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A short review of the method for calculation of elastic scattering and multiple
production cross section in nucleus-nucleus interactions in Glauber approach is presented.

PACS numbers: 11.80.La, 25.70.Np

Here we present a short summary of the method for calculation of nucleus-nucleus
scattering amplitude in the Glauber approach (see Ref. [1] for details). The method devel-
oped allows one to perform summing contributions of all graphs. This problem for the
case of elastic nucleus-nucleus scattering has been formulated in 1969 in papers [2, 3].
In Ref. [4] graph classification in loop numbers was proposed. The examples of graphs of
various classes are given in Fig. 1. It was noticed that loop graphs contain a parameter
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Fig. 1. Examples of Glauber diagrams: a) non-connected graphs corresponding to Czyz-Maximon approxi-
mation; b) tree graph; ¢) graph with a loop. Black dots correspond to nucleons of nucleus A and white
dots to nucleons of B
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a;,'N/aNiN ~ 1/4 and therefore a special class of tree graphs (without loops) was analyzed
[4-6].

We have obtained the solution of the problem of summing all graphs including ones
with loops as a power expansion in nuclear densities. Particularly, the answer is obtain-
ed for sum of all tree graphs (see Fig. 1b), which coincides with the optical approximation
formula. Earlier this approximation was related to summation of a more limited class of
graphs (so called Czyz-Maximon approximation {2], see Fig. 1a). It is shown also that
the value of loop expansion parameter is not small, as it was suggested before [4, 5] but
large.

We will assume, as it is usually supposed, that nucleons in nuclei are independent.
We will suppose also that the nucleon numbers A4 and B in colliding nuclei are large enough,
so that nuclear sizes are much larger than NN interaction range.

We will discuss the method for the simplified problem with constant two-dimensional
nuclear densities:

na(@) = (4/TRDO(Ry~a),  np(b;) = (B/nRB(Rg~b)).

This problem has all the typical combinatorial difficulties of the diagram summation and
the results obtained can be generalized to the realistic case of nonuniform distributions [1].
We assume that only 4 and B nucleons which are in the nucleus-nucleus overlap region
interact

A =n,V(b), B = ngV(bh),

where V(b) is two-dimensional overlap region (see Fig. 2).

The method uses the Generating Function (GF) technique considering systems with
arbitrary numbers of nucleons N, M in the overlap region. The GF for the whole set of
graphs is expressed in terms of the S-matrix elements for interactions of these systems
as follows

M N
- A ZB
E(za, zp3 V) = Sun(V) M MN! pMEN, 1)

M N=0

Where Soo = S01 = SlO == l.

Fig. 2. Geometrical picture of nucleus-nucleus collision
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S-matrix §53 is obtained from the GF Z(z,, zg) by contour integrations

A?B' §dzA§ dzy E(za, zg; V)

i i A+1_B+1
2ni 2mi pA1,E

)

where the contours in the complex planes z, and z, enclose the points z, = 0 and zz = 0.

As usual, the GF for all graphs, Z(z,, zg; V) is expressed through the GF for the
connected graphs only, Vd(z,, zg). In this form V dependence in the limit of heavy nuclei
is separated out explicitly

E(za, za3 V) = exp [V&(z4, zp)]- 3)

The connected graphs are constructed from the so-called block graphs, which are exempli-
fied in Fig. 3. The tree graphs are built from the simplest blocks (Fig. 3a), and for the
construction of general graph more complicated blocks with loops are needed.

1> o &

{a) (b) (c) (d) (e)
Fig. 3. Examples of block graphs

We have obtained {1] a system of equations which relate the GF for connected graphs
to the GF for block graphs a(z,, zp). These equations contain the auxiliary GF 1(z,, zy)
and ©(z,, zy) for the so called rooted graphs, i.e. graphs with one marked vertex (root)
for nucleons of nuclei A and B respectively. This system of equations has the following
form

u = z, eXp [_6_ a(u, v)] , @
du
T3}
v = zg exp [—~ a(u, v)] s %)
v
0 9
D(z,, zp) = u+v— (u Ew +v P —1) a(u, v). ©

The estimation of the integral (2) by the saddle-point method allows one to express
the S-matrix through the GF of block graphs a(n,, ng), where n,, ny are nuclear densities.
It is remarkable that it is not necessary to know explicit solutions of Eqs (4)-(6). The answer
is rather simple:

S35 & C(ny, ng) exp [Va(n,, ”B)] 0]

where C(n,, ng) is the preexponential factor.
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In the free approximation, which is equivalent to keeping only the first term in the
series for a(n,, ny) (see Fig. 3a), the formula of the optical approximation is recovered

a,'
549 ~ Cexp [- —;—N n AnBV] . 8)

It is possible to analyse the convergence of the series for the function a(n,, ny) in the
Gaussian approximation for NN-scattering amplitude

t

fun(k) = i 3’—2- exp (— kirn/4). )

In this case

2V 1 M 1 N 4 L ]
Va(na, ng) = — — _ Ta%NN) T MRONNY - ONN , . (10)
ONN 2 2 2nrnn/ A(Apn)s(Ayy)

{AMN}

The summation is performed here over all block graphs A4,y, where M, N are numbers
of interacting nucleons from A and B correspondingly, L is a loop number, d(4,,) is the
complexity degree of the graph Ay, and s(4,,,) is its symmetry index.

It follows from Eq. (10) that the loop parameter is equal t0 ojy/2nray = 40T/04n 2 1
and, besides this, the expansion in nuclear densities contains dimensionless parameters
n,0in/2 ~ 0.44'7 and ngorn/2 ~ 0.4B'3, which are large for heavy nuclei.

Therefore, though the solution of the problem of compound object scattering is given
formally by Eq. (7), the convergence of the series for the function a(n,, ng) needs further
investigation.

Another interpretation of the results obtained above is given by the thermodynamical
analogy noticed in Ref. [1]. There is a complete equivalence between calculation of nucleus-
-nucleus scattering amplitude at fixed impact parameter b and the calculation of partition
function for thermodynamical system which is a mixture of two 2-dimensional liquids with
non-diagonal interactions within volume ¥(b). Our method corresponds to the virial expan-
sion method in statistical mechanics.

A similar technique can be applied to the inelastic nucleus-nucleus collisions. Important
additional elements in this case are the cutting rules of Abramovsky, Gribov, Kancheli [6]
(AGK rules), which give the possibility to calculate different characteristics of inelastic
processes.

It is useful to express contributions of different inelastic cuttings of Glauber diagrams
in a diagrammatic way. If for a contribution of an arbitrdry diagram to elastic scattering
amplitude each line is associated with NN-scattering amplitude ifyy * —okn/2, then
according to AGK rules a total imaginary part of the diagram is equal to the sum of
contributions of the same diagram but with two types of lines. The lines of the first type
correspond to the discontinuity of NN amplitude 2Im fyy = oOpy and the lines of the
second type ifyn+(ifun)* = —2Im fun = —opn correspond to uncut NN amplitudes
(absorption). Fig. 4 illustrates one of these cuttings. The contributions of the discontinuities
with no NN amplitudes cut are expressed in a slightly modified way [7].
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Fig. 4. Example of cutting of Glauber diagram and AGK-rule prescription
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Diagram with different number of cut NN amplitudes correspond to processes with
different number of inelastic NN collisions. It is possible to give a more detailed classifica-
tion of contributions to imaginary part, by extracting from the total discontinuity of NN
amplitude some process, satisfying a definite criterion, oyy = 0, +0,, where 6, = o%n
is the cross section of this selected process in NN interactions and 0, = oky— 0%y is the
cross section of all other processes. In this case it is necessary to consider graphs with three
types of lines o,, o, and (—ahy) = do.

Let us denote contributions of the graph G with one (x,), two (x,; x,) or three
(x1; X2; x3) types of lines by T;(x,), Tg(x,; x,) and Tg(x,; x,; x3) (the contributions,
for which one of the types of lines is absent, are also included). As arguments. of these
functions the NN cross sections szN, (—04n), O 915 02, etc. The contribution of & diagram
G to elastic S-matrix of nucleus-nucleus scattering as a function of the NN elastic scattermg
amplitude is expressed as T, (szN) and 'its contribution to, for example, the productlon
cross section being a sum of contributions of all inelastic cuttings is equal to

TG(—G;JN’ U#Ns GNN) To(—ohns U';leh)-

(The second term is necessary for compensation of the contribution of graphs without
inelastic cuttings.)

As the number of ‘distributions of different type lines is determined by binomial
coefficients, we have (by binomial formula)

To(xy5 X33 %3) = To(X;+Xz3 x3) = T(x;+ x5 +X3).

The same equation is valid also for a sum of all graphs T, = ) Tg:
G}

Tan(X15 X35 X3) = Tan(xs+X35 X3) = Tap(xy +X+X3). €8))

The function of a single argument T, 5(x) plays an important role because it determines

different inelastic cross sections in nucleus-nucleus collisions. The total cross section of
AB interaction is connected to it as follows

Oan/2 & —T(—0onn/2).

(For hadron-nucleus interactions similar function has the form 7,,(x) = exp (n,x)—1.)
Eq. (11) allows one to obtain in a simple way numerous consequences of AGK rules
for nucleus-nucleus interactions. Here we present some of them.
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1) Selfabsorption theorem

Consider the cross section for some selected process (e.g. events with particle produc-
tion or events with at least one lepton pair, etc.). Then

ois = Tan(—Onn; ORn; onn—0xn) — Tan{—ONn; ONN—ONN)-
Using the fact that T,,(0) = 0 and Eq. (I1) we obtain
oan = — Top(—0onn). (12)

Thus, in order to calculate such a cross section it is necessary to calculate a contribu-
tion of the Glauber diagrams with a substitution ohy/2 — ofy and, consequently, the
contribution of multiple rescatterings becomes less important as the corresponding NN cross
section oy, decreases. This is the selfabsorption theorem which has been formulated for
hadron-nucleus collisions in Ref. [8] and was discussed for nucleus-nucleus collisions in
Ref. [9]. For a particular case of particle production cross section in nucleus-nucleus colli-
sions we have

o' = — Tas(— orn)»

where oy is the total inelastic cross section of NN interactions.

It is important that for selected processes cross sections have the same form as the
elastic amplitude, but, because they depend on different arguments, contributions of loop
graphs for them are different. In particular, for processes, which have small cross sections
in NN interactions, the virial expansion considered above is valid and it is possible to deter-
mine the contribution of loop graph from experimental data. It may be convenient, for
example, to study the high p particle production. In this case the argument of the function
T,s can be varied continuously changing the considered region of transverse momenta.

2) Distribution of the number of inelastic interactions

Let us consider, as another application, a distribution of the number of inelastically
cut NN amplitudes, 0,5 ,. Introduce the corresponding generating function

G = T, oanil

As it was mentioned above, this function can be obtained from the basic function 7,5 by
multiplying each inelastically cut line contribution by B, i.e. changing the argument:

. ol |
Tan(—0nn: o8NS ﬂ“glu)“TAn(—”;ms ONN

= TAB((ﬁ—I)a::N . (13)

GRE%(B)

it

This generating function has an especially simple form for the case of tree approximation

Gliney(B) = exp [(B~ DomnangV] -1 (14
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and thus for fixed value of an impact parameter &

ree (a.in nan V)k in
OhEw(b) = “H S exp (~ onanab), (15)

i.e. in this approximation this distribution is a Poisson one at fixed b.

3) Inclusive spectra

Another important consequence of AGK rules is a theorem on the cancellation of
multiple interaction contributions to inclusive processes.

In terms of graphs a contribution to inclusive spectrum is determined by the graph
with a “marked line” (an analog of the rooted graphs containing marked vertex). The
marked line corresponds to the inelastically cut NN amplitude from which the detected
particle is taken out, i.e. doyy/dy = Fyn(y), while all other lines in the graph correspond
to either inelastic cut iy or to absorption (—ai). Thus from all the graphs only the
simplest one (see Fig. 5) does not cancel and its contribution at fixed & is equal to

Fap(y; b) = f”A(“)"B(E"a)dza * Fan(p)-

Integration of this expression over b gives a generalization of AGK results for nucleus-
-nucleus collisions

Fru(y) = ABFyn(y)- (16)

(Strictly speaking, this result is valid only in a central rapidity region at asymptotically
large energies. Situation in fragmentation regions and at finite energies is discussed below).

The loop graphs do not contribute to inclusive spectra in the central region. For
many-particle inclusive spectra and correlation functions it is easy to see using the AGK
rules that the loop graphs contribute to correlations only in the forth and higher orders
(in the forth order the simplest loop graph of Fig. 6 does not cancel).

- n
- A

}E = ‘}FNN
B ———= ng

Fig. 5. Graph contributing to inclusive spectrum in central region

Fig. 6. Loop graph contributing to the forth order correlation
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Let us note that Eq. (15) was obtained under the assumption that the diagrams of non-
-Glauber type are small. In particular, the diagrams with interaction between Pomerons
(Fig. 7) result in a different A, B dependence of inclusive spectra in central region F,gz(»)
~ A%3B*3 (for strongly interacting Pomerons). It is important to check whether the rela-
tion (16) is satisfied experimentally. For hadron-nucleus collisions the. contribution of
interactions between Pomerons is not very essential.

A

B

Fig. 7. Graph with interaction between Pomerons

4) Mean multiplicity and mean transverse energy

The relations between mean multiplicity and mean transverse energy (for fixed rapidity
interval in central region) in AB and NN collisions follow directly from Eq. (16)

I Fap(y)dy = GPA?}“‘("AB)A;; = ABag‘N<"NN>Ay~
a

Taking into account that each particle produced in NN and AB collision has approximately
the same transverse energy, we obtain

od .
ohs (ET,AB>4y = ABG;I“N<ET.NN>A3:-

If of3® is approximated by o%3° = (4'°+B8'7)?, then the quantity (Eyap) (4173
+ B'/*)2/ 4B should not depend on 4 and B. This prediction does not contradict experimen-
tal data [10].

5) Energy-momentum conservation for inclusive spectra

The AGK resuits were obtained for an arbitrary diagram with fixed number of
Reggeons at asymptotically high energy. In reality it is necessary to know contributions
of different cuts at finite energies. The AGK rules for diagrams with large number of cut
Pomerons cannot be valid at fixed energy due to energy-momentum conservation effects
[11] — the total energy is shared between many cut Pomerons.

Thus only those nucleons which have a small number of inelastic interactions can
contribute to the hard part of inclusive spectra (xg ~ 1). These effects strongly influence
A, B dependence of inclusive spectra in fragmentation regions. It is possible to prove,
however, that the contribution of loop graphs to inclusive spectra do cancel even in this
case, though with an account of energy conservation the cancellations take place within
a more limited class of graphs with a fixed number of inelastic interactions in vertices of
the marked line. In fact, for the graphs where nucleons of A and B nuclei connected to the
marked line interact inelastically / and k times, respectively, only non-loop graphs of Fig. 8
do not cancel.
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Fig. 8. Grapsh contributing to inclusive spectrum when energy conservation is taken into account
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A-fragmentation B-fragmentation y
region region

Fig. 9. Atomic number dependence for different regions of spectrum

Energy conservation leads to a modification of Eq. (16) in the fragmentation regions.
It is possible to show that, if for nucleon-nucleus interactions Fy,(y) ~ 4¥*®) and for
nucleus-nucleus interactions F,u(y) ~ A*B* 7, then (see Fig. 9)

a(y) = {am(y) in the fragmentation region of nucleus B,
1 in the fragmentation region of nucleus A.

The method outlined above allows one to calculate also multiplicity and transverse
energy distributions, as well as the properties of distributions of the number of wounded
nucleons. Detailed description of the corresponding technique and discussion of the results
will be published elsewhere.

The results discussed in this paper could be useful for analysis of high energy nucleus-
-nucleus collisions where the conventional mechanism gives a substantial background for
quark-gluon plasma searches. We formulated some general and model independent predic-
tions of the traditional Glauber approach, based on assumption of independent interactions
of nucleons of colliding nuclei. Experimental observation of deviations from these predic-
tions would be an evidence for existence of extra mechanisms in nucleus-nucleus interac-
tions.

One of us (K.B.) would like to thank the organizers of Cracow School for warm hospital-
ity and professor W. Czyz for useful discussion.
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