactly how it can be measured for P not too large: choose P configurations at random,
and compute their time evolution using Eq. (1). Do so for many sample networks. The
frequency with which all P points end up on the same limit cycle is an estimate for Yp.
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In the chaotic phase typical transients and limit cycles have lengths that grow exponentially
with N. This is connected with the fact that Y, remains finite for increasing N. This sets low
limits on the values of N that can be handled in a simulation in the chaotic phase, see e.g.
Fig. 11. At the critical point, on the other hand, Y, drops with increasing N (at least for
K = 1 (Sect. 8) and K = 2), hence simulations of larger systems are easier at the critical
points!

7. K = oo the random map model [20, 21

When the connectivity K of Kauffman’s model is sent to infinity, the dynamical law
of any sample is a random map in configuration space. Consequently a number of quantities,
including those measured in Monte Carlo simulations and discussed in the previous Section,
become calculable analytically [20]. This is very nice, since the Monte Carlo results are not
entirely satisfying because of statistical errors and finite size effects. Conclusions about
quantities measured at finite N, e.g. absence of self averaging of ¥p, become more convinc-
ing, when supported by exact results. for infinite N, even if the latter results are available
only for K = 0. ’

Let us see why K = oo makes the dynamical law (1) a random map: first remember
that X is the number of randomly chosen inputs j,(7), ..., jx(i) to any variable i. Any value
Jj may occur more than once among the K inputs to variable i, and for N finite, X infinite,
every possible value of jin {1, ..., N} occurs, i.e. f; depends on every variable o;,j = 1, ..., N,
or, equivalently, on the entire configuration in question: f; = fi(¢). Every configuration
(09);=1,..,n may be identified with an integer # [o] between zero and 2¥ 1, e.g. by letting
the value of the i’th variable o; be the i’th binary digit of the number:

N
+[o] = _Zl o2V 4 (12)
So when fi(o) is a_ssighed a random value, 0 or 1 equiprobably, this value is the i’th binary
digit of the configuration ¢’ that ¢ is mapped into. Since each digit of ¢’ is chosen at random
in {0, 1}, so is ¢’ in {0, 1, ..., 2" "'}, and we conclude f is the random map.

Now let us compute Yp: we define Q(Ty, T, ..., Tp) as the probability that a randomly
chosen configuration C,; visits 7, different points in configuration space before revisiting
any of these T, points, that a randomly chosen configuration C, visits 7, different points in
configuration space before falling on the trajectory of C;, that a randomly chosen configura-
tion C, visits T different points in configuration space before falling on the union of trajec-
tories of C; and C,, ..., that a randomly chosen configuration Cp visits T different points
in configuration space before falling on the union of trajectories of C,, C,, ..., Cp_;.
With a configuration space of M points it is not difficult to see that [20]

1 2\ T+ T+ ... +Tp_,4
7,1 ....T)) ={1— —H1——})...[1-
ot o = (1= 1) (1 2).. (1 T

T? Ty\+T, T+T+ ... +Tp_,

M2 M T M

(13)
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and
. M M-T; M-Ty... = Tp-y
YP = Z E vee Z Q(Tl’ Tz, eney Tp). (14)
Ti1=1Ty=0 p=0
Changing variables to -
i
=2 T; as)
=1

Eqs (13) and (14) give

DB E SN

Sp=18p-1=1 Si=1 (16)
In the limit M infinite one can use continuous variables
Si=JMt, 1= /Mady 17
and Eq. (16) becomes
_ @ 2 tp tp—1 13
YP = g dtp exp(—tp/Z)df dtP—ltP-*l 05 dtp_ztp_z “oe ydtltf (18)
0
which is easily integrated to
- 4&7(P-DY*  T(PII/R)
F (2P—1)! 2[(P+1/2) 2 B(P, 112),
=2/3, Y,=28/15, Y,=16/35, Y, = 128315, etc., (19)

where B(y, z) is Euler’s integral of the first kind. For a given sample of the network, i.e. for
a given random map, the probability Y, that P randomly chosen configurations belong
to the same basin of attraction is

Yp = Z wr =oi aww?® ; (W —W). (20)
Hence, when averaging over all samples, we have
Y =odeW"f(W), @1
where
f) = L6 —W,) (22)

i.e. f{iW) is the frequency of basins of attraction with relative size¢ W. The probability that
a randomly chosen configuration belongs to a basin of size W is

g(W) = WAW). (23)
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g(W) is of course a normalized probability distribution in [0, #]. From Eq. (21) we see
that Yp,, is the P’th moment of g(W). Y; is given in Eq. (19), and it is possible to find
g(W) from its moments: using

1
B(y,z) = (J;dWW’"l(l—W)"‘1 (24)
in Eq. (19) we get [20]

W)= ————. 25
&) 2J1—Ww (25)

In the SK-model g(W) is [12]

w1 -w)?

W)= ————— 26
) = Tora-» 9

The parameter y is just the first moment Y. When y = 2/3, which is the value for Y in
Kauffman’s model with K = co, g(W) for the two models have almost, but not exactly,
the same shape. This explains why the higher moments for the two models almost coincide,
but also proves that the multi-valley structure of the two models is not identical, despite the
striking similarity we have seen.

From the knowledge of g(W) one may easily compute g(W,, W,), the probability
that two randomly chosen configurations fall on attractors with weights W, and W,, and
similarly g(W,, W,, W) and from them Y, and Y5 [20]. This can be done also for finite
N; the results are shown in Figs 11-14. Notice in particular in Fig. 12 that ¢(Y) remains
finite in the limit N — oo, and its value is close to those found in simulations for K = 3
and K = 4, We conclude that Y is not self averaging for K infinite, and feel rather convinced
that neither is it for X = 3,4, .

Now let us compute I1(Y) 1tse1f if we consider a conﬁguratlon C, we know that the
probability that it belongs to a basin of weight W is g(W). Configuration space may be
viewed as composed of the basin that C belongs to — it consists of M - W configurations —
and of its complement of M - (1 — W) configurations. The restriction 7" of the random map
T to this complement is also a random map and therefore has the same statistical properties
as the map 7. Consequently we have

Y = Wi+ (1-W)*Y, X))

where Y refers to the map 7 and ¥ to the map 7. Notice W and Y are independent variables,
distributed with probabilities g(W) and II(Y). Consequently

I(Y) = glde(W) (j:d"yn(if)a(y— W2 —(1-W)*Y). (28)

In this equation we know g; IT is the unknown. We have not been able to solve for IT analyti-
cally. From Eq. (28), or by taking the average of powers of both sides of Eq. (27), we can
find a recursion relation which gives us all moments of II. But this moment problem we
have not been able to solve. We can easily find IT numerically, however, using a stochastic
method based on Eq. (27): we generate recursively a random sequence {y,} by choosing
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¥o at random in [0, 1], and by computing y,;; from y, using
Ynr1 = W +(1=W,)y,, (29)

where W, is randomly chosen with distribution g(W#,). The values y, generated this way
are distributed according to IT. Fig. 15a is a histogram based on 10,000,000 values. It shows
singularities in II(Y)at ¥ = 1, 1/2, 1/3, and 1/4. 1t has been shown that I1(Y) has singularities
at Y= 1/n, n=1,2,... and that this is a quite general feature of randomly broken
objects [21].

For the SK-model 77(Y) was found to have the shape shown in Fig. 15b for parameter
value y = 0.7. The similarity between the two functions I1(Y) is striking. It is explained
by the fact that main features of II(Y) are independent of the particular properties of the
two models, but depend only on the property that configuration space in both cases is
a randomly broken object with approximately the same bias towards large pieces [21].
This also explains, why the second moments Y, for the two models almost coincide, when
the first moments Y, do so.

It is nice to have exact results for K = oo ; but it would be even nicer to have an expan-
sion scheme, say in 1/K, with the results for X = oo as the first term, The Monte Carlo data
for K = 4 compared with the exact results for X = oo indicate that 4 is close to infinity.
So an expansion scheme might successfully describe most of the chaotic phase. We do not
know how to design such a scheme.

8. K = I: another solvable case [19]

In the previous Section we presented exact results for Kauffman’s model deep inits
chaotic phase. In the present Section we shall present exact resulis in the frozen phase.
This is possible for K = 1 and for any value of p. The results are obtained as rapidly con-
verging sums over classes of samples, These sums are somewhat similar to those obtained
by high temperature expansion of lattice spin systems and by strong coupling expansion
of lattice gauge systems. The convergence properties are better in the present case, though:
some quantities are obtained exactly by a finite number of terms, and the singularity
determining the radius of convergence for the infinite sums occurring, is the critical point
itself. Furthermore, though not yet fully demonstrated, it looks as if the results thus obtained
for K = 1 can be used to explain the behavior of Kauffman’s model with any connectivity
K, anywhere in the frozen phase, and maybe even a little beyond the phase boundary and
into the chaotic phase; i.e. critical indices are maybe computable this way. So the exact
results for the case K = 1 not only complement the results for K = oo, but also hold more
promise for further development. Now let us see why this case is analytically tractable:

For K = 1 every variable o, receives input from only one variable g;:

ot+1) = fi(o;u(D), (30)
where j(i) was randomly chosen. Thus, for K = 1 the connection graph in Fig. 1 is just the

graph of a random map among the N variables with its arrows reversed. Such a graph con-
sists of only loops and trees, the trees being rooted in the loops; see Fig. 16. The informa-
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Fig. 16. Connection graph for Kauffman’s model with K = 1. Each connected part of the graph consists
of one loop and trees rooted in this loop

tion contained in initial values ¢,(0) placed on trees propagates with time towards the ends
of the branches, where it is lost, if it is not lost before by being used as input to a function
fi with constant output. After at most N time steps the only initial values ‘remembered’
by the network, are those placed on loops, and only those placed on ‘information conserv-
ing’ loops. An information conserving loop is a loop in which only the functions ‘identity’
and ‘negation’ occur. The other two Boolean functions of one variable are the constant
functions 1 and 0, ‘tautology’ and ‘contradiction’. If any of these two functions occur
anywhere in a loop, it is not information conserving, since all initial values for variables
on such a loop are ‘forgotten’, when by Eq. (30) they are used as input to a function with
constant output. The functions ‘identity’ and ‘negation’, on the other hand, conserve
information. One can calculate the probability that a sample of Kauffman’s model with
K = 1has n, loops of length L, L = 1, 2, 3, ... in its connection graph. With the notation

n= Y nlL (31)
L=1

it is [19]

= d n2/(2N L™ 0 —-1—) (32
—Tv—exp(—n/( ))Hm.! + (\/N . )
L
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We introduce the probability ¢ that the randomly chosen function f; in Eq. (30) is informa-
tion conserving. Then the probability that a sample network has m, information conserving
loops of length L, L =1,2,3,... is

Q(m) = z z ... P(n) H (nL ) quL(l __qL np—-mgp
myg,
Byzzmy ny>my L=1
N! ~ ;;1 z L"‘mL
- (-0 (- ) ] [ @

L=1

where

= mL. (34)
L=
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For N large and 1—¢ > 1/\/N Eq. (33) becomes

ad 1 L\mg
Q(m) = (1—q) H — (qf) (35)
i

which is a product of independent probability distributions, one for each value of L.

Now we know the probability O(m) that a sample network has m; information conserv-
ing loops of length L, L = 1, 2, 3, ..., we may derive the possible values W, and Y, can have
for such a sample, and the probability with which it has these values. First we observe
that the m variables on information conserving loops can be in 2~ different configurations.
Each of these configurations can be realized by 2% -m different configurations of the full

network. These 2V - configurations all belong to the same basin of attraction, since they
differ only w.r.t. variables o; not on information conserving loops, differences which are
‘forgotten’ after some time. Let us call the variables on information conserving loops
relevant variables, and the other variables irrelevant. Then any configuration, the relevant
variables of which go through a cycle of period ¢, belongs to a basin of attraction contain-

ing ¢ - 2" - different configurations, i.e. a basin having weight
W = ¢/2m. (36)

What remains now is to calculate which cycle lengths ¢ occur for a given set of functions
f; on the information conserving loops. This is tedious combinatorics, which is best left
to a computer to carry out, after some simplifications of the task have been made analyti-
cally.

yA useful theorem states that the maximun} value for W that can result from Eq. (36)
for given value of m, decreases faster than 2~™2 for m > 7 [19]. As a consequence g(W)
and II(Y) are fully determined in intervals {W,, 1] and [Y,, 1] with W, > 0 and Y, > 0
by networks characterized by m < m,, where m, depends on W, and Y,. As a corollary
Yr and Y® are computable within exact bounds, which rapidly decrease with ingreasi‘ng
mq. With mg = 23, the error committed in Figs 17-20 by neglecting networks with m > my,
is vanishing.

Figure 17 shows g(W) for ¢ = 0.8, It is a sum of delta functions with supportat W = 1,

3/4, 1/2, 3/8, 5/16, 1/4, 3/16, ..., a set of rational numbers with accumulation point W = 0.
The probabilities g; for these weights W, vanish for g approaching one, in such a way that
g(W) approaches 8(W). Figure 18 shows similar properties for II(Y). ¢ = 1 is a critical
value at which infinitely long loops become information conserving, thus breaking configura-
tion space into infinitesimal basins of attraction. This is clearly seen in Fig. 19, which should
be compared with Figs 11 and 12, Fig. 19b shows that Y(g) is not self averaging forg < 1,
for N — o, since ¢%(Y) does not vanish in this limit. Fig. 19 also shows that Y(g = 1)
vanishes for N — co. Finally, Fig. 20abc shows Y2, Y3, and Y, as functions of Y for various
values of NV and q. These figures should be compared with Figs 14, 7, and 13. We see that
it is a coincidence that the results for ¢ = 12 (i.e. p = 1/2) fall on top of the curves for the
SK-model. Results for other g-values do not do this.
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9. Conclusion

We have seen that random networks of automata are disordered systems with
quenched, random dynamics. On the one hand, they are sufficiently simple to make a num-
ber of analytical results possible, and simulations fairly easy to do. On the other hand,
we have seen that they have properties in common with the complex thermodynamical
system that a spin glass is. This similarity between such disparate systems shows that some
manifestations of disorder are rather universal.

It is too early to make conclusions about random networks. New analytical results
appear to be within reach. Using the size of the stable core as order parameter seems
a promising approach. Critical exponents and many network properties in the frozen phase
may be computable as due to fluctuations in the size of the stable core. So, although
Kauffman’s model is a rather primitive system, every new exact result increases its value
as a non-trivial, solvable model.

In different forms these lectures were held at The Niels Bohr Institute and NORDITA
and at the XXVIII Cracow School of Theoretical Physics in Zakopane. I thank the:
organizers of the latter for a very pleasant school.
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