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By introducing a variable lightlike vector k* the light-cone gauge algebra of the bosonic
string oscillators is rewritten in an apparently covariant form and it is shown that the apparent
covariance becomes true covariance if, and only if, the parameters take the usual critical
values. In particular it is shown that the k-independence of physical quantities is equivalent
to the usual closure of the Lorentz group for fixed k* and also to the zero-curvature of the
light-cone-gauge surface. The connection of the k-formalism with the BRST formalism, and
with other aspects of physics, notably spontaneous. symmetry breaking mechanisms,
is discussed.

PACS numbers: 11.17.+y.

1. Introduction

As is well-known, bosonic string theory is based on a Fock space representation of
a combined oscillator and Virasoro algebra

[on, o] = ng™on,  [x*, o] = ig"'d,,

[
(L, an] = —may,  [L, L] = (n—m)Ly+ - n(n’>— 1)y, (LD

whery g"° is a D-dimensional Minkowskian metric, u. v range from 0 to D—1,m, n are
any integers, N = n-+m, and c is a central charge whose value is arbitgary in general,
but is equal to D when the L, are constructed as bilinears in the o). The a are actually
the coefficients in the Laurent expansion of the string ficld

1
X¥(2) = x"—iahIn z+i —ahz™" (1.2)
: , R :
' n#0
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which is a D-vector depending on the single variable z. The Fock space #, of the algebra
{1.1), defined by the vacuum

@0> =0, I0>=0, n>0 (1.3)

is not positive on account of the Minkowskian nature of the metric and the standard
methods [1] to circumvent this difficulty is to use either the BRST formalism, in which the
oscillators af, are supplemented by a set of ghost fields (b,, ¢,), or the light-cone formalism,
in which the Fock space is restricted to a subspace on which, in some given reference
frame, one sets

af =0(n#£0), x*=0 and a = o:—+L,,(&), (1.4)
0
where + denote components of the vector in lightlike directions. It is well-known that the
BRST formalism is not manifestly positive, and the light-cone formalism is not manifestly
covariant, and although both formalisms produce the same positive covariant theory in
the end, it is not a priori clear that this should be the case. The consistency of assuming
(1.4) in the light-cone formalism is also not a priori clear.

Accordingly, it would be desirable to have a formulation of the theory which is mani-
festly positive and covariant at all stages, which exhibits explicitly the equivalence of the
BRST and tight-cone formalism and which guarantees the self-consistency of the light-
-cone formalism. The purpose of the present paper is to present such a formulation. The
idea is to introduce a variable lightlike Lorentz vector ¥* which is used to express the light-
-cone conditions (1.4) in the covariant form

@=k-X@z) = —iln:z (1.5)

and to study the normalizer algebra of (1.5). The advantages of the k-vector formulation
may be grouped under three headings.

(1) Insights into Lorentz-invariance

On account of the introduction of the external vector k" the recovery of Lorentz-
-invariance in (1.5) is only formal. However, it becomes real when physical quantities
(in particular inner products) become k-independent, and it turns out that this happens
when the parameters of the problem (¢, D) take their critical values (e.g. D = 26). In fact,
it is just the requirement of k-independence that forces the parameters to take their critical
values. Further, k-independence for variable &* turns out to be equivalent to the closure
of the Lorentz algebra for fixed k" and thus provides a new (and, to our mind, more con-
vincing) argument for the closure of the Lorentz algebra in a given frame. Finally, it turns
out that the condition for k-independence i.e. for the critical values of the parameters,
can be formulated as a zero curvature condition as follows: in the subspace defined by the
gauge condition (1.5) the ordinary derivative &, = ¢/0k" is replaced by a covariant deriv-
ative D, and the condition for k-independence is that its components commute:

[D,.D,] = 0. 1.6)
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(2) Insights into the structure of the light-cone gauge algebra and its
relation to the BRST formalism

The analysis of Section 2 shows that, for fixed k", the normalizer algebra (k) of (1.5)
can be written as a direct sum

B = y @ A(C“d”

where y is exactly the light-cone gauge algebra and A“~% is a Virasoro algebra of centre
{¢—d), where d = D—2. In particular for ¢ = D the centre is 2 and § generates a positive
Fock space # 5. Thus (modulo A€~ 9) the light-cone gauge algebra emerges as the normalizer
algebra of x(k), and has its self-consistency guaranteed. However, only for the critical
values of the parameters (i.e. when (1.6) is satisfied) can one impose a condition

DF,=0 (1.7)

on the Fock spaces generated by y and thus transform the algebras &, into one another
by parallel transport. The positive-norm states generated by ™9, ¢ > d and ‘¥ in partic-
ular, may be identified as the Brower physical states [3], and the relationship to the BRST
formalism may be obtained by noting that they may be cancelled by using the Virasoro
algebra of centre (—2) constructed from the BRST ghost-fields i.e. by treating the ghost-
-fields as conformal scalars.

(3) Parallels with other branches of field theory

The k-formalism is not special to string theory but parallels the approaches and
situations in other areas. First the use of the normalizer, or little, algebra is the analogue
of the use of the little group in the case of spontaneous symmetry breaking, with y(z) playing
the role of the Higgs field. In fact the string situation proceeds beyond the usual spontaneous
symmetry breakdown to the more complicated case of colour symmetry breaking by mono-
poles [5]. It will be recalled that the latter phenomenon is characterized by the fact that,
while the Higgs field ¢(Q) is covariantly constant on the sphere at infinity its little algebra
G () is not i.e.

Dp(R) =0, [G(Q), D] =0 (1.8a)

but (generically)
D,«Ga(Q) ?e 0 i [Bij’ Ga(g)] ?{—' 0 (l.éb)
and this leads to a further breakdown of symmetry by the gauge-field B;; e.g. a further

breakdown of SU(3) in SU(5) — S(U(3) x U(2)). Correspondingly in the string situation
one has

[Dy x(k)] = 0, [B(k), x(k)] = O (1.9a)
but (generically)
D Fy #0<«[D,D]F; #0, (1.9b)
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where #, is the Fock space created by the #’s. From this point of view the condition (1.6)
for the critical values of the parameters may also be interpreted as a condition for no
further breaking of the ‘colour’ symmetry (k).

Finally there is a close analogy between the k-formalism and the use of a (time-like)
n" vector normal to a spacelike surface in making the Hamiltonian formalism of QFT
formally covariant. From this point of view the conditions (1.7) are the analogue of the
Schrédinger-Lorentz (or Poincaré) conditions

(i8,~P)¥ =0, (1.10a)
0 ¢
("“ En—v —n, E;‘: _an) Y = O, (l.lOb)

for the wave-function in the interaction picture of quantum field theory, and the integra-
bility conditions (1.6) are the analogue of the integrability conditions for (1.10), which
are known [4] to be just the Tomonaga-Schwinger conditions for the case of flat spacelike
surfaces (constant timelike »”).

2. Formally covariant gauge condition and its little algebra

The starting point for our considerations is the D-dimensional oscillator plus Virasoro
algebra (1.1).

The property of this algebra that will be central to our procedure is the fact that for
any lightlike vector k" the string coordinates k - X(z) commute for all values of = i.e.

[x(), x(z2)} = 0 all 2, 2", where x(z) = k- X(2). @.n
This permits one to use the conformal invariance of the theory to fix the gauge such that
W)= —ilnz (7 = 2) 2.2)

for the fields X*(z). This choice of gauge is not, of course. respected by the full algebra
of, and the maximal subalgebra within the linear algebra of {a’, L.} which does respect
(2.2) i.e. the little or normalizer algebra of (2.2) in {4, L;} will be the algebra of interest
to us. This algebra will be called the -algebra, and if the gauge condition (2.2) is decom-
posed into its Fourier components

k-x=0, k-ag=1 k- a,=0(n+#0), (2.3)
it is easy to see that the generators of the f-algebra are
P = ah—k*L, and x". 2.4)
The f-algebra then takes the form
(8% Bn] = mK"By—nk’By+nG™(n)dy, (2.3)
%, B = i@ KB, (26)
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where
G"(n) = g*' + {1% (n*— 1)} k'K, (e))

Strictly speaking, since the algebra generated by {of, L;} has a centre one should permit
the little algebra to have a centre in which case the generators (2.4) should be generalized
slightly to B, +¢k"d,, where ¢ is an arbitrary c-number. However, since this would change
the B-algebra only by adding a term 2ek*k" to G™ it is convenient to omit ¢ for the moment
and regard (2.5)2.7) as the canonical form of the f-algebra.

The existence of the normalizer algebra f of x(2), is, of course, independent of whether
the gauge condition (2.2) is adopted or not, but since the gauge condition is consistent
with the p-algebra we shall assume throughout that it has been adopted. All equations
which are true whenever the gauge condition is satisfied will then be denoted by a wavy
equality sign e.g. '

y=y3@+ilnz=>y=x0. (2.8)

Given the f-algebra (2.5) it is natural to construct the formal Sommerfield-Sugawara
operators

Ln(ﬂ) = —'%Z :ﬁn-—m : ﬁm: (2'9)

and one finds by computation that they satisfy a Virasoro algebra of centre ¢—d (where
d = D -2), the overall minus sign having been inserted so that the algebra takes the canon-
ical Virasoro form

—d
[L(B). L(B)] ~ {(n —m)Ly(B)+néy [612 (n?~ 1)]} : (2.10)
On the other hand, one finds that the [L,, f] commutators are just the opposite of the [L,, «]

ones in the sense that they are linear in the L,’s rather than the f’s. More precisely one
finds from (2.9) that

-d
[L(B), 5] ~ —k* {(n-m)LNanaN [”-12 = 1)]} . @11

The existence of the unconventional relation (2.11) between the L,’s and §’s and the fact
that the right hand sides of (2.10) and (2.11) are exactly the same (modulo &*), means
that the {L, (B), B} algebra is actually a direct sum of two algebras, namely the Virasoro
algebra L,(B) and the algebra generated by the gquantities

Tn = By +k“L(B). 2.12)

Thus, if one includes the Virasoro algebra L(p), the little algebra of y(z) may be written
as a direct-sum algebra of the form

(75 Yml & mk*yy—nk'yy+nL"()dy,
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[L.(B), 78] = O,
[L.(B), L.(B)] = (n—m)Lu(B)+ (f—;-;) n(n*—1)dy, (2.13)
where

"m) =g"+ [g (n*— 1)] k*k”. (2.14)

Note that the y-algebra is just the special case of a f-algebra with ¢ = 4. One consequence
of this is that the Virasoro algebra constructed from the y% according to (2.9) must have
centre zero and in fact a computation shows that (modulo y,) it is identically zero,

L(y) = 0. (2.15)

It will be seen in the next section that the B-algebras are positive and have a physical
meaning if ¢ > d, and that the y-algebra, which corresponds to the minimal value of ¢ for
which this is true, is isomorphic to the string algebra.

3. General B-algebras and their positivity properties

For positivity it turns out to be convenient to consider the f-algebra in the original
form (2.5) rather than the direct sum form (2.13). A Fock space for this algebra may be
defined as usual by a vacuum }A) for which

Bulh> = 0(n > 0),  Bolh> = h'|h), (3.1)

where 4° is some c-number vector. From the existence of the explicit representation (2.4)
it is clear that the B-algebra is consistent for all values of k2 (although for k% # 0 it is no
longer a little algebra) and to understand the structure of the k? = 0 case it may be useful
to consider first the simpler case k2 # 0.

In this case one may project the f into components parallel and orthogonal to K i.e.
to write

k, = —(k-B)/k* and b= B‘+kk, (3.2)

and in terms of these projections the f-algebra takes the form
c ., i
[kns km] = (n-m)kn'}‘né” -]—2()1 —-1)+ _k_i .

[bﬁa b;;] = néuval\b
where g is the (D— 1)-dimensional metric

g = g”—k"k’[k2 (3.9
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From (3.3) one sees that unless k* is lightlike the f-algebra is the sum of a (D — 1)-dimension-
al oscillator algebra and an associated Virasoro algebra of centre c. It is well known [6]
that such a semi-direct sum is actually a direct sum of the oscillator algebra and the Virasoro
algebra generated by the differences 4, = k,—L,(b), where L (b) are the Sommerfield-
-Sugawara Virasoro generators for the transverse algebra. Thus the algebra is positive
iff the oscillator and A-algebras are positive i.e. iff g is a positive metric and the centre
c—(D—1) of 4, (and 4,) are positive. Thus the algebra (3.3) is positive iff k" is timelike,
D < (c+1) and 4, = 0.

After this digression we proceed to the case k2 = 0, which is the relevant case for
string theory. The most characteristic feature of the k2 = 0 case is that the f-algebra admits
the invariant abelian subalgebra corresponding to (1.4) with generators

Zn = Xn_(sn = k- ﬂn_(snj (35)
More precisely, one has from (2.5), | '
[ﬁ::, im] = mkﬂiN and [im zm] = 0 (36)

The fact that the ,’s commute means that the Fock spaée norms of the states y_,|h) are
zero and that the Fock space norms of the mixed states (w - f_,+ xy_,)4), where w* and
x are arbitrary but constant, are

1w - B_ylh>1*—2xn(w - K)Fo. 3.7

But since (w - k) can be chosen non-zero and x is an arbitrary real number it is clear
that the norms (3.7) can be positive only if y, is zero. Thus for k* lightlike the positivity
of the Fock space requires that

Jo=0 or go=k-Bo=1 (.8)
Thus positivity forces the special value y, = 1 used in (2.3). In other words, although

the vector k* was originally free, when k? = 0 the positivity condition fixes its scale (relative

to o). A simple way to guarantee the condition (3.8) is to let

o=
n-Bo

where the scale of n* is free. A second important feature of the lightlike p-algebra is that
(whether or not (3.8) is satisfied) thé operator ‘
L = —B5/2(k - Bo) (3.10)

acts as the grade operator, and that the operators

3.9

n* = By+k"L  with ?=0, =n-k=1

form a central lightlike vector ‘dual’ to k*. Using the lightlike vectors k* and n* one may
decompose the D-dimensional Minkowski space into a 2-dimensional Minkowski space
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and a Euclidean space with metric
g = g"—k'n"—k'n* (.11)
and, correspondingly, decompose the f-algebra into k, n and transverse components
To=k BBy W= —m- B b= firkio,—n"y, (3.12)
In terms of these projections the fS-algebra takes the form
[ Za] = 0.
fon 2.1 =0,
(b5, b} = ndng”,
[Wm im] = —miy,

[, b2] = —mbj,
[Was W] = (n—m)wy + —1% n(n* —1)dy (3.13)

from which one sees that, apart from the invariant abelian subalgebra y,, the lightlike
B-algebra is the semi-direct sum of a d = (D—2) dimensional oscillator algebra and a Vira-
soro algebra of centre ¢. The oscillator part of the algebra is automatically positive, since
gis positive, and by the same argument used for the timelike case, the necessary and sufficient
conditions for the whole algebra to be positive are that the centre and generator 4, of the
difference Virasoro algebra 4, = w,— L,(b) should be positive, and it is easy to see that
these conditions reduce to '

(c-d)>=0 and A*<0, (3.19)

respectively. It is worth noting that in the minimal case of the y-algebra both inequalities
in (3.14) become equalities, since for the y-algebra ¢ = d and from (3.8)

h2 2
h? = (h"-k-“ 7) = 0.

Thus the inequalities in (3.14) come exclusively from the Brower-Virasoro algebra L(f).
This can also be seen from the fact that, modula, ¥, the Brower-Virasoro algebra L(f)
and the difference Virasoro algebra 4 coincide, which is not surprising since both commute
with the transverse oscillator algebra. Note that for the a-representation of the f’s (with
the SS Virasoro generators) ¢ = D, the positivity conditions (3.14) are automatically
satisfied, but with

(c=d)=2 and H =0.

Thus for ¢ = D the centre of the Brower Virasoro algebra is two, and the Brower states
have strictly positive norms.
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4. Necessary condition for Lorentz invariance

It is clear that although formal Lorentz invariance has been maintained by using the
external vector k*, true Lorentz invariance requires that all physical quantities be inde-
pendent of k". Furthermore, a natural requirement of string physics is that at each grade
there should exist a single particle interpretation of the theory i.e. an interpretation in
terms of k-independent Wignerian representations of the Poincaré group, and this we shall
also require. In this section we wish to show that the k"-independence of the physical quanti-
ties and Wigner states requires that ¢ = 24 where c is the centre of the f-algebra. In the
following section we show that ¢ = 24 is also a sufficient condition.

We first note that for the non-interacting string the important physical quantities
are the total momentum P* and the inner products in Fock space, and since the inner
products between different grades of L are zero the problem need be considered only
at each given grade. At each such grade there are only a finite number of states for each
value of k" and the question then is whether a generic linear subspace of the states can
have k-independent inner products, and can be described by k-independent Wigner states
i.e. by k-independent wave-functions of the form

Upipz... (P>

where P* = p* at the grade in question.

To investigate these questions it is first necessary to give a precise definition of the
total momentum P¥. If we assume that P* is an element of the S-algebra and commutes
with the grade-operator, then the only candidate would appear to be g4. However, one
may recall from Section 2 that % was actually only defined up to a transformation of the
form

By — Br+ek’s,,
a canonical g% being chosen only in order to simplify the algebra. Hence the most general
Ansatz for P* in the little algebra is actually
P* = g5 +ck”, 4.1)

where ¢ is a constant to be determined.
Let us now consider the action of P* on the N'* grade Fock states, which are of the
form

B> = B2, 0%, ... k)  (ny+n,+ ... = N). 4.2)
From the special relation
(85, B.1 = nk"B, (4.5)
of the f-algebra, one sees that with P* and |®y) so defined
PYdy> = phldy>  where py = h*+(e—N)K" 4.4)

and, since the operator P is a physical quantity, the eigenvalue p should be k-independent.
(This implies of course that 4" is k-dependent, in fact, is linear in k.) Since k - A = 1 from
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(3.8) one has
p2 = h*+2(¢—N) (4.5)

so h? is actually k-independent. Furthermore, p} is linear in N (Regge-like).
Let us first consider the grade-one states

) = u(p)f~s1h>, p* = pi = h'+(e—DK" (4.6)
From the f-algebra the norm of {u) is easily seen to be
(uluy) =u-u—2k-u)y(h-u)
=u-u—2k-u)(pu)+2e—1) (k- u) 4.7
Since p is k-independent, the norm (4.7) is evidently k-independent if and only if
=1, (4.8a)
pru=p'u, =0. (4.8b)
Note that with ¢ = 1 the mass spectrum (4.5) becomes

M?= —P? = 2N-1)+m?, 4.9
where
m? = —h?>0, (4.10)

the positivity coming from the positive-norm condition (3.14). If m? > 0, the k-independent
srates at N = 1 are massive and transform in the (D — 1)-dimensional vector representa-
tion of the little group of p*. If, however, m* = 0 (as happens for the y-algebra), the states
become massless. Note that in this case the state |p) (with », = p,) becomes one of the
physical states, but because of its zero norm this particular state decouples from the rest
leaving a (D~ 2)-dimensional transverse representation of the little group of the lightlike
momentum vector p“.

Let us next consider the grade-two states. At grade 2 the states are massive and it is
convenient to construct states which transform according to the traceless symmetric tensor,
vector and scalar representations of the little group of p5 i.e. to decompose the grade-two
states in the following manner:

ITY = T,(p) {B% B~  +ark"BL,} {h), (4.11a)
V> = {[p. V() +p,Vu(P)] [BL B +ayk”BL 2] + 1y Vi(PIBL 2} 1A, (4.11b)
18> = {[gu+xPuP)BL 1B + 75D B2} 1B, (4.11c)

where

Pr,.=T!=pV,=0 p'=p;=h-K,
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and ay, oy, Yy, ¥s:and x are constants. Clearly the T-states are the most numerous and
are thus the generic grade-two states.
The norm of the |T) states is given by

(TT> = 2{TI.vT"”+(°!r+ 1) (2 —=3)k"T,, Tk,

~8
+ [ET a;+6a,+2] (k“T,,,,k")z} (“.12)

which is k-independent if
¢c=24 (and ay = —1) (4.13a)

since the alternative possibility
c=—8/9 (and ay = 3) (4.13b)

is ruled out by the positive-norm condition ¢ >> d = 0.
Note that the condition (4.13a) does not in itself determine the dimension D, but,
on account of the positive-norm condition (3.14), imposes the condition D <{ 26.
Once ¢ = 24, the states |TD, |V, |S> become orthogonal and have k-independent
norms if

D-2p*
ay = —1 X = 5og—r
Y P2p*—1)
wo=—p" y5=—1-x(1+p). (4.14)

This fixes the remaining grade-t wo parameters in (4.11) and the norms of [T, V> and
|8) reduce to

(T\T) = 2T"T,,

VIVY = 2V - VImA(m* +2),

(4.15)

2 2 2
(SIS = AD—1) {(2+m Y(13+4m 2) - D(1+m )} .
(5+2m*)

The states | V) and |S)> which are in any case decoupled from the generic states |T) because
of Lorentz invariance, become zero norm states in the critical case m?> = 0, D = 26.
This is exactly the case of the y-algebra (i.e. the light-cone gauge algebra) for which m* = 0
and ¢ = d = 24. Thus the states |V and S, which have positive norm for m? > 0 and/or
D < 26, are actually combinations of grade-two Brower states, namely of the states

LB k), L_B)thy and y2,L_y(B) .
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Note that in any case the k-independent states at grade two can be summarized by
defining

14> = A(p) {BZ1B- —(K*+p")BZ .} 1h, (4.16)
where A4,, satisfies
PA.p’ =5 A, 4.17)
and the norm of [A4) is

(AlAY = 24,,4" +2p"A4,,4"p,. (4.18)

5. Sufficient condition for Lorentz invariance

Having shown that the condition ¢ = 24 (together with & = 1) is necessary for the
k-independence of the inner products, and hence for true Lorentz invariance, we now
wish to show that it is also a sufficient condition. Clearly this will be the case if we can find
a covariant derivative

8
D,=d,+id, A' =4, d,=_— (5.1)

" w B on* 4

where n" is the free lightlike vector introduced in (3.9), such that the states are covariantly
constant, since for self-adjoint 4,

0
Df>=0= - (flgy = i[<A,flg>—<f14,8>] = 0. (5.2)

However, the covariant derivative is not arbitrary, but must respect the gauge condition (2.2)

[Dy 2]~ 0 (5-3)

which means that 4,, is unique up to the addition of terms in the little algebra. It is gratifying
to find that such a covariant derivative is provided by the Lorentz group itself, as follows.
Let

M" = M*(n)+M*(),

where
M*(n) = —int*3" (5.4)
and
M*(a) = xag—i Z%t A (5.5)
m#0

be the algebra of the Lorentz group that transforms all vectors n*, x", o i.e. the Lorentz
algebra with respect to which we have formal covariance. By replacing « by § according
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to (2.4) one may re-write M"" in the form

M" = A¥(m)+ M*(B), (5.6)
where
1
M™(B) = L {x[“, P”’}-—i Z —’;; P B (5.7
m#*0

the anticommutator being used for the x-term because x* and P* do not commute even
for u # v, and where

A(n) = —in*p", (5.8)

Ly—¢ i 1
D' = d"+iA*, A' = —L{x*, 9 + ! — ot L (5.9
n: n- g m

m# 0

with

Then, since k - X(z) is invariant with respect to M*" and M"*(§) by definition it is clear
that it must be invariant with respect to 4** and D" i.e.

[4°,x(z)] 0 and [D* x(2)] =0, (5.10)

so D" in(5.9) is the required covariant derivative up to terms in the little group. The geomet-
rical interpretation of D* is that it is the derivative with respect to k (or n) which is tangent
to the surfaces k - X = const.

Equipped with the covariant derivative D* it is clear from (5.2) that one can guarantee
k-independence and hence true Lorentz invariance if one can impose the covariant constancy
condition

DHf> & 0. (5.11)

(The dot above the ~ sign means that it is valid up to terms proportional to »*.) Note
that when (5.11) can be imposed it determines the Fock spaces for all »* in terins of the
Fock space for any given n*.

The consistency, or integrability condition for (5.11) is clearly

[ D71f> %0 (5.12)

and if one now computes the commutator in (5.12) from (5.9) one finds

¢ 1 B V.
L% 21l = (n - ap)’ oco) Z {(2_ “‘) (]5 —28) ;;} S i (5.13)

From (5.13) one sees at once that the conditions

c=24, e=1 (5.14)
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are sufficient for the commutator of the D’s to vanish (on any state) an hence is sufficient
for (5.11) and true Lorentz invariance.

In the above form the condition for k-independence and true Lorentz invariance
is very intuitive and has a geometrical significance since it relates to well-known resuits
for covariant derivatives and curvature, Of course it must also be equivalent to the standard
string condition on the Lorentz algebra and we shall now show that this is the case. In
fact, if one cross-products (5.12) with #%, n®, one finds that (5.12) is equivalent to

[4%, 47"] = i{g*¥ 4" — g 4™ — g™ 4" + g 47} (5.15)

which is just the condition that the 4’s close to form a Lorentz algebra. From (5.15) and
the obvious tensor character of all operators with respect to M*” one then sees that (5.14)
is the necessary and sufficient condition that the formal Lorentz algebra M** decomposes
into the direct sum of two separate Lorentz algebras i.e.

M* = A+ M™(B) = 4" @ M™(B) if c=24,e=1.

The fact that M**(B) closes to form a Lorentz algebra is just the traditional condition
[2] for the light-cone algebra to be Lorentz invariant, and the. present formulation gives
a new interpretation to that traditional condition, namely that the closure of 4"*"(n) for
fixed n is the necessary and sufficient condition for the algebra to be independent of the
particular choice of n".

The meaning of the covariantly constant condition (5.11) can be understood at each
(finite-dimensional) level N by considering the explicit Fock space states,

Hy o B B0y - B 10>, my+ny+ ... +n, = N. (5.16)

We will use an ao-diagonal basis in our Hilbert space and represent the x* operators in the
usnal way by

d
dog,, )

x* =i

(5.17)
In this representation the ‘wave-functions’ H,,,, . are functions of the variable a, and
the external lightlike vector n”; while the partial derivative d, is for fixed a,,

e
mprme Huxnz--~y,(n’ “o) and d‘, = T (5.18)

I
on ap fixed

H

Using (5.17), the covariant derivative D" takes the form

d+ME 0 of ~
progiy XM 9 % (5.19)
2(n - op) Oog,  2(n - ap)
where
- i i
AP = — ot L (5.20)
(n- o) m

m+0
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and we have used {4.9) to express L, in terms of the mass-operator M2 (which only depends
on the grade of the state).
The expression (5.19) simplifies considerably if one uses the physical momentum

— et n” 2 2
P =ab 2o @M ) (5.21)

instead of «,. In fact with respect to the new partial derivative 6,, where

]
d, = — . 522
oot plixed ( )
D* takes the simpler form
D= (@~ A" Va2 + M2, (5.23)
N ai+M?

and the square root factors in (5.23) are eliminated by the change of the integration variables
in the transition

d®a l n 2, 242 p o 5
@° Wf[%— on-a9) (o +M )]=> f(Zn)D 3(p”+M")f(p).

Thus finally on physical states of the form
|On)> = Hy,.p(n, PIBZ,, - 2,105 529
the condition (5.11) reduces to
Fldyy = APy, (5.25)

where A” is given by the normal ordered expression (5.20).
Let us now work out the solution of the physical state condition (5.25) for the first
few grades. On the vacuum grade (N = 0) the single state is
[P0y = H(n, p) 10> (5.26)
and (5.25) is equivalent to
MH =0 (5.27)

from which one sees that, as expected, the wave-function of the physical ground state
of the theory must not depend on »* and is thus a function of the physical momentum
p" only.

For the grade-one states

|®,> = H,(n, p)~,i0) (5.28)
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(5.25) gives

(p- H) n o _
)t~ # L0 =
P v)a 1 (n-p)(OH")L ;}1) 0

which is equivalent to the following differential equation

@ —A"1e,) = {(a“uv—

nv

'H = (p - H). (5.29)
(n-p)
By contracting (5.29) with p, one sees that the only solution of (5.29) is
H* = H¥p) where p'H,=0. (5.30)

Thus the wave-function depends only on the physical momentum p* as before, and is ortho-
gonal to it.
Finally parametrizing the grade-two sates by

1@,> = Hy(n, p)B2,10>+K,.(n, p)p~ 10> (5.31)

one finds in a similar manner that the solution of (5.25) is given by

nV
Kuv = Kuv(p)s H‘a = ~ (Pv+ ;{”’;) Kuv’ (5323)

where
K,.(g"—2p"p") = 0. (5.32b)

Note that the physical states (5.30) and (5.32) coincide with the ones we have found
in Section 4 by demanding k-independence.

6. Ghost fields and connection with BRST formalism

In conventional string theory the oscillators are accompanied by ghost fields which
are not merely auxiliary fields that are introduced to make the BRST formalism of the
theory work, but are an intrinsic part of the structure introduced by diagonalization of the
two-dimensional metric — indeed their functional integral is just the Jacobian for this
diagonalization [1]. Hence it is natural to ask what role the ghosts play in the k-formalism.
In this section we-show that they play a very natural role in that they can be used to cancel
the Brower states, provided that the ghosts are regarded as conformal scalars rather than
vectors.

To show this we first recall that the ghost algebra takes the form

{(‘m bm} = 5:\' C: = Cep b: = b—u (6‘])

and differs from the oscillator algebra in that the brackets are anti-commutators rather
than commutators, the b’s and c’s are self-adjoint rather than adjoints of each other, and
that there is no factor » on the right-hand side of the anti-commutator relation. Due to the
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absence of the factor n, the ghost algebra admits a larger automorphism group than the
usual Virasoro one, namely the semi-direct product group with algebra L A R generated by

I'9%%g) = ; k:c, .b,: (6.2a)
R (2) = ); 1y _1by: (6.2b)
where L{%(g) is a Virasoro algebra with centre —2i.e.
[LY(8), LaX(®)] = (n—m)LY(g)— 5 n(n® —1)dy, (6.3)
R,(g) is a one-dimensional oscillator algebra with unit centre i.e.
[Ri(2), Ru(8)] = ndy (6.4)
and the commutators of the L{®) and R, are of the semi-direct sum form
[LP(8), Ru(8)] = —mRy()+} n’dy. (6.5)

One sees that L{® is actually the usual (matter-like) Virasoro algebra for the ghost fields
¢p» b, with n # 0 (since for these a factor n can be introduced in the anticommutator (6.1)
by a rescaling of the ghost ficlds) whereas R, is the number-operator density for all
the ghost fields. Thus the ghost field representation of L'®)(g) is partially-reducible into
¢, and the full set of ¢,’s respectively,

[I‘(I?)(g)’ CO] = 0’

[£(g), e] = —mcys,, for m#0 (6.6)

whereas the ghost field representation of R(g) is irreducible:

[RAZ): €] = Cotme (6.7)
One also sees that the algebra L A R contains a whole family of Virasoro algebras L,
namely,
IV = [—jnR,, j=..-1,01.. (6.8)
whose centres are
e(j) = —2—-12j(j—1) = =2, =26, —74... (6.9)

In configuration space L'® generates the purely orbital part of the conformal transforma-
tion while (—jnR,) generates the pure spin part.

The member of the family (6.8) which is the Virasoro subalgebra of the reparametriza-
tion algebra is not L'” but L®, which corresponds to ghost fields of conformal spin 2.
Actually L® is the gradient of the BRST operator Q and the centre of the L?) algebra
is the Hessian of Q7 {7] i.e.

L("Z) = {bm Q}9
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where

Q= Zk: c-kL‘,f(ac)-f—;—g (—k):e_sc_ibyrst.
and
(n—mL2,~[L2, L] = {[@? b,] b,}.

Note that in the critical dimension D = 26 for which Q7 is zero, L'*’ commutes with Q and
thus @ may be thought of as the Higgs-like operator for the reduction L A R — L@,

After this brief recapitulation let us return to the relationship between ghosts and
Brower states. If in the origional «-algebra one uses the natural Virasoro algebra, that
is to say, the Sommerfield-Sugawara one L°(a), then the decoupled Brower Virasoro algebra
L,(B) has centre ¢ = 2, and the question is whether there exists in the family L a member
with centre -2 to cancel L (), and whether there is a Higgs-like mechanism to select it.
One sees at once from (6.3) that the Virasoro algebra L® itself has the required property,
and from (6.6) that L® is just the little algebra of ¢, in L A R. Thus the answer is in the
affirmative and ¢, is the required Higgs operator. It is remarkable that the sequence of
centres (6.9), which is so very special, should have the required centre —2 and it means
that the algebra defined as the little algebra of k - X(z) and ¢, in the combined osciliator
and ghost algebra can be reduced to exactly the algebra of the hght-cone gauge by setting
LB +L,(g) equal to zero.

The choice of ¢, as a Higgs operator may seem a little ad hoc, but it becomes more
natural if it is introduced by considering first the operator

Y = ; Cowhla
This operator is BRST invariant and like the BRST charge itself it is nilpotent. Thus
we actually have a Q, Y algebra of the form
0*=0, Y*=0, {Q Y}=0.

The condition ¥ = 0 reduces the Brower plus ghost-automorphism algebra L A R @ L(f)
to L' @ L(B). Furthermore, since ¢, and y, transform linearly with respect to

L = L@)+L%),
and ¢, and y, are L‘-invariant, one sees that Y = O defines two L° orbits, namely
{c, =0k #0), =0 and {f=0(®k=#0), ¢, =0}

Neither of these orbits is separately BRST invariant, and the second one corresponds to the
above choice {c,, k - X(2)} of Higgs-like operators.

We are indepted to Dr. M. Tuite and Professor R. Brower for useful comments.
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