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1. Introduction

Let us begin by giving very briefly, an account of some of the aims of string theory.

One of the most important motivations for studying string theory is that it may provide
a unified theory of all known forces. Certain string theories contain massless spin-two,
spin-3/2 and spin-one particles. A spin-two particle implies that the theory, at least in the
low-energy limit, contains Einstein’s theory of gravity. It turns out that the spin-ones are
identifiable as Yang-Mills fields while the spin 3/2 describe the gravitino of supergravity.
As such the string contains all the correct particles to potentially unify in one theory all
the known forces of Nature, that is gravity the strong nuclear force and the electroweak
force and the so far unobserved supergravity. Further, some string theories contain spin-1
and spin-zero particles which one can try to identify with the quarks and leptons and
Higgs of the standard model. In a realistic string theory one must be able to identify the
spin ones with the SU(3) x SU(2) x U(1) of the standard model. Also the low mass spin s
must be in the correct representations of the groups to be identifiable with quarks and
leptons. Of course, these are only the beginning of a long list of constraints that a string
theory must obey in order that it is not in conflict with experimental data.

Despite the many promising signs, it is fair to say that there is as yet no truly con-
vincing way of making contact between string theory and phenomenology. To descend
from the Planck scale to the scale of the standard model is a non-trivial task which may
contain a number of surprises.

There are reasons to think that string theory provides a consistent quantum theory
which includes gravity although this has not as yet been proved. It is also thought that the
infinite number of higher spins in string theory propagate causally. String theory is therefore
the most promising candidate for a consistent theory of quantum gravity.

Yang-Mills gauge symmetries, Einstein general co-ordinate transformations and local
supersymmetry arise naturally in string theory. In fact, the string contains an infinite
number of particles, and although only a few lower spins are massless, it would appear
that there are further gauge invariances, which are important for the consistency of the
string, associated with these massive’particles. It would be of interest to better understand
the gauge symmetries of the string. There are also indications that string theory may be
able to shed light on what physical concepts are important at the Planck scale. In particular,
it is possible that it may provide an alternative description of space-time.

String theory makes deep connections with mathematics. Indeed, constructions in
string theory have already led to new developments in group theory and in particular Kac-
-Moody algebras. It is hoped, however, that it may provide insights into many other
disciplines. , _ '

String theory may also b‘e useful in helping to explain confinement in QCD and with
phase transitions in three dimensions such as for the Ising model. Our understanding of
second order phase transitions has. benefitted from the development of string theory.

One may summarize the above, but saying that quantum string theory is a relatively
new (about 20 years old) concept in physics, which has potentially many important applica-
tions, involving beautiful mathematics. It is also fun.
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A certain number of features of string theory are shared by the point particle which
is after all obtained in the limit when the string collapses. We will therefore first discuss
the point particle.

1.1. The point particle

The point particle sweeps out a line in space-time. Let us choose 7, called the proper
time, to parametrize the line which is swept out. The particle moves so as to be an extremum
of the length of the world line, that is of the action

A= —m|div-3%n,, (1.1)
where Xx* = dx"[dt. The choice of parametrization of the world line is of no physical
significance and indeed the action of Eq. (1.1) is invariant under reparametrizations

1 - t+f(7) implying x* = f(1)x". (1.2)
We may write the above actjon in an alternative, but classically equivalent way, namely
A = [ dt{y =55 ,,—m*V}. 1.3)

This action is also reparametrization invariant; under 7 - t+f(7)
ox* = fx*, OV = fV+fV: (1.4)

We recognize ¥ as the vierbein on the one-dimensional world sheet, the metric being V.
It is often useful to introduce explicitly the momentum p* and write the action in the
equivalent form '

A= Id‘l,'{x'”p",,’”_ V(p“pvm,‘,-i-mz)}.

The equations of motion of the action of Eq. (1.4) are
d
— V"l By — 0,
dr( )

Vim® +x*x*,, = 0. 1.5)

Substituting V' from its equation of motion into the action of Eq. (1.3), we recover the
action of Eq. (1.1).

To analyze the point particle, we may start from either of the above equations and
use Hamiltonian or Lagrange formulations. Let us first take the action of Eq. (1.1) and
use the Hamiltonian formulation. Taking 7 as our evolution parameter, the corresponding
canonical momentum is given by

oA mx*

= =, 1.6
55‘14(1) ‘/ _"‘u’.‘v'luv ( )

.4
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We then find that the momenta satisfy the constraint

P'p,+m* =0. amn
This is a consequence of the reparametrization invariance of the action. The Hamiltonjan
vanishes

H = p'%,—L, (1.8)
also as a result of reparametrization invariance. The method of dealing with such a con-
strained system was given in Ref. [1] and we now apply this method in outline to the point
particle.

The reader who wishes to read further details is encouraged to consult Ref. [2]. We
take the Hamiltonian to be proportional to the constraints, i.e.

H = o(z) (pZ+m?), 1.9)

where v(t) is an arbitrary function of 7. One may verify that in this case there are no further
constraints and that H generates time translations or reparametrizations in the sense that

dd—’:‘ = {x*, H} = 20(x)p". (1.10)

The fundamental Poisson brackets vanish except for
{x* p'} = 1. (1.11)

To quantize the theory we make the usual transition, according to the Dirac rule, from
Poisson brackets to commutators, with an appropriate factor of i#. These commutators
are represented by the replacements

i)

e # s —ih— . 1.12
- x P —ih o (1.12)

xl‘

The constraints then become
¢ = (—0*+m?), (1.13)

which is no longer an algebraic condition but a differential operator. To proceed further,
we consider the state to be described by a field y(x*, t) and we impose the constraint

dy = (—3*+mPy = 0. (1.14)
We also impose the Schrédinger equation

d
ih 2%~ Hy. (1.15)

ot

The right-hand side of this equation vanishes and we find that y is independent of 7. We
recognize the usual formulation of a second-quantized spin-zero particle namely the v de-
pendence has disappeared and we are left with the Klein-Gordon equation.
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Let us consider the action of Eq. (1.3) and take a Lagrangian viewpoint. We may use
the reparametrization invariance of Eq. (1.4) to choose ¥ = 1. Although, we may not
implement this choice naively in the action, we may use it on the equations of motion
which become

3 =0, (1.16)
XX, +m? = 0. (1.17)

We may regard the first equation as the equation of motion and the second one as a con-
straint. The constraint is none other than the condition that the “energy-momentum
tensor of the one-dimensional system in the absence of gravity should vanish. We may
read off the “energy-momentum” tensor from the coefficient of # where ¥V = 1+#4 is
substituted into Eq. (1.3). Of course, the result agrees with Eq. (1.17).

‘To quantize the system we proceed much as before. We must, to a large extent, slip
back to the Hamiltonian approach as only there can we apply the Dirac rule. We identify
the momentum conjugate to x*, in the gauge ¥ = 1, to be p* = %* and turn the Poisson
brackets of Eq. (1.11) into commutators which are represented by Eq. (1.12). The constraint
of ‘Eq. (1.17) now becomes that of (1.13) and we impose it on the wave function (x*)
as in Eq. (1.14).

Finally, we wish to carry out yet another approach to the point particle, namely the
BRST approach as this will be particularly important in the extension to the string. The
reader may wish to first read the Appendix where the BRST formulation of Yang-Mills
theory is given. We begin with the action of Eq. (1.3) and fix the gauge in the standard
BRST fashion. We choose the gauge

V=1 o hV=0 (1.18)
and so .add the gauge fixing term
A¥ = {diAln V. (1.19)

The>BRST transformations of the original fields are found by the substitution f(z) — Ac(z)
where A is an anticommuting BRST parameter and c(z) is the ghost field:

x* = (A%, OV = %((Ac)V) (1.20)

‘We choose ¢ to be Hermitian and then A is antihermitian in order that Ac is real. The
standard rule for taking the complex conjugate of two anticommuting variables being

(A0)* = c*A* = —A*c* = Ac. @a.21
The transformation law of the ghost is given by
doc = (Ac)é. (1.22):

The commutator of two infinitesimal reparametrizations f; and f, which yields a third
parameter :

(~fifatfof ). (1.23)
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Making the above substitution for f and removing one A, we identify the result as dc.
This procedure is identical to that followed in Yang-Mills (see the Appendix). We then’
introduce the antighost b which transforms in the standard way with the multiplier A namely:

oA =0, b= AL (1.249)

Although the above may seem like a cook-book recipe, we have arrived at the desired
result, namely a set of nilpotent transformations

5416/12(; = 641{(A2C)é}
= A4+ Aye - (4,8} = 0. (1.25)

Finally, we can write down a BRST invariant action of the form
AR = 4o 4% 4 4R (1.26)

where A°"¢ is the action of Eq. (1.43) and A¥ is that of Eq. (1.19). Due to its original
reparametrization invariance 4°® is automatically BRST invariant. We find by cancelling
the variations of 4% that

A = | dzbv e (1.27)

where V.c = ¢+d/di(ln v)c. An alternative way to arrive at the above result is to note
that under a BRST transformation

8{b(ln V—1)} = A(X(In V —1)—bV,c) (1.28)

and use the nilpotency of 4.
In the functional integral, we can do the A integral which sets ¥ = 1 and substituting
in the above result, we find the resulting BRST action to be
A = | do(s %%, — 3 m?—bé). (1.29)

This result is BRST invariant, however, for b we must substitute the value of 4 by its
equation of motion, i.e.,

¥ m* 4
ob = A —— 4 ~— (b 1.30
( 2° + 2 + dr( ) ( )

the other variations being unchanged.
The action of Eq. (1.29) being BRST invariant, we can in the standard way deduce
associated Noether current Q which in this one dlmensxonal case is also the charge. We

find that it is given by
0 =1c((p")2+,m2), _ (1.31)

where p* = x* is the momentum conjugate to x*. We take the definition of momenta for
anticommuting variables to be left differentiation of the action by the co-ordinate. Hence
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the momentum for the co-ordinate ¢ is given by

—a—, A =b. (1.32)
a¢
We could -also take b as our co-ordinate and then —c¢ would be the momentum.
In general, given a system with co-ordinates ¢, and corresponding momenta p,;
some of which may be anticommuting, we define the Poisson bracket of two functions
fand g of g, and p; as

- - -

F F;
{/: €n = Z {f 0.0 -y L —-f} , (1.33)

09, Op,y 084 0P4

where

1o —1 if both f and g are Grassmann odd
(- = .
+1 otherwise.

It satisfies
{f,&les = —(=1)7{g,f}es (1.34)

and a suitable Jacobi identity. The non-zero Poisson brackets for the co-ordinates and
momenta are '

{x* p"Yes = 4", {c,b}es = 1. (1.35)
The Hamiltonian associated to the action of Eq. (1.29) is
H = (pZ+m?). (1.36)
The BRST charge is the generator of transformations in the sense that
o= {, A0}, .37

where - is any field. The reader may verify that, on-shell, these transformations agree with
those previously given and are an invariance of the Hamiltonian equations of motion.
The nilpotency of @ is encoded in the equation {Q, O}ps = 0.

To quantize the system we apply the Dirac rule

1

to the Poisson brackets regardless of whether they are for Grassmann odd or even variables.
We find that we must demand

[x*, p“1 = ih; {c, b} = ih. (1.39)
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We may therefore use the representation
x*>xk coe
b7} ]
» —>—zha,,, bi. (1.40)

In checking the appearance of i’s, it is important to remember that b is antihermitian.
The BRST charge now becomes the operator

Q = «(—-*+m?) (1.41)

and it is obviously nilpotent, i.e., Q> =0 as ¢2 = 0. -
We now considﬁ:r functionals of the co-ordinates, i.e., ¥(x*, ¢) which as ¢ is anti-
commuting are of the form

¥ = p(x")+cd(x"). (1.42)
In the BRST formalism, physical states are taken to satisfy the condition
Qv =0. (1.43)

‘We realize that this is equivalent to
(=02 +m?)yp = 0 (1.44)

that is the usual Klein-Gordon result. The field ¢, in fact, never enters the dynamics and
in this sense it is gauge away. We postpone, until we discuss the string case, the appropnate
way of realizing this statement.

The¢ method of BRST quantization was originated [3] in the context of Yang-Mills
theory which is still the prototype example of how to proceed. The systematic use of the
BRST charge, for general systems with first class constraints, was carried out in Ref. [4].
For some reviews of this procedure, see Ref. [5]. It must be stated, however, that the BRST
method, as with any quantization method, is more like an art than a science. Its justifica-
tion is that the final result, namely a nilpotent set of transformations and an invarjant
action. These usually define a quantum theory which is unitary and whose physical observ-
ables are independent of how the gauge was fixed. Another point in its favour is that
it allows one to demonstrate the renormalizability of Yang-Mills theory for a general class
of gauges.

The reader is encouraged to consult the point particle case when puzzied by aspects
of the string discussion. The point algebra is much simpler and has conceptually many
points in common with the string case.

Using various formalisms, we have arrived at the standard Klein-Gordon equation
and so the usual starting point for the second quantized spin-zero particle has been used
for many years. However, there are a number of points in the above discussion which do
not seem entirely correct. In particular, invariance of the action, implies that the parameters
of reparametrization transformations vanish at the end point of the t integration. This
restriction results in an inability to reach the gauge ¥ = 1 from a general ¥, in fact' the best
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one can-do is get V=0 [6]. Derivative gauge fixing conditions imply a different ghost
action to that consldered above and was given in Ref. [7]. Upon quantization one'recovered
18] a second-quantized field theory which contains a T dependence and has a corresponding
focal invariance. In perturbation theory, it agrees with the more familiar formulation due
to a Parisi-Sourlas symmetry [9]. Having alerted the rcader, we will not discuss these points
further. but encourage the reader to consult the above references.

2. The classical bosonic string

In this chapter, we will discuss the classical bosonic string. As the string moves through
space-time, it sweeps out a two-dimensional world sheet. By extending the analogy with
the point particle, we will take the string actjon to be the area of the world sheet sweep
out [10]. From this action. we will derive the equations of motion for the string.

2.1. The ac_tion and equati’dns of motion

Strings may be open or closed as in Flg 2.1. We take the length along the string to be
parametrized by ¢ and its passage in time parametrized by z. Hence the world sheet has
co-ordinates &%, a = 1, 2 with & = (t, o).

Fig. 2.1. World sheets of the free open and closed strings

-In the open case we take the range of ¢ to be from 0 to = while in the closed case we
take —7 < ¢ <{ 7. It is natural for the closed string to take the boundary condition x*(— )
= x*(n) as 6 = —=n and ¢ = & are the same point on the string. We will discuss the
boundary condition for the open string below.

The action for both the open and closed string is the area sweep-out whlch is given by

i . o
A=-— J d*E N —det {8,5"9,x" 0,5}, CRY

where o' is a constant which has the dimensions of [mass]-2 as 4 and & are dimensionless.
We notice that the action explicitly involves the: Minkowski metric #,, which is given by
o = (=1, +1, +1, ..., +1) in our conventions. That this is the area sweep-out follows
from -the fact that lf we move from &% to £*+d&* on the world sheet, the corresponding
(distance)? moved in space-time is' — d&*d x“df”aﬂx 1,y Hence we mterpret — 0,x"0pX"M,
as the induced metric on the world sheet.

The minus sign under the square root.is such that for causal propagatlons of the string
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ensure that the quantity under the square root is positive. We refer the reader to the review
of Joel Scherk for a clear discussion of this point.

The factors of (2rna’)~! outside the action of Eq. (2.1) will lead to such messy factors
in the subsequent equations. To simplify expressions one can, as in the old days, take the
scale of energy to be such that 2o’ = 1 or scale x* — ./2¢’ x* in all expressions.

The action of Eq. (2.1) is invariant under the following symmetries.

(i) Reparametrization invariance:

&= & =1 2.2y
under which the fields x#(¢) are scalars, i.e.,
X&) = x*(§). (2.3
(i) Poincaré symmetry: o
x"*(&) = A" x"(&)+a", (2.4)
where as usual
N A e A's = M- (2.5)

The infinitesimal version of these transformations comes from taking éx* = x'*(&)— x*(¢)
for 6&% = £ —£* small. Reparametrization invariance means that the particular co-ordinate
system used to parametrize the world sheet is of no physical significance.

From the two-dimensional viewpoint, the Poincaré invariance is an internal symmetry.
We shall see that the bosonic string is consistent only in certain dimensions higher than four.
Although it is not apparent why one should assume that Poincaré invariance is true in the
dimensions beyond the four, we will, in this first treatment, take this to be the case. An
action with a square root is not particularly easy to handle especially when one comes to
quantization. Fortunately, one can rewrite the action in the form [11]

1
A= — — | d% /=g g®0,x"0,x"1,,, 2.6
4m,f EJ-zg¢ X1, (2.6)

where g,; is the two-dimensional metric on the world sheet. As usual g* is its inverse
and g = detg,,. In this form the action is a set of scalar fields x* coupled to gravity g, its
equivalence, at the classical level, to the previous action is shown below. It is invariant
under reparametrization invariance; the transformations being those of Eq. (2.3) and

‘ ' aéy 666 /
gaﬂ(f ) = 5‘6—,7 52,7 gya(f)- @7
The Poincaré transformation of Eq. (2.4), as well as
g :p(®) = 88 2.8)

also lead to an invariance of the action of Eq. (2.6). However, the alternative action also
has a Weyl symmetry which is realized by the transformations

2O = ADgegs  *¥()) = xO). (2.9)
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The action of Eq. (2.1) is also Weyl invariant in the sense that the fields (i.e., x*) are
inert. To verify the reparametrization invariance of the Nambu action we use the formula

ox™ ox™  0g- og
_aé'“ 66"’ - aéla 66"’

3,x"0,x". (2.10)

‘Since det AB = det 4 det B for any two matrices 4 and B, we find that

\/ det X7 '—-J\/ det 22 2% @.11)
€ aém 6&"’ nll" - ‘ € aéa aéﬂ ?]‘"., .
where
a&
J = det@; . (212)

The final step is to compute the variation of the measure, we have
d*¢ = Jld*¢. (2.13)

As a result, the invariance of the action is apparent. The analogous computation for the
action- of Eq. (2.6) is a textbook exercise in general relativity.

In-verifying the above statements for infinitesimal variations, it is useful to use the
equations

5g = 880g., og” = — 8585,87, (2.19)

which express the variation of g and g" induced from the variation of &

We now have two choices in deriving the equations of motion. We can adopt a Lagran-
gian or Hamiltonian viewpoint or we can work with the action of Eq. (2.1) or that of Eq.
(2.6). The Hamiltonian treatment of the action of Eq. (2.1) can be found jn the same nota-
tion as that here in the review of Ref. [12]. Here, let us perform a Lagrangian treatment
of the action of Eq. (2.6). The results are of course the same, no matter which formalism
one uses. _ ' '

We recall that the variational principle states that a system moves from a fixed configu-
ration at the initial time 7, to a fixed configuration at a final time 7, in such a way as to be
an extremum of the action. In our case this means that

F (sa 54
0=04=|do |dt{— —— (0, x" (0. x" 2.15
R e s - T

for arbitrary ég,, and dx* provided that these quantities vanish at 7; and 7,. In the above
equation a = 0 and — = for the open and closed strings respectively. Integrating the last
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two terms by parts, according to the above instruction, we find that

84 04 .
f a f d’{ Pt ["a" 5eh " Ma,x“)] 5"“}

2
6A C=%x .
+ |dz ox” 2.16
50 .- @16
Tt
Consequently, we have for arbitrary dg,, but ox* = 0, the equation
0A
= 0. 217
‘Sguﬁ

Similarly for dg,; = 0 and dx* arbitrary but vanishing at ¢ = 7 and a4, we find that

8,1 = 0, (2.18)
where

54
0% =8, ——. .
* 5(0.") (2.19)

Evaluating Eqgs. (2.17) and (2.18) we find respectively

0 = 0,x"Bpx" Ny —F Sap8’ 0% 05X N (2.20)
and
0.\ — g g¥0gx") = 0. (2:21)

By continuity we may also take Eq. (2.18) and therefore Eq. (2.21) to hold
at the boundary ¢ = 0 and a. Hence for arbitrary dx" we find, corresponding to the last
term in Eq. (2.10), the boundary condition

® SA |*

For the closed string as x*(—n) = x*(rn), this vanishes automatically. However, for the
open string we conclude that

Bl

0.\~ g £0px*) = 0 233)

at both ¢ = 0 and ¢ = n. We must impose this condition at the two ends of the string
separately as, in general, the two ends are not causally connected.

The above equations are rather complicated, but simplify considerably when we make
a convenient gauge choice which relies on the following theorem.
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Theorem

On any orientated Rieman surface, we may locally choose a coordinate system such
that -the metric takes the form

2ap(E) = 1gge*® (2.24)

or in terms of the line element
ds* = e*d&dePn,,, (2.25)

where 17,4 is the flat metric, ie., 7,4 = (=1, +1).

One may expect such a theorem on a count of degrees of freedom. The metric g,, has
three degrees of freedom while that of Eq. (2.24) has only one corresponding to the field
¢, the two degrees of freedom less being removed by the two &* reparametrization trans-
formations. The proof of the theorem, which is constructive by nature, can be found in
many places, but in particular in the book by Spencer and Schriffer.

In the mathematical literature a Riemann surface is any two-dimensional surface
with a Euclidean metric. The string world sheet is a two-dimensional surface, but with
a Minkowski metric. Nevertheless, many results, including the above theorem, may be
taken across.

Consequently, we may choose the metric g,, which appears in the above formulation
to be of the form of Eq. (2.24) with ,, the Minkowski metric. It is, of course, illegal to
impose a gauge choice in the action before carrying out the variation, however, we can
impose it on the equations of motion. As such Eq. (2.2) becomes the wave equation namely

8,0°%" = 0 (2.26)
while Eq. (2.20) can be written as
Ty =0, 227
where
Top = 0.X"0px"N 0y~ 5 1,50,X°07x"N ., (2.28)

The use of the.symbol T, is deliberate as we recognize it as the energy-momentum tensor
of the theory of free scalar fields x* with action

§ d*E{~% 0.x"0,x"n,1*}. (2.29)

As a consequence of Weyl invariance, the field ¢ does not appear in'the equations of
motion; or put another way /=g g* is Weyl invariant and so independent of ¢. This.
invariance ensures that T,, is automatically traceless. The two non-zero components are

Too = Tyy = 5 (F*%"+x*x")m,, (2.30»
where %* = 9x*/0t, x* = 0x"/0c and
Toy = Tyo = X"x*. (2.31)
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In this gauge the boundary condition for the open string also takes on a particularly
simple form:

x*(6)=0 at 6 =0 and ¢ = 7. (2.32)

It is convenient in the case of the open string to extend the range of ¢ from O to 7 to
—xn < 0 < n. This is achieved by setting

x(g) for O<o<m

(o) = {x“(—a) forr —n<0o<0 233)

or x‘i(a) = 4+ x*(—0) for 0 < ¢ < n. The boundary condition at ¢ = 0 of Eq. (2.32)
is automatically incorporated into this identification. We can also consider further extending
the range of ¢ to be from —oo to co by taking x*(¢) = x*(¢+2n). Such an extension is
allowed as the boundary conditions x*(m) = x*(—n) and x*(n) = x*(—7n) = 0 ensure
that x*(¢) is continuous and possess a first derivative at ¢ = +n. Higher derivatives
are ensured by virtue of the equation of motjon. Conversely taking x*(¢) = x*(¢+2n)
and Eq. (2.33) ensures that all the boundary conditions are obeyed. This mathematical
extension allows us to rewrite the two constraints of Egs. (2.30) and (2.31) as one equation,
namely

(P"‘(a))2 =0; —-n<o<m, (2.34)
where
1
2
‘the two equations (2.30) and (2.31) emerging as the parts of Eq. (2.34) which are even
.and odd under ¢ » —o.

When quantizing the string, we will find it convenient to use normal modes or Fourier
transformed quantities. We define

P* = (x*+x") (2.35)

el'na'
x*(o) = E x4 cos no = xpH+ E x,‘:~2— R (2.36)
n=0 n=-—c0
n#0

-where x*, = x% This expansion and the latter condition are comsistent with the above
extension of the range of ¢ and the boundary conditions of Eq. (2.32).
In terms of the normal modes the equation of motion of Eq. (2.26) becomes

##4+nixt =0,
‘which we recognize for n > 1 as those corresponding to an infinite set of simple harmonic

coscillators, in this case, however, we also have the constraints of Eq. (2.27). For n = 0
-we have

xh(z) = x5(0)+c7,
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‘where c is a constant. It will be useful, when we quantize, to introduce the analogue of
harmonic oscillators for this system

W 1 . .
PI‘ = et H —_— = all ~ino
(X" +x )\/205“ z e

or
1 .
of = — f daoe™ P*(0).
2n

To express x* in terms of of we integrate the equation
2x*

T

= P"(T’ Q)_P"l(‘ts —~a)

to find

o0

1 ’ R
x*(t, 6) = xb+ E P (oh—or ,)e™,.

n=-w
n#0

where we have recognized x5(z) as the integration constant. The equations of motion when
expressed in terms of the of take the simple form

@ = —ing® or &(z) = e ™a(0).

Let us compute the Poisson brackets. For the co-ordinates and momenta we have as
usual

{x%x} =0={p' '}
{x"(0), P"(0")} = ihd(c—0’).
In the galige in which we are working, the momentum p* not to be confused with P* above,
is given by -
x* oA

2 90X

P
n .
From the fundamental Poisson bracket above, we deduce that
. . : : ’ d
{P*0), P'(¢')} = 2nd'(c-d') = 2= = é(c—d")

as we may write

P¥) = \/ﬂ'npf‘+x“"/\/2_&7.
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Consequently, we have
{ons ot} = —i0ysmott

Taking the Fourier transform of the constraints we have, for the open string

L,=0 Vn, .37
where
r
1
L,=— J doe™ (P2, (2.38)
47

-

For the closed string it will turn out to be convenient to work with the two quantities

(P = = (Too+ To, 239)
and

(P = = (Ton=To, 240)
where

Pt = \/—%’ (3" +x*), (2.41)

P = L (x*—x*). 2.42)

As we shall see, working with (P*)?> and (P¥)? rather than 7,47, corresponds to working
in light-cone co-ordinates. Defining the normal modes for the closed string, corresponding
to the boundary x*(z, 6) = x*(z, 6+2n) we have

x*(t, 6) = fj € x!(7), - (2.43)

n= -0

where x*, = (x¥)* to ensure that x(z, ¢) is real. The constraints can be written as

L,=L,=0 Vn, (2.44)

where
1 .
L, = — | dae™(P*)*, (2.45)
4n :

-

L= doe™ "(P*)2. (2.46)

1
4z

a:'*——-ua
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We inttoduce the oscillators «* and a* by

P'=Yoake ™, P'=3} ane™,
. n

and one can verify that all their Poisson brackets are zero except for
{“:’ a::} = = ian‘hﬁ.o"“v’ }
{0-‘:’ T} = —i0pt o

Using Eq. (2.43) in Egs. (2.41) and (2.42) we find that

1
(!: = AL, (J'c‘f.,,~inx“.‘.,),

I

1
= — (XF— 'nx‘,: .
\/Za'( n—inx,)
The equation of motion x* = x“n? implies that
:"‘

of = —indy; of = —ina,

and hence
wh(r) = e”"(0); & = &(0)e .

From Eqs. (2.41) and (2.42) we may solve for the oscillators

X = \/ —azl Z (e;i”“af,‘(r)+&‘,‘(r)ei”").

Integrating with respect to ¢, we have

x*(z, 6) = xh(r)+i \/i Z {@ e 4 §E- e—im,} ,
N2 n n

where x5(t) satisfies x4(r) = O and hence it is of the form x§(r) = ¢"+1p" where ¢* and
P" are independent of 7. Substituting in the above equation we have

.
X'(t, 0) = ¢* +p* +i /—2— E (@) 4 g "),

We may write this in the form

x*(t, 0) = x{(z+0)+xk(r—0),
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where

* (t+o FAN
xj(t+0) = q? + S‘—z—}p"+i ‘/% E ai(0)e ™+

k(10 o zw
xl';(‘t-l-a) = q? + (T)P"'i-l \/7 &ﬁ(O)Cin(t_d).

Clearly it is a solution of the wave equation,

2.2. The energy-momentum tensor and angular momentum

From the two-dimensional viewpoint, the Poincaré symmetry is an internal symmetry
and has correspondingly conserved two-dimensional currents. Either by the Noether
‘technique or other standard methods, we find the current for translations IT and Lorentz
rotations M.” are given by

- s4
n = — o (2.47)
54

MP™ = —xb S e v) = xMIT*— x"I1*. (2.48)

Using the equations of motion; we find these are conserved, i.e.,
I =0; oMY =0. (2.49)
Taking the metric of Eq. (2.34), we find that

1 1
I = — 00, M = o (300"~ x"0,5"). (2.50)

By Stokes’ theorem if C is a closed curve on the world sheet then,

§ Mdo +Idv = [ dodvd™IT: = 0, (2.51)

Hence, as usual, we may interpret

_!H *do + IT%dx (2.52)

as the flow of energy momentum through any open curve C on the world sheet. In. partic-
ular, the flow across an infinitesimal curve from (z, o) to (z+dk, o +do) is I1"de +IT"dx.
For the open string, the boundary condition of Eg. (2.22) 1mplles that the flow of energy.
and momentum through the ends of the string is zero.

The total conserved energy-momentum of the string is given by mtegratm £ On any curve
C from one boundary of the world sheet to the:other. By the above, the result is independent
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of the curve chosen. One such curve being t = constant which yields the result
" = { de (2.53)

where a = 0 and —7 for the open and closed strings respectively.
A similar analysis applies to the Lorentz current, the total momentum of the string
being

J* = | M™do. (2.54)

2.3. A classical solution

Although the string in the above gauge satisfies the simple wave equation (2.26),
it is also subject to the constraints of Eq. (2.27). To get a feeling for this system, it is very
educational to find an explicit solution. To be specific, let us consider the open string. We
can choose to correlate the time on the string t with the time of the tangent space-time by
making the identification

x% = d, (2.55)
where d is a constant. We then find that the constraint of Eq. (2.7) implies that

D-1
ax! 6x 1 -
1'+ oA + = 7 x* = 0. (2.56)
i=1
However, for the endpoints of the open string x* = 0 and so the above equation states
that the ends of the strings move with the speed of light.

Clearly, a static string cannot be a solution. The next simplest possibility is to have
the string rotate about its mid point. We can take this point to be the origin of the space-
-time and the rotation to be in the 1-2 plane. Let us choose the string to be of length L then
the motion is given by "

L
sintcoso, X — €08 7 COS 0,

L
xP=dr, x'=2
1 2

x3 =' x4 s, xD—l = 0, (2 57)

This is a solution as it solves both the constraints of Eqs (2.20) and (2 31) and the wave
equation (2.26) provided d = 1L

The total energy E and angular momentum J** can be found by substituting the above
solution into Eq. (2.53) and (2.54) for these quantities. The result is

E=m =L (2.58)
4o’
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and the ‘only non-zero component of J*' is
L L
JP= - = 2.59
4 4 (2.59)

We observe that the total angular momentum J = [J?| is related to the energy by
J = o'E. (2.60)

For this reason o' was called the Regge slope.
One could envisage more complicated solutions in which the string not only rotates
but vibrates along its length.

3. The free quantum string

The initial reaction of many people when told that the fundamental entities of Nature
may be string-like is the response: why strings ? This attitude is a reflection of the unexciting
or perhaps all too familiar nature of string-like objects that we encounter. in everyday
life. Indeed, in the previous chapter on the classical string we did not, at first sight, encounter
any properties that might lead one to expect that strings would seem preferred over many
other extended objects.

In fact, it is only when one quantizes strings that one becomes aware that strings are
in some way magical objects. In some sense, they take to quantum mechanics as a duck
to water. We shall see that just as classically the string can be viewed as an infinite collection
of point particles, when quantized it can be thought of as an infinite set of quantum particles,
each corresponding to an irreducible representation of the Poincaré group and so to a given
spin. The range in spins is from zero to infinity, there being in general more than one
particle of a given spin. -

Furthermore, it will emerge that some of these particles are massless. These massless
particles have, for the open bosonic string, spin one, while for the closed bosonic string
spin two and spin zero. These bosonic strings which have only space-time bosons contain
the bosonic massless particles of most interest to theoretical physicists, namely the spin
two of gravity and the spin one of Yang-Mills theories. In fact, in the limit in which the
string shrinks to a point only, the massless states survive and one can verify that in the
interacting strings the spin two and spin one describe Einstein gravity and Yang-Mills
theories respectively [13, 14].

The spectra for superstring theories [15-17] are even more exciting in the sense that
some of these theories have massless particles with spins two, 3/2, one and 1/2 and zero
and hence can potentially also contain the known fermions, i.e., the quarks and leptons.

In general, there are considerable problems with theories which describe particless
of spin 3/2 and above, in that they would not appear, even classically, to propagate: these
particles causally and they lead to an inconsistent theory when quantized. Whiie, causal
propagation occurs in some supergravity theories [18], these theories do not share the
spectacular ultra-violet properties of rigid supersymmetric theories and are most unlikcly
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to be renormalizable [19]. There are, however, reasons to believe that string theories are
consistent in the sense that they are quantum mechanically consistent and they propagate
causally.

The major obstacle to quantizing the string is that one must take into account the
constraints, discussed in Section 2, which result from the reparametrization-invariance
of the string. One procedure known as the light-cone theory solves the constraints and
one is left with an unconstrained set of variables which may be straightforwardly quantized
[2]. The disadvantage of this approach is that one loses manifest Lorentz invariance and
if one is not careful, loses Lorentz invariance altogether.

The original quantization, called the old covariant method, of the free string works

" with the constraints and is Lorentz covariant. We will see that the spectrum of the quantum
string emerges as a direct consequence of constraints.

The old covariant approach was developed before the discovery of BRST symmetries.
This method has more recently also beenr used for string theory and it seems particularly
powerful in this context. The gauge invariance upon which the formalism is applied is the
two-dimensional reparametrization symmetry which is as usual fixed and has corresponding
ghosts and antighosts introduced. Despite the power of this formalism, it is sometimes
difficult to see the trees for the wood and even familiar manoeuvres may appear unfamiliar.
We will therefore give first the .old covariant method. Before doing this, however, let us
give a heuristic argument which determines the particle spectrum of the string. Consider
the classical solution given in Eq. (2.57) which was the rotating string of length L. The
string in this configuration has an energy E and total angular momentum J = [J!?| given by

1 I?
E=—L, J=-—7. (3.1)
40 16a
We observe that the energy E and angular momentum J are related by
J = a'E?. 3.2)

When we quantize the system, the angular momentum J is quantized, i.e., J = nh
and as a result we have the relation

o«'E? = J = nh. 3.3)

We may regard E as the energy retained in the configuration and so interpret it as the rest
mass. As a result, we find that we have a series of rest masses related to the spin by

a'm? = nh. 349

Thus the quantum string has an infinite number of particles whose (mass)? is proportional
to their spin J.

Corresponding to the string vibrating as it rotates, we can find further particles whose
relation to their spin is more complicated than that of Eq. (6.4). Despite the heuristic
nature of the above argument, we will find, as usual for such arguments, the results are
essentially correct.
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3.1. The old covariant method

To quantizé the classical string, we follow Dirac and demand that the Poisson brackets
be rewritten as commutators according to the rule

{4,B}=C (3.5)
becomes
[4, B] = ihC, (3.6)

where in (3.5) 4, B and C are classical variables while in (3.6) they are quantum operators.
As is well known, to apply this rule to all operators leads to inconsistencies, but it can
always be applied to the co-ordinates and momenta.

For the string the momentum is given by

oA
80"y’
which in the gauge of Eq. (2.24) becomes p“ = (+ 1/27za )x*. The classical Poisson brackets
for the string are given by

{x*(a), x"(6")} = 0 = {p*(0), P'(c")},
{x*(0), p"(6")} = n""d(c~0"). (3.9)
We therefore impose on the quantum theory the éq}lal time coinmutation relations

[x*(e), x*(s")] = 0 = [p*(0), P"(c")],

= G

[#(0), P(0)] = ihd(e =" (3.9)
The Schrodinger representation of these commutators corresponds to taking
xMe) = x*(e); p'(o) » —ih ——. (3.10)
ox"(o)

We now find, as for the point particle, that the constraints of the classical theory
given in Section 2, i.e., T,; = 0, become differential conditions which we must implement
on a wave functional, y[x*(¢)]. Unlike the point particle, the quantum operators L, do not
commute and we must be careful only to implement a compatible set on the wave function-
al. The correct procedure is to adopt the constraints [20]

Ly=0 nx=1 4
(Lo—Dy = 0. (3.11)

These equations are called the physical state conditions. Since L, = L_,, the expectation
value of L,, {yiL,ly) vanishes for all n # 0.

The situation here is like that which occurs in the Gupta-Bleuther formulation of
electrodynamics where only half of the classical constraint 84, = 0 is implemented on the
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wave function, i.e., "4, - p = 0 where 4, is the positive frequency part of 4,. To impose
0,A%y = 0 at the quantum level would 1mply w itself was zero.

We now motivate and explain the meaning of the physical state conditions of Eq. (3.9).
To do this, one must develop a precise formalism which in particular takes care of any
normal ordering constant. The functional representation of Eq. (9) does not do this and
we now give the oscillator formalism [21] for the open string and then for the closed string.

The oscillator formalism for the open string is based on the normal mode expansion
of the string of Eq. (2.36). We define as for the classical string the oscillators o by taking
the Fourier components of the operator P* of Eq. (2.35):

__ x*(o)
P* = ih 200 —
(o) = ih /2« e )+ N
= Y oafe™™ (3.12)
n=-
Using Eq. (2.36) we find that
SN 8 LN e O (.13)
ox"(0) L_J 6x“(a T oxh
and as a result we may make the identification
— 0 n x4
= —i 20 4+ - = . 3.14
" l(‘/ oxh 2 2) (3.14)

From the reality of P¥%(¢), or by inspection, we conclude that
“ * = a_n (3.15}
The «’s are easily seen to satisfy the commutation relations

[C!:, a;’] = n5n+m,0'luv (3'16)

in agreement with the Dirac rule of Eqs. (3.5) and (3.6) (see previous chapter). The Virasoro
~operators L, of Eq. (2.38) can be expressed in terms of «;, by substituting Eq. (3.12), to
yield the result -

Ln = _12' : _Z‘ “&“Lm’hv: (3'17)

The dots indicate, as islstandard in quantum mechanics, that we normally order the opera-
tors by putting a*, to the left of « for n > 0. This difficulty only occurs for L,.
The classical Poisson brackeis for L, are of the form

{L,, L,} = —iln=m)L, (3.18)
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however, the above normal ordering of L, results in an additional modification to the
quantum analogue of Eq. (3.18) over and above the implementation of the rule of Eqs
{3.5) and (3.6). The result is

D
[Ln’ Lm] = (n_ nl)Ln+m + "]3 n(nz - 1)511 +m,0s (3'19)

where D is the dimension of ﬁe space-time.
The last term is called the central term [22] and it can be found by evaluating

<I[Lna L—n:“) = (anL-ni>

=3 Y ¥ bt ot

‘ a—1
= %Z m(n—m) = TI;—n(nz—l),
m=1

where «4|> = 0 for n > 1, and we used the expression of Eq. (3.17) for L,. The reader
will easily see that for n = 1, the central term must vanish.

As suggested above, imposing L,y = 0 for all n implies, as a result of the central term,
that yp itself is zero. That only L, has a constant term when implemented on y is a reflection
of the fact that only this operator has a normal-ordering ambiguity. Imposing Ly=0L_,
y = 0 for more than two values of » implies ¢y = 0. However, we can get a non-zero y by
imposing L,y = 0, n > 1 and in addition either L_,y = 0 which implies Loy = 0, or
(Lo+ayy = 0; a = 0. We will see that only the latter possibility is acceptable. We find
in particular that

Ly = Jabu,o+ Y oo, (3.21)
m=1
L=L, = o0y, + 2—:1 “:T“mﬂp (3:22)
where
oo i 2:.?.:\/5‘: ~ (3.23)
ao = 1 K & axg = ko 4 po, | .

i.e., of is proportional to the momentum..

We can now analyze the content of the physical state conditions. Given any functional
y[x"(c)] we may express it in terms of the occupation number basis by using the creation
operators o*f, n > 1

y[¥(0)] = {P(x")+id,(x")ef
+id2(x)est + b2t + L) (xH(e) 0D, (3.24)
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where x* = x§. The vacuum satisfies the equation
‘ | < xMo) 0> =0 n>1 (3.25)
The vacuum of Eq. (3.25) is of the form

(x"‘(a) 0> = I I C, €Xp (— ~r—l-, x,‘,‘x,,,,). (3.26)
2a
’ n=1

The action of the a4t on {(x*(¢)|0) produces the well-known complete set of Hermite poly-
nomials. In terms of component ficlds, we find that the physical state conditions have

@0*+1)¢ = 0 = (&8> —(I-1))4,, = (¢'0*~1)h,, 3B.27
as well as »
AL = 0 = /2 " A%+ 2k
= — /20 3"h,, + AL (3.28)

_ As a result, the string contains a tachyon, ¢(x*), a massless spin one, 4,, a massive

spm wo” and an infinite tower of states of even increasing mass. For a given mass

m? = «,_,, the highest spin is related to the contribution o, .., o*, ¢, . in
v and has spin J = n.

A general string functional of x"(a) contains an infinite number of possible negatlve
norm states associawed with the oscillator «{” which obeys the relation [x0,%,] = —n.
One such example being the state a®,;> which has norm —n. Physical states must, however,
have positive norms and so one must ask if the physical state conditions eliminate all the
negative norm states. One of the miracles of string theory is contained in the following
theorem.

“THEOREM (23]

For the space-tme dimension D < 26 the states g which satisfy the equatlons Ly
=0n>=1 (Lo— 1)y = 0 have positive norm:

It is this theorem which provides the justification for the physical state conditions
adopted earlier. In fact, for D < 26 the bosonic string is inconsistent for another reason
associated with the singularity structure in one-loop graphs, i.e., it has a cut rather than
pole structure. The reader may find it a good exercise to find, for D > 26 the lowest negative
norm state (hint: it occurs with the massive states with the lowest positive mass).

- The norms of the physical states are not, however, all positive definite. Consider for
example the state

s> = L_,12 G. 29)

with LyjQ> = 0, L,|2> = 0, n = 1. It is easﬂy verlﬁed that [s> is a physical state, that is,
satisfies Eq. (3.11), and so

xlsd = {ylL-,|2) =0 (3.30)
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for any other physical state |y) including Is) itself. At the next level we may consider
the state

s> = (L-,+bL% ) 12, (3:31)

where now L,|Q'> = 0 n>=1 Lo+ 1) Q> = 0. We démand Is’> to be physical and in
particular ’

Lyjs"> =0 =(3L_,—2bL_,) |27, (3.32y

which implies that b = +3/2, while L,|s")> =’0 impljes that' D = 26. Consequently, if
D = 26 and b = 3/2 we find that |s') is a physical state and again

S'h>=0 (3.33)

for any physical state [y).
The existence of zero norm states of the form

L, ...L_, 12", (3.34)

with L,|Q"> =0, n > 1, Ly} = Cn;— 1)[9”) can be read off from the Kac determi-
nant. The reader may verify by explicit computatlon that at the next level such a state
only -exists if D = 28.

The no-ghost theorem asserts that for D = 26 the physical states have positive norm
which include states of zero norm, as found above, and states with positive definite norm.
To decompose a given physical state into these two types of states, we choose a Lorentz
frame in which the momentum of the state is labelled by p* and specify a vector k* such
that (k*)?> = 0 and k,p* = 0. Then |y} can be uniquely decomposed as |y) = [+ Ix2)
where both [y, and |y, are each separately physical states and in addition K,|y;> = 0,
n > 0 where K, = a’k, and (any physical state |y,)> = 0. It follows that {x,lx.> = 0,
but it can also be shown that {x,[x,> > 0. Furthermore [24], any zero norm physical state
lx2> can be written in the form a|s)-+b|s’) where |s) and |s') are given in Eqs (3.29)
and (3.31) above. In this sense the discussion of zero norm (i.e., null) states given above
is complete,

At least one zero norm physical state is to be expected since we have in the spectrum
a massless spin one state which is well known to have such a state. In the Lorentz frame,
where the spin one has momentum k* = (k, 0, 0, k), the four photon states can be written
as ¢,a*1(k)|1) and a particular basis s given by the states

a1y,  i=1,2; (@0 -a*®M Ik, (3.35)

and
@)t + a3k k. (3.36)
The last state is unphysical as it does not obey k*s, = 0. The first three states are physical,

but only the first two have positive definite norm. The third state has polarization vector
k" and so has zero norm and also has zero scalar product with any physical state. The effect
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of this is to leave us with two states in accord with the theory of the 1rreduc:ble representa-
tions of the Poincaré group.

In QED one known that, on-shell the above zero norm physncal state does not couple
to states with positive definite norm states in the sense that, given any scattering ampli-
tude for fermions and photons, all the photons of which are physical positive norm states
except for one of which is a zero norm physical state, then the process will vanish. This
is a consequence of the U(l) gauge invariance and in particulai' its Ward identity. Were
it to fail, then unitarity would be violated. In string theory, however, we must verify that
such decoupling of null states does indeed take place. This requirement has important
consequences for interacting string theory. The number d(n) of-.positive definite states at
a given mass level nfa’m* = (n—1)] is given by the formula

w0

. |°°| 1
-[“d(n)x" = | W = 14+D-2)x+ ... (337)
n=1 :

n=1

This is in agreement with the above explicit computations, we have one tachyon at level

zero and one spin one at level one which has on shell (D—2) positive definite degrees of

freedom. The reader may analyze the field content at level two and check the result with

the above formula. The power D—2 is most easily seen in the light-cone formulation where

one has solved the constraints leaving one with D centre-of-mass x/; co-ordinates and (D~ 2)

co-ordinates x%; i = 1 .., D—1 [25]. The most general functional of x5 and x! is built
up with oscillators «j.

Of course, the particles are labelled by the irreducible Tepresentations of the Poincaré
group which are labelled by representations of SO(D—1) if massive and SO(D—-2) if
massless. The massive spin two mentioned above being the symmetric traceless representa-
tion of SO(D-1). . ,

It remains to express the total momentum and angular momentum in terms of oscilla-
tors. We find, substituting into Eq. (2.53), that

| R | I
= | — dx"de = — | 0, %"do
| 2na 4na’
o - -%

1 1 (
= —e 'P" = —— tno
2n /2! j. do 2n 20 J. Z e do

We have used Eq. (2.33), (2.35) and (3 12). As expected it is the centre-of-mass momentum
of the string.
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- To compute the total angular- momentum we require x* in terms of oscillators given
in the previous section. Substituting in Eq. (2.54) we find

kg

J x"9.x"—x"0x")do ;

0

= —1: j (x"P’—x"P¥)do :

\/2 ’(x“ozo—xoao)+ Z(a_,,a —oc_,,oc“)

The first term is the usual orbital expressed for angular momentum, while the second
term takes account of the Lorentz indices carried by the fields. This completes the discussion
for the open string.

The closed string proceeds very similarly. After quantization, we first define oscillators
of and & by -

£
P"= Z aze"imr’

==
P 3wt (3.38)
They obey the relations
=gt @@=z,
The commutation relations are
[0, 0] = W Spmos (28] = 18, s (339
* [on &l = 0.

We may express o and &, in terms of the normal co-ordinates x? to find
. _ \/;’— i} inx®, k
=N axp T Y

a 0 inxﬁ
&= —i [— -,
" z\/2 oxt,  \f2u

'

We recognize that of, = & = 2 ph as is expected as there is only one centre-of-mass

co-ordinate.
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The Virasoro generators are expressed in terms of the oscillators by

@©
Ln = % : Z a:a:-m :"pv’

L=3: Y Gfmily (3.40)
They obey the algebra

D
[Lxs Lm] = (n —m)Ln+m+ E n(n2_ 1)6n+m,0,

[L. L] =0,
(L L] = (=) 122~ Dyme, (3.41)

The physical state conditions for the closed string are given by
v=Ly=0, n>1
(Lo+Lo—=2)p =0, . (3.42):
(Lo—Lo)y = 0. (3.43)

The latter constraint has a simple interpretation. From Eqgs. (2.45), (2.46), (2.41) and (2.42)
we find L,— L, in functional form to be

Lo—Ly = — f do((P*)* - (P*))

“a 7O

-

Consequently L,—L, implement the change 6 — o+ and the constraint (Ly—Lg)y = 0¢
tells us that there is no preferred point on the closed string.

" There are two types of closed strings called orientated and unorientated. An unorien-
tated string has the symmetry ¢ — —o and so the waves of the form f(z+o0) and g(t—0)-
moving around the closed string have the same amplitude. In terms of oscillators ¢ «+ —o
implies o} > &,. An unorientated string has no such symmetry and so the amplitudes for-
left and right moving waves are unrelated. Expanding the most general functional y(x"(¢))
out in terms of Hermite polynomials

vy = (p(x")+R*(x)a ; + k“(x)&’i LR (x)et &

+h5 () 0 + ...) {x¥(a) [0, (3.44).
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where
o (x*(a) 10> = #{x* ()0 =0, n>1. (3.45)

The constraint (Lo — Ly)y = 0 implies that terms such as the second, third and fifth are. .
not allowed. For an unorientated string we must impose o}« & and hence h
a symmetric field.

We find that the lowest physical states for the unorientated string are at the lowest
level a tachyon, and at the next level a massless “spin two™ and spin zero, By massless
“spin two” we mean that it corresponds to the traceless symmetric representation of
SO(D—2). It can be shown that the physical states of Eqs (3.41) and (3.42) all have positive
norm-of D <26.

3.2. The BRST approach
3.2.1. The BRST saction
‘We begin with the string action of Eq. (2.6) which we reproduce here for convenience

ori 1
A7 = - W‘J\dzé \/_

As explained in Chapter 2, this action is invariant under the two-dimensional diffeo-
morphisms

g 870,x" 05X N 1y (3.46)

5x" =fza‘xll’ 6gap =fa,g,,+a,f’g,ﬁ+aﬂf'g". (3’47)

It will be useful to rewrite, in accord with standard practice, the variation of fields in terms
of the covariant derivative. For completeness, we recall that the covariant derivative V, acts
on a tensor T/ according to the rule

VTP =9,T, ~I) T, "+, T,. "+ ..., (3.48)
where, in the absence of torsion, the Christoffel symbol is given by
Iy = 3 gﬂ(aagpa“l‘apgw"aagap)- (3.49)
One easily verifies that we may write Eq. (3.47) as
x* = fOVx", 88, = Vofs+ Ve (3.50)
The action contains the inverse of g,; and we may write its variation as
5g% = —g%0g,:8" = — (VP +Vf), (3.51)
where ‘
v = g, (3.52)
We also note that
5g = g8"6g,0'= 26V (3.5%)

Recall that the covariant derivative of the metric vanishes.
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We now gauge fix the above action and introduce ghosts and antighosts according
to the “standard” BRST method. The final goal in this method is to gauge fix the symmetry
so as to yield an invertible propagator and introduce ghosts and antighosts in such a way
that the BRST transformations are nilpotent and leave the action invariant. The reader
unfamiliar with the procedure will find it useful to carry out the analogous steps for Yang-
-Mills theory at every step (see the Appendix). The first BRST treatment of the string was
in Ref. [26]. We first adopt a gauge-fixing term: According to the theorem given in Chapter
2, we may locally bring the metric to the form g,; = ¢*®,,, using the two-dimensional
general co-ordinate invariance. We could therefore choose this as our gauge-fixing condi-
tion, however, to avoid the appearance of the field ¢, which in fact did not occur in the
original action, we choose to gauge fix the ¢ independent (i.e, Weyl invariant) combina-
tion /—g g% We therefore take this combination to be given by

Vogg? =—gg* ’ (3.54)

-where g, is any two-dimensional metric. One choice is v ——_§ 8. = M,p but we can clearly,
according to the above theorem, use any éaﬂ. We therefore introduce the gauge-fixing
term

a1 f 21, 8~ 5 8, (359

where 1,5 is the usual Lautrup multiplier field. (The reason for the choice of the factor
27 will become apparent later when we come to define the ghost-antighost anticommuta-
tors). . v
_ The constraint v/ —g g = +/— g 2* involves only two conditions and so only two
components of 4,; contribute in the above action. We may take A,, symmetric (i.., 4,5 = A5,)
and traceless with respect to either g,; or g,,. Although the latter condition does not cor-
respond precisely with the part of 4,, which drops from the action, this is immaterial as
we have retained in 4,5 the two components that do remain.

As usual the BRST variations of the original fields are given by the substitution

£ A, (3.56)

‘where A is a rigid, i.e., % independent anticommuting parameter and ¢* are two-ghost
fields into Eq. (3.47). We then have ~

oxt = Ac“a,x“,, 6g% = — AV +VPeY). 3.57
Introducing antighosts b,; we take them to have the usual variations which are
5)-,# = O,l 5bap = 4}-,”. (3-58)

The tensor character of the antighosts is chosen to match that of A4, in view of the latter
equation, and so b, is also symmetric and traceless. Finally, we take the variation of the
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ghosts to be
oc® = A’V e = Ac’d,c" 3.59)

This is in accord with the Yang-Mills result where that the variation of the ghosts is given
by the “structure” constant with two of its indices contracted with those of the ghost fields.
In our case, the commutator of two general co-ordinate transformations with parameters
% and {4 yields a general co-ordinate transformation with parameter

fodi—(102) = (VL —-(1 o 2). (3.60)

The important properties of BRST transformations is that they should be nilpotent,
that is 64, 04, on any field vanishes. In particular, on x* we have

818:x" = A,°0,(A,P0x*) + A,(A4,c%0,6)0,x" = O. (3.61)

The reader may verify the result for the remaining fields.
The final step is to find an action A4®® involving b,, and ¢’ such that

AT = A8 4% 4 4 (3.62)

is BRST invariant. The result is given by
A= — % f d?E /g bug(VPc? + VP~ gV %), (3.63)
One can find 4% by explicit variation of A% or by observing that
AU A = 5 f by —g 87—V ~ 2 %) (3.64)

and as 62 =0 then (A" + A®) =

It is appropriate to comment on the Hermitian character of the fields. Let us take
¢ to be Hermitian, then reality of the action impliés that b, is antihermitian. We recall
that for two anticommuting variables  and ¢ complex conjugation is implemented on the
product by (ng)* = ¢*n* = —n*p*. Examining the transformations of the fields, we
conclude that A is antihermitian. Should the above procedure remind the reader of a cook-
-book recipe, that is because the BRST procedure is rather like one. We refer the reader
to the discussion in Chapter 1 and the Appendix. An alternative way to arrive at the above
result is to use the well-known insertion of 1 into the functional integral. We would insert

L= 4 | [ 000/~ g8~ =2 &%), (69

where g’ is a diffeomorphism of g* with parameter {. Using a standard technique (see,
for example, the lectures of B. W. Lee in Les Houches, 1975), we find A is independent



503

of ¢ and can be given in the functional integral by

rp ~ det {557 (\/-—g; g? }

= detv'—¢g (S—C,(V‘c" 9,0

=0

=0
= det {~V =g (V& +V5i—4 gV)6%). (3.66)

We may write this determination in terms of the integral over Faddeev-Popov ghosts with
the action of Eq. (3.63). The integral over { may be disregarded and the & function can be
implemented by an integral over 4, of the action of Eq. (3.55). We leave the reader to fill
in the steps above which are missing and implement the resulting determinants by ghost
integrations.

We can integrate over 4, in the functlonal enforcing v —g g = v/~ 2%, to find
the action

1 — .,
- d%e = g 8%0,x"0,%7n,,

1 — A A A A A
- f RV b,,(V“c” +VPc*— g%V, (3.67

where now the I op in V¥ is given by Eq. (3.49) but with g,; replaced by g gmg n,,,e one
finds

~ J d>E0,x"0px" N,
1 ' ‘
-— fdz.f:b,,,(a“c”+_a"c“—n“f’a,,c"), ’ (3.68)

This result is independent of ¢ as must be the case due to Weyl invariance or, put another
way, ¢ does not occur in A°*® and A¥. The reader may explicitly verify this fact by sub-
stituting the Christoffel symbol for the metric g,; = #,4¢*, which is found to be given by

Ty’ = 5 (0.5 +0ph0;— 0 P11, (3.69)

- The above manoeuvres to arrive at the action of Eq. (3.68) like those for the point
particle can be criticized from several points of view. The problem centres around whether
the gauge fixing of Eq. (3.54) is actually a good one. The invariance of the action places
restrictions on the parameter { at the end points of the string and it would seem that these
missing degrees of freedom in { do not allow one to reach the gauge of Eq. (3.54). The good
gauge-fixing conditions involve derivatives on g, [27]. The resulting differences are essential
for one of two formulations of gauge covariant string theory [27]. Those parts of g,, which
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are subject to derivatives are dynamical and play the role of moduli in the string field
theory.

The above problems can also be seen from the fact that the above ghost action has
a zero mode problem in that V,5* = 0 has 3(g— 1) solutions on a Rieman surface of genus
g for g > 2 and one solution for a genus one surface. This is of course the number of moduli:
however, the identification of the moduli in the extension of the BRST procedure to take
into account the zero mode problem has not been completely carried out. For the sub-
stantial progress on this problem, we refer the reader to Ref. [28].

The more common method of tackling this problem is to give a prescription for sum
over world sheets in the path integral by breaking the integration over g,4 into diffeomor-
phisms, a conformal factor and 3(g—1) moduli. Since the action is invariant in D = 26
under the first two, one is left with the integral over moduli, see Ref. [29] for a review.

Another objection is that the above classical steps are not valid quantum mechani-
cally except in 26 dimensions. Indeed, it is only in 26 dimensions that the conformal anom-
aly cancels and outside 26 dimensions one finds that the field ¢ occurs explicitly in the
action. This action is no longer a free theory and there is no complete method for its quan-
tization, however substantial progress has been made by Bilal, Gervais and Neveu. It
would seem that in certain dimensions these Liouville theories are be consistent.

We now quantize the action of Eq. (3.67) or (3.68), the end goal being to describe the
on-shell states of the quantized string. We proceed in the same way as in the “old covariant
method” given in the previous chapter, but now we have the ghost co-ordinates to include.
Before quantizing the action, let us consider its equation of motion. Varying x*, ¢” and b,
we find the results

9,0°x" = 0,
0pb™ = 0,
P +0%c -1 4*8,¢* = 0. (3.70)

We must however apply the discussion givén in Chapter 2 on boundary terms. In the closed
stting case that the boundary term vanishes due to the boundary condition

M(—=m) = x*(7@), by(~7) = by(m), F(—n) = (), (3.711)
while in the open string case we must require as before x* = 0 at ¢ = 0 and = as well as

o4

5 o

= (=2Xdc'b;; +5c°b0) =0 at ¢ =0 and =. (3.72)

The latter equation will be satisfied if both
boy=0 and ¢'=0 at ¢=0 ando=n (3.73)

as the variation of a field has the same boundary conditions as the field itself. Other choices
are possible, however, one should choose to restrict conjugate variables, identified below,
to ensure that conjugate variable have the same number of degrees of freedom. Equation
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(3.73) is one choice, but it would make no difference if we chose the other possxblhty
Equatlons (3.73) imply, using the equations of motion (3.70) that

a]_co = 0 and alboo = 0 (3.74)

at 6 =0 and ¢ = 7.
Writing the ghost action out explicitly, we find it is given by

-2 . '
o szé{bm( —oc" +0;¢%) + boo(—0oc® +8;¢Y)}. (3.75)

We recognize that —2/n by, is conjugate to c¢' and vice versa and —2/r by, is conjugate
to ¢® and vice versa. It is up to us to choose which to take as co-ordinates and which as
momentum. We could choose as coordinates by, and c® implying that —2/n ¢! and — 2/n by,
are their respective momenta. Changing the Poisson brackets (see Chapter 1 for Poisson
brackets) for anticommuting variables, to anticommutators according to the Dirac rule
we have

{Box(@)e!(0)} = — 3 (o=0)

(%), buo(a)} = = = 8o ~0') (3.76)

the rest vanishing. The Schrédinger representation we could take

b it & : in o G
=—— =5, ¢ = - — . .
00 2 6¢° 2 &by,

This representation was used in several previous works of the author.
For the open string, it is advantageous to extend the range of ¢ from 0 to © to be from
—x 10 © by taking

o) = co(—a),. (o) = —c'(—0) (3.78)
boo(0) = boo(—0), bo,(0) = —bo1("°') (3.79)

for 0 < ¢ < n. This choice is dictated by requiring that the boundary conditions of Eq.
(3.73) and (3.74) at ¢ = 0, be automatically encoded. We can then define on the range
—n < ¢ < 7 the fields

(o) = ®(6)+ci(o) (3.80)
and ‘

b(0) = (=2) (boo(0) +bo4(0)), (3.81)

which have no p_articulap symmetry as ¢ — —g, except for the boundary conditions of
Egs. (3.73) and (3.74) at ¢ = 7. These latter conditions may be expressed as ¢(n) = — c(n)
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and d¢/da(n) = +8c/do(—x) and similarly for b.. We may further extend the range of
o to all o, since these boundary conditions allow us

¢(0) = c(o+2n), b(c) = b +2n). (3.82)

Conversely, taking the above conditjons and demanding that ¢ and b be continuous and
have first derivative ensures all the above boundary conditions. In terms of the fields c(o)
and b(c), Eq. (3.75) becomes

{b(0), b(a")} = {c(a), c(c")} = O,

~—n<Oo<T

{b(), c(6")} = 2i1z6(§'—0’) " for

<o <= (3.83)
from which we recognize b(o) and (o) as conjugate variables,
The normal mode expansion is given by
[+ . .
o)=Y ce ™ (3.84)
n=-w
and
hd Y
ble)=1i Y be ™, (3.85)
n= -0
where ¢, and c.., and b, and b_, are not related, other than by
d=c Bi=b_, (3.86)

We recall that ¢(¢) and 5(s) are Hermitian and antihermitian respectively. Using the rela-
tion

1 .
Cp = — ‘[ e "¢(o)do, (3.87)
2n

we find that Eq. (3.83) becomes
{C,,, Cm} =0= {bm bm}
{cm bm} == 6rs+m,0' (3.88)

Rather than use the representation of Eq. (3.77), it is often more useful to take

é
b(o) = 2ir —— or equivalently b, = (3.89)

0
5¢(a) Scn’

Note that unlike for §/5x*(c) we do not require an i for hermiticity since we are dealing
with anticommuting quantities and

5\t o
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Important for what follows is the appearance of the zero modes ¢, and b, which are Hermi-
tian and obey {by, co} = 1. _
We now define a vacuum with respect to these oscillators. Clearly we can take

> =bl>=0 n>1 391

as well as the usual condition for the bosonic oy oscillators. The action of the zero modes
on the vacuum, however, requires more care [26]. We can define a vacuum |+ by

Col+> =0, 3.92)
then under b, we find a new vacuum . .
| bol+) = |—). (3.93)

Since b2 = 0, we find that by]—) = 0. From the relation {c,, by} = 1, we also find
¢l—> = [+). We note that

(+1+) = {~leocol—> =0 (3.99)
and similarly for (—|—) = 0. However, we have the relations
{HI=2 = {=leobol+> ==+ (3.95)

and we choose (+|—) = 1. We take |—) vacuum to be Grassman odd and so.the |+)
vacuum is Grassman even as ¢, is an odd object. »

Let us consider the most general function X of x*(¢), and the ghosts. In the oscillator
basis it may be written as

S = pl=>+gl+>

= (%}c,: e Cagbimy e b Pagem™ ™[] |-

+ {; } G o GEDE . by @™ [X(0)] |4 (3.96)

We note that y,, "™ = tp[”h..nb]["““"m“] = y; and if a+d is an ‘odd integer then ¥
is an anticommuting field. We can also expand the functionals of x*(s) in terms of of
oscillators to obtain

(> = (p(x)+A"(x)a” y +eb_;+éc_,
+eu_ b +fb_pF ) ]=D
+(P'(X)+ A"+ ) [+ (3.97)

Let us repeat the above for the closed string, the difference now being that the fields
are periodic with period 2z. Let us choose, as our co-ordinates ¢ = °+ct and ¢ = ®—¢?!
rather than ¢® and b,, as above. The corresponding momenta are b = —2(boq+bo)1/7
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and b = (—2) (boo—bo1)1/n, the anticommutators being
{e(0), b(o")} = 2in 8(0—0’) (3.98)
{e(o), 5(¢')} = 2in d(o—0d') (3.99)

the remaining anticommutators vanishing. The normal mode expansions appropriate
to their periodic character are

(o) = Y e, & =Y &, (3.100)
ble)=iY e ™b, b,=iY"b, (3.101)

‘and the corresponding hermiticity properties are
o=y & =t bt=b_, B =b_, (3.102)
They obey the relation
{cw b = On+m,05 {Em bu} = Ontmo (3.103)

the remaining anticommutators vanishing.

For the closed string, we have twice as many zero modes as for the open string, namely
by, co, by, &y. We can now write the most general functional of x*, ¢(¢), &(s) in terms of
the oscillators o, c,, b,, ¢,, b, acting on the vacua. Corresponding to the existence of the
zero modes above, we have four types of vacuum

|+9 +>a l+, _>, l_a +> and i—"—> (3104)
The first entry refers to the behaviour under Bo, Bo and the second to that under Bo, ﬁo.

3.2.2. The energy-momentum tensor and BRST charge

The action of Eq. (3.68) is Poincaré and BRST invariant and we may compute the
corresponding conserved current and charges. Given any action A4 invariant under a rigid
symmetry with parameter 4 (any indices on A are not explicitly shown), then the variation
of the action. once the parameter A is made space-time dependent, must be of the form

54 = [ PE@AP). . C(3.105)

We identify j* as the current associated with the rigid symmetry A. It is conserved when
the equations of motion are used as 94 vanishes on-shell for any field variations and in
particular those for arbitrary parameter A(x). The first step in finding a locally A invariant
theory is to introduce the gauge field # (suppressing any indices) and coupling constant
g such that 6k = 1/g(9,4)+ O(g,) terms. The locally invariant action to order g, or first
order in 4 is then given by

A + g | d%h,j". (3.106)
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This strategy also works for determining the self coupling of 4, to itself, although in this
case j° involves & and in general a factor of } is required in the gbove equation. ‘
Hence one can find the current from Eq. (3.105) given the rjgid theory or as the coeffi-
cient of 4, in Eq. (3.106) given the local theory.
It is conceptually most straightforward to derive the energy-momentum tensor from
the former method. Substituting

ox* = ("0, x",  oc® = (70, Obyp = (70,b,g (3.107)
with {” a function of & we find that
T;[I = -aaxuaﬁxv”uv—% naﬁ(ayxvayx“ﬂuv)
-(-2) (2“'), (baaaﬂcb—’laﬁbyaayca)' (3.108)

We have normalized T4 so that the x* part agrees with that given previously in Eq. (2.28).
The above T, is conserved and traceless upon use of the equations of motion, however
it is not symmetric. We may always add to T,; a term of the form

ad"(bygc,— bypc,) (3.109)

which is automatically conserved and does not contribute to the total energy and momen-
tum if the fields die off sufficiently fast at infinity. Using the equations of motion (3.70),
we may write this term in the form

—a(b,0,6"—0"by4e,). (3.110)
Taking a = 2(2a1) we find that '
Typ = 0X"0gX" Ny —F Nap0,x"0"x"n,,
+(26') (2) {(basBsC’ + bys0,c°) +(07yp)c, }. (3.111)
The final step is to realize that the equation of motion for b,; can be written as
Osbag—0sbss = 0. (3.112)
Using this repeatedly on the last ierm _We find the result
| Ty = TH+ T8, (3.113)
where _
s = 0aX"0pX"N— 5 Mep(0,X"07X"1] )
TS = 40/ {(bos0pc” + bps0.c’)
+% {(8,bps)c® +(8pbs)c’}} —trace. (3.114)

In fact, the trace vanishes on-shell.
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We can now define the Virasoro generators L, for the full system, i.e., x’s and ghosts.
For the open string we find that (P*)? of Eq. (2.34) is given by

1
— (Tyo+Toy) for O<o<nm

P =1 (3.115)
7(T00_T01) for ~-n<o6<0

in terms of the energy-momentum tensor. Taking this deﬁmtlon over for the full 7,; of
Eq. (3.113) and we define, in-analogy with Eq. (2.38).

k3

1
L =— j doe™ (P*)2. (3.116)
4r

e
For the closed string we use Egs. (2. 39) and (2.40), but wnth T, given now by Eq. (3.113)
in Egs. (2.45) and (2.46) to define L, and L,.

In the quantum theory we find the expression for L, by substxtutmg the anticommuting
oscillators given in the previous section. For the open string the result is

L, = L+I% (3.117)
Lo=1:Y okt . (3.118)
I = ;Y byymCom(n—m): —1. : (3.119)

The reason for subtraéting —1 will become apparent. We note that when normal ordering
an anticommuting quantity, we must assign a minus sign for a change of order, i.e.,

. n>0
it = —b_nc, for m>0. (3.120)

Note that the byc, term does not occur.in L, and so we need not worry about how to norimal
order it. For the other oscillator we normal order with respect to the |+ vacuum, ie.,
b_, is placed to the left of ¢, and c_, to the left of b, for n > 0. In fact, we will never need
to normal order b, with respect to ¢,.

Let us‘compute the L, commutator, one finds

[Lm Lm] = (n—m)Ln+m+n (D 26)

( - 1)5n+m 0 (3'121)

as a result of the equation

[Lgnh’ LgI:] = (n - m)I}nh+m"' %—g (5n-.l-m,0)n(n2 - 1)' (3'122)
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The normal-ordering constant in Eq. (3.118) was adjusted so as to have no central term
in [L®,, L, ]. One may verify the central term in Eq. (3.122) by the same method as used
for L, without ghosts in Eq. (3.20).

Consequently for D = 26 there is no central term, or put another way no anomaly
in the local conformal symmetry. Thus we see our first advantage of working with the
ghosts; the absence of the central term. This is particularly useful when discussing the
properties of loop amplitudes.

For the closed string we use Eqs. (2.39) and (2.40), but substitute 7,; now given by
"Eq. (3.113) in Eq. (2.45) and (2.46) to define L, and L,. We find

L,=L+I% L,= L3+
Where

NIH

X DN~ L} =5 ) Gndn_nts
IR =Y hyimeomn—m): —1,
=Y :byimbm(n—m): —1.

Let us now turn our attention to the BRST current. We may compute it by the same
method using the BRST variations of Egs. (3.57), (3.58) and (3.59). However, as we wish
to examine the action with i,, eliminated, we must in b, substitute for 1, using its
equation of motion. The computation of the current is related to the one above for the
energy momentum as the BRST variation for the original fields x*, g, is a translation with
parameter which is given by (3.56). The reader may verify that the resulting current
is given by

IS = NTE+5 T (3.123)
The first term is easily located by the above argument, while the factor of 4 in the second
term is typical of a self-coupling problem. It is conserved as T, and T“‘ are separately

conserved and 6°¢’N,, = 0 by the equation of motion of ¢’ if N, is symmetnc and traceless.
The BRST charge Q is given by

1
— j doJBT (3.124a)
oL :

where a = 0 for the open string and —= for the closed string. We may rewrite Q in the
.open string case as

T

Q0=— fdac(a) (P¥(0))? - (3.124b)

-
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and substituting the oscillators we find that
0=: Y c (L+3ID. (3.125)

n =00

Using the above expressions for L* and L!* we find that

Q=: Y c,Lim} Y fhbcontom—to (3.126)

n=-—oo nm,p=—
where f are the structure constants of the conformal group and so are given by
[Lm Lm] = u‘;an = (n_m)Ln+m' (3'127)
For the closed string we find
0 o _
Q=:.YF c(Li+3I)+ Y - (L+3L):
n=-o n=-aw

which admits an obvious interpretation in terms of the structure constants of the L,’s
and L.

In this second formulation, the object Q is familiar to physicists. In particular given
a general system with first class constraints ¢; which generated an algebra with structure
constants f2, '

(95 @/] = fij9s (3.128)

The authors of Ref. [4] introduced for each constraint a ghost ¢! and an antighost b* such
that

. {cb} =9} (3.129)

and the BRST charge is given by
0 = g~ L fib el (3.130)

It is straightforward to verify that
0*=0 (3.131)

using Egs (3.128) and (3.129) and the Jacobi identity for f. Indeed, given the first term
of Q and demanding that 0 = 0, leads one to the second term. The BRST charge for
Yang-Mills theories is one example of such an object.

For the string, we must beware of the normal-ordering and one finds that [26]

0*=0 (3.132)

only if D = 26 and L, has the normal-ordering constant discussed above.
The action with the ghosts also has the usual ghost number invariance (¢* — ¢,
b,; - ¢ "b,;) and we find that the corresponding current is given by

Ja = bec. (3.133)
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The corresponding charge, i.e., ghost number operator is given by
1.
N = - dojo, (3.134a)

where 2 = 0 for the open string and — = for the closed string. For the open string we may,
extending the range of o, rewrite N as

N = i '[dac(a)b(a), (3.134b)
2n

while for the closed string
1 .
N= o j da(c(0)b(o) +é(0)b(0)).

For the open string, we find the suitably normal-ordered oscillator expression is

N =3 (coby—b_rca)+ (cobo—boco)- (3.135)
LES ’ .

The normal ordering of the last term being so that N is Hermitian. For the closed string
N is given by (3.135) plus a similar expression with c, and b,. As might be expected, the
BRST charge has ghost number +1 as is implied by

Q =[N, Ql (3.136)
An important property of @ with respect to the Virasoro algebra is
{bn O} = L, = L+ L (3.137)
which in turn implies that
[L.,Q0] =0 (3.138)
as
(L., @] = {b,, Q}2—Q{b., O}
= b,0°~Q%, = 0. (3.139)
3.2.3. The physical state condition

We now must find what the physical state conditions of Eq. (3.11) look like in the
BRST formalism. At first sight it would seem that we have gained very little since we now
have a Fock space which is very much larger and even in particular includes anticommuting
states. However, as we shall see the physical state condition is particularly simple in the
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BRST language. In the usual BRST situation, such as Yang-Mills, the physical state condi-
tion is given by

Q> =0, (3.140)

where Q is the BRST charge. As Q2 = 0, a state of the form |y> = Q(]4)) automatically
satisfies this equation. Hence if [x) is a solution, so is [y)>+ Q|4). We note that a state
Q1A has zero norm with all physical states including itself, such states although physical
do not contribute to actual processes. To remove this ambiguity we set up the equivalence
relation

D1~ 2 Dy = D2+ 04y  for some state |4).  (3.141)

These equivalence classes are often referred 1o as the cohomology of Q. A physical operator
S is one which commutes with Q, i.e., [Q, S] = O clearly if § is-physical so is S+[Q, U]
for any U. .

In QED we may choose our representatives of the equivalence classes to not depend
on ghost oscillators and then the physicall state condition of Eq. (3.140) enforces, in effect,
the condition 0“(4{")|p)> = 0 where + denotes the positive frequency part of 4, i.e.,
the Gupta-Bleuler condition. To count the number of degrees of freedom, that is to ascertain
that we really have only a spin one irreducible representation of the Poincaré group, we
require the above condition and the equation of motion which follows from the action.

In string theory, the situation is somewhat different, although the words and some
of the equations are the same. Let us consider for the open string the equation

Qx> =0, (G.142)

where Q is given in Eq. (3.124) and |y) is the general functional of x*, and the ghosts given
in Eq. (3.96) or (3.97). Let us first apply Q to the ghost-free state, given by

> = vi=>+el+), (3.143)
where p and ¢ are functionals of x(c) alone. We find that Eq. (3.142) implies that

0> = 3 coli=8,0%1=>+ 3 co,Ligl+) (3.144)

n=0

and so
Ly—0,0)y =0, n>0; Li¢=0 n=>L

We must recover the physical state conditions of Eq. (3.11) which we may identify as
those on y. We can eliminate the field ¢ if we impose also the condition

boly> = . g | (3.145)

Sine byl+> = |=) # 0, all the remajnixig states in |y) are built on the |—) vacuum.
In fact, the constraints

blx) =0, Qx> =0 (3.146)
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are the correct comnstraints on |y). We have shown above that the physical states which
satisfy Ll = 0, n> 1, (L3— 1)y = O are one solution. However, we must also show that
these are the only solutions up to states of the form Q|A4). What one must show in effect
is that all states with ghost oscillators acting on |—) are of the form Q|A). A straight-
forward proof of this fact can be found in Ref. [30]. In fact, in Ref. [30] they found all the
equivalence classes of only Qx> = 0 and showed that in fact there were two, the solution.
above based on the |—> vacuum and another solution based on the |+) vacuum. Our
second condition rules out the latter. o ,

We previously stated that all solutions of L =0 n > 1 (L{—1)y = 0 had positive
norm and that the states of zero norm were of the form '

L9, {Ll+3 ()% 12>, ' (3.147)

These latter states may be written as Q of b_,|Q) and (b_,+3/2b_,L% ;|Q") respectively.
Written in this way, they are obviously of zero norm. Such states, however, do not occur
in the count of equivalence classes of Q and so we must conclude that the equivalence:
classes of Q have positive definite norm. (Here positive norm means after inserting ¢, or
ignoring the |+ ) vacuum as otherwise the scalar product vanishes.)

The reader is now well placed to study the free gauge covariant formulation of string
theory [31). For the open string, the. free action is [32, 33]

<x1QIds (3.148).

where {y> is subject to the algebraic constant N|y)> = 1 |x)>. Clearly Qlx> = 0 is the
equation of motion and examination shows that one can fix the gauge invariance |y)
= x>+ Q[A4> by bely> = 0. Since one has not fixed a |A) of the form [4) = Q|A",
one finds in the corresponding second quantized formulation ghost for ghosts. It can be
shown, however, that the count of states after gauge fixing is correct [32].

The above brings out the difference between the BRST procedure in, say, Yang-Mills.
theory and the use which is made of it in string theory. In gauge covariant string theory,
we have a gauge invariant theory with; as usual, no ghost fields. Nonetheless, the best descrip-
tion for this theory is in terms of the BRST co-ordinates of the previous section. Another
way to see the difference is that in the string Q|y> = 0 is the equation of motion
and b,lx) = O the gauge fixing condition in the BRST formulation of QED, Q|y)> = 0
is the Gupta-Bleuler condition and §°4,—8,0"4, = 0 is the equation of motion.

The deep and different use to which the BRST formalism has been used in string theory
remains to be understood.

For the closed string the physical state conditions are

Qx> =0, 0= bols> = Bol). (3.149)

‘Ihis means all states are based on the |—, —) vacuum. We also have

{0, bo—Bo} x> = (Lo—Lo) x> = 0. (3.150)
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4. Conformal symmetry

The reader will have become aware when studying the free quantum string that the
dominant structure is the conformal group. For example, the spectrum of the string is deter-
mined by the physical state conditions and these are given in terms of the Virasoro operators
L, which are the generators of the conformal group. The purpose of this chapter is to bring
out more explicitly the role played by the conformal group. In particular, we shall see that
ausing light-cone co-ordinates, which are naturally suited to the conformal group, greatly
simplifies the previous expressions. Conformal concepts also allow us to formulate more
generally what can constitute a string theory.

4.1. The conformal group

Given a D dimensional Minkowski space parametrized by x*, a conformal transforma-
tion is a diffcomorphism x* — X*(x) such that the line element is preserved up to a scale
factor, namely

5 = dz*d%n,, = Q(x)dx"dx"T,,. (4.1)

For all dimensions D, except two, this group is finite dimensional. For D = 2, it is an infinite
dimensional, meaning it has an infinite number of generators. In the light-cone co-ordinates

z=x"+x!, z=x-x! 4.2)
the line element takes the form '
—ds? = (dx°)*—(dx")? = dzdz. 4.3)

‘The derivatives are related by

a9 1 a'+a el a0 _ 0
*Toz P\ax® axt) T ez P\ox® ax')’

Clearly, it is preserved up to a scale factor [i.e., @ = f'(2)g’(2)] by a transformation of the
form

z-f(), Z- g 44).

for any functions f and g. The only other transformations which preservé the line element
up to scale are

z - h(Z), Z- k() (4.5)

However, these transformatiohs change the orientation defined on the two-dimensional
surface and will not be considered further.
The infinitesimal transformations of Eq. (4.4) are of the form

z—=z+ a2, zZ-z+aE)rt! (4.6)
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and are therefore generated by

Lerol, asnl an
The Lie algebra these generators satisfy is given by
[Ln L) = (n—m)Ly .,
[L.L1=0,
(L. L,] = (n—m)L, .. 4.9

Naive substitution of Eq. (4.7) in Eq. (4.8) yields the result above with a minus sign. This
is an active viewpoint; to arrive at the sigh in (4.8), one must take the passive viewpoint
~and carry out the manoeuvre on functions.

It is useful to use the Euclidean co-ordinates

z = x%+ixt, Z=x—ix! 4.9

which are obtained by making the substitiution x! — ix!, whereupon Z becomes the
complex conjugate of z. In what follows we will often move back and forth between
Minkowski and Euclidean space, without pondering the deeper significance of the change
of signature. Working in a space with positive definite signature has the advantage of al-
lowing one to make contact with the large mathematical literature on Riemann surfaces.
The conformal field theories that are associated with statistical models are in Euclidean
space as they arise from the partition function. The conformal field theories associated with
string theories are in Minkowski space and can be “rotated” into Euclidean space using the
usual Wick rotation 7 — —it in the path integral.
’ In general, conformal transformations of the type of Eq. (4. 4) are not invertible.
The subgroup which is invertible on the Riemann sphere ¢, i.e., the complex plane plus
the point at infinity is given by the following.

THEOREM
The most general conformal transformation which maps the Riemann sphere C onto
itself in a one-to-one way is a M&bius transformation which is of the form
az+b
T ez+d’

’

(4.10)

g

where a, b, ¢, d are complex parameters. By scaling these parameters without affecting

the transformation we may set
ad=bc =1 4.11)

and so the M&bius group is a six real-parameter group. Infinitesimal M&bius transforma-
tions are of the form
z' = z+a_'1+eoz+elz s

7 = Z+E8.  +8Z+E 7 (4.12)
and so are generated by Ly, L., and L,, L,,.
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We are also interested (for open strings) in the upper half sphere plus the point at
infinity, denoted H. This space is mapped onto itself in a I to 1 manner only .by' conformal
transformations of the form

- (4.13)

where now a, b, ¢, d are real. We may scale the parameters, without affecting the transforma-
tion, to obtain either ad—bc.= 1 or ad—— bc= —1. Thxs three-parameter group is generated
by Lo+Lo, Lyy+Ly;.

One easily verified that two Mobius transformations compose to give a third .and
that the resulting coefficients are the same as one obtains by multiplying the two-by-two
matrices. The matrix corresponding to the transformation of Eq. (4.13) being (¢ .5).
The corresponidence between two-by-two matrices and Mabius transformations is not
one-to-one as the mairices (5 J) and (7§ ) lead to the same Mibius transforma-
tion. Apart from this ambiguity, they are in one-to-one correspondence. Consequently,
the Mobius group is isomorphic to SL(2, C)/ZZ and the M&bius group with real parameters
and gd—bc =1 is isomorphic to SL(2, R)/Z,.

4.2. The conformal ténsor calculus

- Consider a two-dimensional manifold on which the metrie is conformally equivalent
to the metric, i.e.,

—ds? = e"P{(dx")* — (dx")’}. (4.14)

We now wish to examine transformations that leave the metric in the same form, that is by
definition conformal transformations. Since any metric on any oriented Riemann surface
can be brought locally into the form of Eq. (4.14), these considerations are quite general.
In particular, the above conformal transformations will occur when we relate two co-ordi-
nate patches both of ‘which have had their metrics brought- into the form of Eq. (4.14).
In the co-ordinates z and Z the. line element takes the form

~ds® = **Pazdz, (4.15)
and we conclude, as -
—ds® = g, (dz)* +gzdzd% + g; d7dz + g-{(dZ)’ (4.16)
that. the metric in Z co-ordinates.is given by
==0=2g: g:=g.=1¢ (4.17)
The-inverse metric is given by

g7 =0=g"% —gi=lg¥ =3¢ (4:18)
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The most general tensor is of the form:

: n . a
:f‘-/‘"'\f_'/\'ﬁ

)..]
NN
t\il NI
Nl Nl

= T(z, %) (4.19)
-

and as usual transforms under the co-ordinate change z - w(z), Z — @(Z). as

] ; [ do\o-m [ d\i-m o
T(z, ) » T'(w, &) = (-——) (—T> T(z, 2). (4.20)
( dz dz
Wecall # =n—mand h =fi—-m the conformal weights or dimensions of the tensor T.
A time translation x° — x°+a is mduced by z->z+a,Z2-z+a for a real and so is gener-
ated by L_,-+L_; which is identified to be the Hamiltonian. A space shift x! - x!+4
is induced by z -+ z+4, Z > Z—4 and is generated by L_,— L_, which is the total mo-
mentum. The remaining generators of the two-dimensional Poincaré group are rotations
of the form 6x° = —¢x!, 6x! = +¢x° there are generated by z > €%z, z —» ¢ ¥z
and so L,— L, is the angular momentum generator. The dilation z— Az, z —» AZ for A real
is generated by Lo+ L.
We find that under a dilation T — A***T while under a rotation T — A“*~M9T. Con-
sequently, we call A+h the dilation weight of T and h—Fk its spin.
We raise and lower indices with the metric and so in particular

T, = g5TF = +&"T%;  T. = L°T". (4.21)

The relation between tensors in the z, Z co-ordinate system and the original x%, x* co-ordinate
system is given by the usual transformation formula, i.e.

bl
T, = a—"» T, = M(Ty=iT),  Ts = L (Ty+iTy (429

and for a second rank tensor by
T, = 2 (Too—iTos— iTyo—Ti1)
T; = %‘(To‘ok+iT01k‘iT1o+T11)
= % (Tob—iToy+iTyo+Tyy)
Iz=x% (Too+lT01+lT1o"T11)' (4.23)

To find the Minkowski results, we substituté T, — +iT}, To, = +iTy,, Tyo — + T\o,
T,, —» —T,,. The Christoffel symbol-in the z, Z co-ordinates is found, from its definition
in Eq. (3.48), to be zero except for the components

Iy =0,¢; Iy = o (429
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4.3. Conformally invariant two-dimensional theories

Before considering two-dimensional theories, let us consider a theory in an arbitrary
number of dimensions which is Poincaré invariant. For such a theory, there exists an
energy-momentum tensor 7,, which we can choose to be symmetric. This tensor is the
conserved current, i.e., 9°T,; = 0 whose charge generates translations. The current cor-
responding to Lorentz rotations is a moment of energy-momentum tensor (namely x,7Tj,
—xgT,s5, it is conserved on its & index due to the symmetry of T,, and its conservation.

If the theory is dilation invariant, it is invariant under x, — Ax, and-the associate
current is given by a moment of the energy-momentum tensor

jﬁ - quap. (4.25)
It is conserved provided that T2 = 0. However, this condition also allows us to construct
further conserved moments of T, Any current of the form

S X, (4.26)
provided _ ,
Ff 40 —n* = 0, . 4.27

where ¢ is an arbitrary function of x. One example is given by
%X T =% T, (4.28)

which generates the special translations of the conformal group.

These ,additional conserved currents define corresponding generators which together
with the Poincaré and dilation generator have the conformal group as their algebra. This
follows from the fact that the charges generate the transformations x* — x*+f* and these
are precisely the complete set of transformations that leave the metric invariant up to’
a scale factor provided it satisfies Eq. (4.27). -

We have shown therefore that any theory, that has 7% = 0 is not only dilation, but
also conformally invariant. In fact, the converse can be shown, a conformally invariant
theory has a traceless energy-momentum tensor and its currents are the above momenta
of the energy-momentum tensor [34]. : :

Let us now restrict our attention to the two-dimensional case and see how the above
general statements are realized. The energy-momentum tensor if it is symmetric and
traceless has only two components which we can take to be Too and Ty,. In the z, Z system,
the traceless condition is

T;=0 ‘ 4.29)
leaving- only T,, and Tz. The conservation condition is given by
OT, =0=0,T; . (430)

which impliés that 7., and T:; are functions of only z and Z respectively. Given any two
functions f(z) and g(z), we find an infinite set of conserved currenis given by

f(AIT,, and g()T; (4.31)
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as clearly 0(f(z)T,,) = 0. The corresponding generators are

d ‘ _ dz
L, = jg-f T, L= ff;fz(f)"”Trz (4.32)
V4 z

We take the usual (27i)-! to be included in the definition of the contour integral. That is

1
§dz means — @ dz.
2mi '

‘The above holds for any two-dimensional conformal field theory. For a free spin-
-zero field theory whose action is given in z, Z co-ordinates by

1
+ I dzdzZ  0,p0;p. (4.33)
4n o

The corresponding energy-momentum tensor is-
Tz:=0, T, = zq)az(p’ ) I;= aZ‘PaZ‘P (434)

and the reader may verify explicitly that 3;T,, = 0 = 9,T;; using the equation of motion.

Let us now consider quantizing an arbitrary two-dimensional conformal field theory.
While the L,s and Ls classically obey Eq. (4.7), quantum mechanically they
become quantum field operators with associated normal ordering. As a result, in
the quantum theory they can obey

[Lm Lm] = (n - m)Ln+m+ Cu,m (4'35)
as well as a similar equation for L,’s. The central term c, ,, commutes with the L,’s. Clearly
Cpm = —Cpn» DUt it must also obey other conditions in order that the algebra obey the

Jacobi identity. It is possible to absorb some of the c,,,’s by redefining the L,’s. We now

consider what is the most general form of c, ,, subject to these considerations. The Jacobi
‘identity

0 = [[Ly, Ln], Lp]+[[Lp Ly]s L]+ [[Los L), Lo] (4.36)

implies the fesult
(n—m)cn+m,p+(p_n)cn+p,m+(m_p)cm+p,n = 0' . (4'37)
Using the redefinitions

1
Ln - L"+ — Cp0»
n -

Lo = Lo+3¢1,-15 (4.38)
we can set c,o = 0 = ¢y, _,. Taking p = 0 in Eq. (4.37), we find

(n+m)c,,, =0 (4.39)
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and 80 ¢, ,, = €,0p+m,o- Further taking p = —m—1, n = 1, we find the recursion relation
| m+2
Cmt+1 = 1 Crns (4.40)
which implies that
-, .
-1
Gy = € m(m _),. (4.41)
12 .
where ¢ is a constant. As such we have found that
m?—1
Con = € TLE—) Srrenon  (442)

The coefficient ¢ depends on the conformal theory and is called the central charge.

" For the theory with one real spin-zero, one finds that ¢ = 1 while for a theory with one

Majorana-Weyl fermion one finds ¢ = 1. The reader may verify these results by oscillator

methods which are almost identical to the evaluation of ¢ for the bosonic string given

in Section 3 provided we take only one field say x’. An equivalent method of evaluation
to use conformal field theory techniques which are:discussed in Section 4.5.

A primary field of weight (d, d) is a field operator ¢(z, Z) which obeys the equation

) . do\ [dB\ =

p(z,2) > ¢g(@,0)=|—) =] plo,d). (4.43)
dz dz :

This symmetry transformation can be implemented it by the action of the generators L, L,’s;

we define U = exp ), (a,L,+3,L,) which in the representation of Eq. (4.7) implements

(z,2) = {((2), ®(Z)) and then

. N do\* (dw \i _
P@,0) =upz u " =|—| | | ¢, D) (4.44)
dz dz
The alert reader will realize that between Eq. (4.20) and the above equation we have switched
from a passive to an active interpretation in order to agree with the literature.
Taking an infinitesimal transformation z - z+ez"*!, Z — z, we find the above equation
becomes :

[L., ¢z, 2)] = 2 {z d‘dz +(ﬁ+1)d} o(z 2) (4.45)

and similarly for Z, .

In a representation of the Virasoro algebra, we can choose the Ly to be diagonal.
For the representation 1o have eigenvalues of L, which are bounded from below, it must
contain a highest weight state |4, such that

Lihy=0 n>1
Lyl = hlh).. (4.46)
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Clearly the state L,|k) has an L, eigenvalue of #—n. If we are dealing with an irreducible
representation of the Virasoro algebra alone then the other states must be generated by
L,’s and so must be of the form

L_y - Ly k> @47)

such a state has a L, elgenvalue of Z n;+h. A representation of the conformal group,
i=1

whose algebra contaijns two copies of the Virasoro algebra is given by the obvious extension
of the above to include L,’s. An example of a highest weight state is provided by the primary
fields since the state

9> = In o(z,2)]). (4.48)

2,20

has weight (d, d) and where the vacuum | ) is deemed to satisfy L,|> = 0,n = —1. Itis clear
that an irreducible representation of the Virasoro algebra is determined entirely by ¢ and A.
A useful result is the following.
THEOREM [35] )

A unitary representation of the Virasoro algebra which has ¢ < 1 éxists only if

6
c=1-— =0,1,2.. . 4.49
(m+2)(m+3) " 44

and the only possible values of 4 for a fixed ¢ are given by

_ [m+3)p—(m+2)g)* -1
T 4m+2)(m+3)

4.50)

p=12..,m+l, g=1,2,...,m. We refer the reader to the review of Ref. [36] for
a more comprehensive discussion.

For ¢ > 1 no such systematic understanding of unitary representations of the Virasoro
algebra exists. There exist unitary representations for any value of ¢ as can be seen by
considering L, of the form '

. : 2
O LI L

z dz | z

for a suitable value of «,. There are, however, interesting reducible representations of the
Visasoro group which are irreducible representations of larger groups, such as super-
-Virasoro groups. Several series of ¢’s each with correspondmg allowed values of A’s are
known for ¢ > 1.

In recent years two-dimensional conformal field theories have attracted much attention
since it has been found that second order phase transition in two-dimensional systems
can be described by such a theory {37]. In particular, it turns out that the so-called critical
exponents found in such system must correspond to the values of (4, k). Indeed for certain
systems a precise correspondence has been made between the ¢ and 4’s in Eqs (4.49) and
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(4.50). An important development which inspired much of the current work in the field
was the realization in Refs. [38] and [39] that one could solve conformal field theories which
contained an irreducible representation of the conformal group with ¢ = 1—(6(p—q)*/pq)
for p and g positive integers. These theories are only unitary if p = g+ 1. By solve, one
meant determine “explicitly”” all the Green functions. This was possible as a result of the
existence of null states for the above ¢’s which in turn lead to differential equations on the
Green functions.

This work has led to the hope that one may be able to classify and maybe solve all
two-dimensional conformal field theories. This may involve some interesting connections
with mathematics involving Yang-Baxter algebras, braid groups, knot theory, etc. [40].

44. Conformal symmetry and string theory

Let us begin by reconsidering the bosonic string discussed in Chapters 2 and 3 in the
light of the previous sections. We may regard the action of Eq. (2.6) as D free scalar fields
x* which are coupled to gravity g,,. The D free scalar fields x* in the absence of gravity
are invariant under the rigid conformal group discussed above, but when coupled to two-
-dimensional gravity it is locally conformally invariant. Local conformal transformations
are the group generated by general co-ordinate transformations and Weyl transformations
of Egs. (2.7) and (2.9). The relation between. local conformal transformations and rigid
conformal transformations is given by the result. Any locally conformal theory is in the
absence of gravity, that is when we set g,, = 1,5, invariant under the rigid conformal
group. ‘
We note that in two dimensions the usual Einstein term for gravity \/ - g R is topolog-
ical invariant. However, one could consider [41] adding more complicated terms involving
gravity, such as those induced by integrating out D = 2 fermions, but we will not do this
here.

The space-time co-ordinates x*(£) are defined on the world-sheet of the string which
we parametrized by &* = (r, 0) and in Chapters -2 and 3 we discussed the string in terms
of £* co-ordinates. y

Up to now in this chapter, however, we have considered conformal ﬁeld theories defined
on the complex plane or Riemann sphere. We now demonstrate how to conformally map
from the string world-sheet to the Riemann sphere. Let us first consider the free closed
string, its world-sheet is a strip with co-ordinates —w0 <t < 00, —7 < 6 < 7. Since
x*(0) = x*(c +2n) we may extend the range of ¢ from — oo to oo by repeated use of x*(c).
= x"(c+2r). For light-cone co-ordinates we take

7 =648 =140, 5= -l =1-0 (4.51)
the transition to complex co-ordinates being carried out by &' — if‘ in which case
§ = t+io. The map from the strip to the Riemann sphere € is given by

§=Inz (4.52)

(see Fig. 4.1). _ ,
The free open string sweeps out a strip parametrized —c0 <7<, 0<o <=
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Fig. 4.1. Map from the free closed string world sheet to the Riexﬂann sphere

////{/// &, G

N

3 plane

2z plane
Fig. 4.2. Map from the free open string world sheet to the Riemann sphere

We may extend the range of ¢ according to Eq. (2.33) from —n < ¢ < 7 by the reflection
in ¢ » —go [ie., x*(—0) = x“(a)]. The map to the Riemann sphere is as for the closed
string § = In z (see Fig. 4.2).

We note that lines of constant 7 on the string world-sheet are mapped to circles about
z = 0 in the complex plane. The incoming string at ¢ = —oo corresponds to the circle
- of radius zero around z = 0, while the outgoing string at = + oo corresponds to the circle
of infinite radius also around z = 0. A 7 translation on the strip, i.e., T =1 = t+4,
o -» ¢’ = ¢ induces the change z —» z' = z41z, = Z'+ Az, A real is a dilation which is
generated by L,+ L, for the closed string and L, for the open string. This explains why
Ly+L, and L, for the open and closed strings respectively play the role of the Hamilto-
nians. _

We now transfer many of the previous expressions in Sections 2 and 3, the &* to the
%, § co-ordinates. We will label tensors in the §, % co-ordinate system by +, —, i.e.

g}i = g’+—, 7}’ = T-}- +3 TJ;j = T--, (73 = 5+ etc.
The gauge choice of Eq. (2.24) is g = g++'= 0 and in this gauge the equations of motion

are
040-x' =0, T,, =0,x'0,x=0, T_._=20a_x"0_x*=0. (4.53)

For the closed string the definitions of (P*) and (P*) of Eqs (2.39) and (2.40) are recogmz-
able as

2 — 2
Pt = e 9 %V, PP = —_x" (4.549)
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and so

1 _ 1
Py = 5 4Tees (P"? = 54T (4.55)

For the open string, on the other hand

d,x* for O<o<m
\/ 2 (4.56)
——0.x" for —-n<o<0
\/Za'
and hence
1 ‘
@y =17 @.57)
2—,4T+_ for —-n<o<0.
oL

Let us now turn our attention to putting the ghost system in %, §'co-ordinates. The
action of Eq. (3.67) becomes

2 _ 1
= "‘7? J‘dgdi {_ Z;, 5+x"a_x“—(b++a_c++b__a+c-)}. (4.58)

As b,, is symmetric and traceless b, = 0 leaving b, and b._. The equations of motion:
[i.e., Eq. (3.70)] being
0,0_x*=0, &8_b,y, =0=20,b__,
o_ct =0=20,c". (4.59)
The energy-momentum tensor of Eq. (3.14) is given by
Tyr = 0,30, —(2) (—2) (b4 404 ) + (0, by )™
T-_ =0_x"0_x"—Qa')(=2)(2b-._(0-c")+(0-b__)c"). (4.60)

Considering the open string, Eqgs (3.78) and (3.81) have the natural interpretation as

¢ for O<o<nm
c(o) = { = for —-n<o<0 (4'61)
_' —4b,, for O<o<m ,
b(o) = {—4b_- for —-n<o<O (4.62)

While for the closed string we recognize

+ -
c=c , C = C

b= —4b,,, b= —4b__. (4.63)
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The reader will be convinced of the simplifying nature of using a conformal co-ordinate
system. We could have adopted these co-ordinates at the outset, but when seeing the string
for the first time, it is perhaps more palatable when it is first expressed in a more familiar .
co-ordinate system. . l '

The reader may be puzzled by the off factors of 2 and (—4) which occur in the transi-
tion 10 %, § co-ordinates. The problem is that the conventions used for string theory do
not naturally fit into those used in the conformal approach to string theory which inherited
the conventions of Ref. [38]. ‘

To get between the two we make the change of variables

x*—=LIxt, ot ocet, ¢ -ce”
b++"’—%‘b++s b——"’_%b-—
after these changes and setting 2a’ = 1, we have the Minkowski space action
A= —%n[djd§{:0.,x"0_x"—(by,0_cT+b__0,c7)},

where the oscillator expressions for the closed string now are:

L4 T w
PP=o,x*= Y afe™, P'=0.x"= Y ale "3

n=—c n=—

o
bis = 3 (booboy = i 2 bue™ ", =40 = ) c.e s,

n= o -

bo_ =3 (boo—bo) =i ¥ be™™, " =c"~c= Y e
n=—- a=-g

where § = 146, § = 1—o0.

Conformal theories are usually discussed in Euclidean space. The transition from
Minkowski space to Euclidean space is carried out by a Wick rotation t — — it after
which we use the complex co-ordinates § = t+i0,§ = t—is, and z = &7, Z = e%. Under
this change, 8, — i0 = i(0/0F), 8. — i0 = i(9/0F). It is convenient also to make the field
redefinition b, ; — ib, ; with all the other fields unchanged.

After absorbing a factor of (—i) in the definition of the functional integral, namely
we use e~ rather than €', the action becomes

1

A= ——
2n

dfdz{—% 0x*9x*—b, ,dc* —b__dc”}.
The oscillator expressions become

M AE H~n
P =iox* = Y oz

DR AR ]
Pr=igx" = Yy &z
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5 = b_.. = 2 an_n, C = C_ =

It is a good exercise for the reader to begin in Euclidean space and recover the above equat-
ions. The energy-momentum tensor of Eq. (4.60) when scaled by a factor (—2) becomes-
Tes = —31 0x*0x* —2b(0¢)— (Ob)c,
T__ = —10x*8x"—2b(d¢)~ (8b)e.
We recognize the usual conventions used in the conformal field theory approach to string
theory. .

Given a.tensor on the world strip, we map it with the Riemann sphere using z =,
If a tensor of weight (d, d) has components R in the 5, § co-ordinates and R’ in the z, 3
co-ordinates they are related by

R(,5) = (2R (z, 2) (4.64)
using Eq. (4.43). For example, we have

1
b’(Z) = _Z_Z_ b(%), cl(z) = zc(5),

1
P'¥z) = ~ PX3) (4.65)

since b, ¢ and P* have weights 2, —1'and 1 respectively. Putting their expansions in terms
of oscillators, we have for example

b'(z) = i b,z™""%, . '(2) = i e,z ", PHz) = 2 abz7mE (4.66)

n= — o n=-=cw n=—o0
In what follows we will often drop the prime, it being clear from the discussion that the
tensors are defined on the Riemann sphere.
When dealing with operators, we may use the representation of the L,’s in terms
of af’s, b,’s and ¢,’s. In this case, Eq. (4.44) is for a tensor of weight (d, d) given by

Uplz, DU = (‘2‘;’) (‘;“’) o, o), 4.67)

where U = exp Z (a,L,+a,L,) and it induces the change (z, Z) — (@, @) 1f we were to take

L,L, to be glven as in Eq. (4.7).

The reader may verify that P*(2), ¢(z) and b(z) do indeed have their expected welghts
1, —1 and 2 respectively. It suffices to confirm that they satisfy the infinitesimal form which
for a weight (d,0) is

[L,, p(2)] = 2" (z % +d(n+1)) o(2) (4.68)
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One makes use of the relations
[Ln, 28] = —nof, (4.69)
(L, b,] = (m—n)b, s
There exist other conformal operators. The object
L(z) = Z L,z7""2 (4.70)

is conformal weight (2, 0) when L, contains ghosts and

)

z*
QF = q“-—ip“lnz—iz'a‘i,,T “.71)
"aro
has weight zero. We note that
d
P¥(z) =iz = ag*(2). “4.72)

Emission vertices in string theory also have a given conformal weight, for example
oD 4.73)

has weight k?/2. In the above statements it is understood that L,’s are ghost extended.
For some purposes, it is useful to work with L_’s in terms of a4’s alone. In this case Q" and
P* have conformal weight zero and one respectively, and L*(z) = Z Liz™" is almost an

operator of weight two, apart from a phase factor which is induced by the presence of the
central term in the L, commutator relations.

In the old dual model and many of the works of Neveu and the author, a conformal
field in z, Z co-ordinates was defined without the (2)%(z)* factors. That is, if ¢ has weight
d it would obey Eq. (4.68) with rn+1 replaced by n.

The above discussion spells out the importance of the conformal group in the formula-
tion of the bosonic string. Examining the discussion we realize that one might just as well
consider any two-dimensional (super) conformally invariant theory and by coupling it up
to (super)-gravity to yield a locally conformally invariant theory. This latter theory we may
consider as a string theory. However, we now have a local symmetry and we must ensure
hat it has no quantum anomaly. This can be achieved in the following ways:

(a) calculate the anomaly directly, i.e., evaluate (7, T,.> at one loop and take

a- of it;

(b) verify that the ghOst extended L,’s have no central term:

(c) show the BRST charge squares to zero (i.e., Q% = 0);

(d) put the theory in light-cone gauge and verify that the Lorentz algebra closes. We

leave it as an exercise to ponder why these requirements are equivalent!

Although the starting conformal theory may differ considerably from the 26 free scalar
fields of the bosonic string, the gauge fixing and and ghost terms are the same as discussed
above.



530

~ One can apply the same strategy to the superstring. We take a superconformally
invariant theory, couple it up to supergravity so that it is locally superconformally invariant.
By the same list as above, we must also verify that it has no superconformal anomaly.

Such strings, however, are not in general consistent theories and can develop diseases
as interacting string theories. One such disease is -anomalies in any space-time gauge or
gravitational symmetries of the theory which can occur if the theory has chiral fermions
such as .occur in superstrings. It has been shown that these space-time anomalies to not
occur in closed strings if the theory is modular invariant [42]. We therefore add modular
invariance to our list of requirements of a good string theory.

The current attitude is that any (super) conformally invariant theory which has no
(super) conformal anomaly, when coupled to (super)-gravity, provides a good string theory
if it is modular invariant. This recipe has included a staggering number of four-dimensional
string theories [43]. Even constructions which utilize free (super)-conformal theories are
enormous in number. In fact, there is no satisfactory method to compute higher loop
string corrections if one considers interesting superconformal field theories such as the
BPZ series [38]. ’ :

Unitarity, that is space-time unitarity, is not obviously guaranteed in the above string
theories. Nonetheless, it is thought that their physical states have positive norm and that
they factorize. The former is shown by going to the light-cone gauge, while the latter
is a consequence of applying the known methods of computing in string theory to a free
conformal theory. ‘

A final comment concerns BRST anomalies. Space-time gauge and gravitational
anomalies are none other than BRST anomalies of the simplest kind. One may wonder
however if such anomalies vanish above one loop and if all the other BRST anomalies
are automatically absent in any modular and conformally irivariant theory. In particular,
there are BRST invariances associated with the higher massive modes of the string and
these must also be anomaly free. Anomalies of this type are known to arise in the open
string. Although one might expect as they arise as boundary terms in moduli space, that
modular invariance would ensure their absence in closed string theories. Nevertheless,
it is possible that the ambiguitiesl in the superstring are a symptom of an underlying BRST
anomalies or equivalently the fact that zero norm physical states do not decouple.

4.2. Some conformal techniques using the operator product expansion

The aim of this section is to familiarize the reader with some of the more elementary
technology used in the discussions of conformal field theories [38] and string theory. An
essential tool is Wilson’s operator product expansion [44] which says that given two
quantum operators A(x*), B(y") of a quantuin field theory, then their time-ordered product
behaves as x* approaches y* as

4B ~ ¥ Cx=y0"  as x* - ¥, (4.74)

where O' are a set of local operators and C; are coefficients depending on (x—y)*. This
equation is to be understood as being valid when the product A(x)B(y) is inserted in a Green
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function with other operators, that is

In <|T{A(x)B(y) Z Cz(x 0} (0 )d(w,) ... |> = 0, (4.75)

Xy
where ¢ are operators of the theory. It is in this sense thai Eq. (4.74) is automarically
time-ordered. Generally, Eq. (4.75) is not valid if some of the ¢’s are composite operators,
but it always holds if they are the elementary fields of a Lagrangian quantum field theory.
The convergence properties of Eq. (4.75) when valid depend on the fields inserted in the
Green function and in general it is an asymptotic series. The coefficients C,(x) can be shown
to be of the form

Cx) = x %4797 ({imes a polynomial of In x), (4.76)

where d,, dg and d, are the dimensions of the operators 4, B and O.

Let us now consider the operator product expansion for two-dimensional conformal
field theories. We use t = In |z| or equivalently |z| as our time-ordering parameter. Given
two conformal operators R(z) and S(z) of welghts (dg, O) and (ds, O) respectively, their-
operator product expansion is

S(2)R(z') ~ Z (-;_—ZQ)—S%Z,,S—_M (4.77).
g

where Q(z') are conformal operators of dimension dj,. The Wilson coefficients are deter-.
mined by conformal invariance to be of the form shown. It is useful to consider the argu-
ments of the operators Q to be z’ rather than (z+2'/2), this corresponds only to a rearrange--
ment of the series.

One way to compute the operator product expansion is to normal order the operators..
Given the operators R(z) and S(z) we may normal order them to find

S(2)R(Z) = Z(z z;f, ?,R — +:S(R(2): (4.78)

which is valid only if |z| > |z’|, where R, are normal-ordered operators. The singularities.
arise from taking past each other the infinite number of annihilation and creation operators,
in order to achieve the normal-ordered product of the two operators, Any normal-ordered
product is finite as z — z' in the sense that it has finite expectation values between any states.
with finite occupation.number. Hence the singular terms as z — z’ are found in the first
term and as |z] > |2'| co‘rr;ésponds to the correct time ordering for the operator product
expansion, we may ideﬁtify the terms in the operator product ¢xpansion with these in the
normal-ordered expression.

An important application of the above is in the évaluation of the commutator of S, and
R,, where

d
S, = §—u S(z)z"*%, R, = § = R(2)z™ 4R, (4.79).
z .

Iz
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The closed contour I';, say, must enclose the point z = 0, but is otherwise arbitrary.
The result for S, being mdependent of the contour as S(z) is analytlc away from z = 0.

We may write
[Sns R,,,] = S,R,—R,S,

-$Z- ’§ L prrans(RQ)

¥ .

- 3§ d—zz Z"tas 4; '3 ™ +9RR(0)S(2). (4.80):

Is r ‘ '
We choose the contours such that I', encloses I', and I'y encloses I';. This coincides Witil
the time operating used for the operator product expansion. L. also coincides with the point

_where the normal ordering of the two operators converges. We may now use the operator
product expansion of Eq. (4.77) but as T(S(2)R({)) = S(2)R() for |z| > |{| and T(R({)S(2))
= T(S)R()) = R()S(z) for |{| > |z|, we use the same expression in the first and second
term. ' Consequently, we have

[Sn, Rm] - {§ dz n+ds d( Cm+dR
z 6

e {Z S T

Ts
Here we have taken S and Rto be such that one of them is Grassmann odd. The same conclu-
sion may be achieved by thinking about the normal ordering of the two operators. Let us
choose to identify the contours I', and I',. Then I', encloses I', which in term encloses
I'; (see Fig. 4.3a) and we consider carrying out the z integration. Since the integrand is ana-
Iytic evefywhere except at z = {.'We have the result ‘

dC m+dr dZ n+ds Q(C) \ ‘
[Sm Rm] = C C f 2 z Z —’———_(Z_C)ds+dn_dq (4.82)

where I' is a contour which surrounds the point z = { (see Fig. 4.3b). By standard techniques
in complex analysis, in particular Cauchy’s theorem, we may then evaluate the integral.

’r

(a) {b)

‘Fig. 4.3. Contours occurring in the evaluation of a commutator
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By using the same argument we may show that

dz
[5w RO = fﬁ 2 #0)
r

(= ir 4o

(4.83)

What the above demonstrates is the close relation between the commutator of two
operators and their operator product expansion. To illustrate this fact, consider S(z)
= T,, = T and R(2) to be any conformal operator which must therefore satisfy

[L. R(2)] = 2" {z diz +(n+ l)d} R(2). (4.84)

The bperator product expansidn to recover this result upon using Eq. (4.83) is read off to be

d
" RO
reR = RO, &
(-0 (z-0
Similarly in order to recover the Virasoro algebra using Eq. (4.81), the operator product

of two energy-momentum tensors must be of the form
d

¢, 210 +d_cm)
e e e

It is educational to carry( out the above steps for a free scalar theory whose action is

j dzdz( ){——a¢a¢} | . (4.87)

where 8 = 0, and 4 = 4;. In order to quantize the theory with respect to the © = In |z|,
it is most convenient to map to the string t+ic = In z, quantlze the system according to the
usual rules and map back to the complex plane. The strategy is identical to that for the free
bosonic string with the index u suppressed. The classical equation of motion 9,0;¢ = 0
allows us to write ¢ in the form

(4.89)

T@TQ) = %

(4.86)

9(z, 2) = @u(2)+ ga(2), - (4.88)
where ¢; and ¢y depend on.z and Z respectively and be written as
a—’l
o (2) = ap—ib Inz~i z z", (4.89)
"at0
. Ya_, ‘
QR(Z) = Qr— ibR In zZ—1i — E" (4.90)
n
Bn=—
n#*0

We define a = a, +ag and b = b, + b,. Clearly ¢ does not depend on ¢; — a,. The commuta-
tion relations for equal 7 can be written as

[¢(0), 0.9(6")] = dind(c—0o') 4.91)
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and these imply the relations

[an’ am] = n5n+m,0; [a: b] =i (4.92)
and similarly for the barred quantities. The propagator for such a theory obeys the equation
006(z,7;(, ) = —6*z—0) = 6(z~0D6(Z-0), (4.93)

where
G(z,2; 4, §) = Loz, D)p(¢, D)
= {0|T¢(z, 2)¢({, O)). (4.94)

To find the propagator, we require the identity

P 820
Gap= 6°(z C) (4.95)
which we verify in the usual way for a o function, by considering
j d*z (5" ( C))f( ) = f( ) 'f(C) (4.96)
D oD

‘where D is some domain containing the point { and 8D is its boundary. The § function
is thus to be understood as acting only on analytic and antianalytic functions. Equation
(4.95) must also be used with care, for example, in the evaluation of 30 In z which in fact
vanishes; a fact which is obvious on the world sheet. As such we recognize that

G(z,2;(, ) = —{ln(z-)+m (Z-]}
= —In(lz={}). 4.97)
This expressions for G may be found also by directly evaluating (4.94) using Eqs (4.89),

(4.90) and (4.92).
Although ¢ is not single-valued, the following fields are

P)=idp= Y az !

P(z) = idp = &z "t (4.98)

In what follows, we will concentrate on the operators which are functions of z alone, i.e.,
left -moving objects and the reader should bear in mind the identical computations for the
operators depending on Z alone, i.e., right-moving objects. Let us find the operator product
expansion of two P(z) operators by computing their normal ordering. We have

4]

PP = : P@PQ) i+ Z ” (E)
z{\ z

n=1

= : P(2)P(®): + 4.99)

1
(=07
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which is valid only if |z[ > [{| as only in this region does the infinite sum converge. As
such their operator product expansion is :

1
P(2)P() ~ (Z—:C? + analytic terms. (4.100)

We recover the oscillators in terms of P(z) by
., = S})d_zz " 1P(z) (4.101)

and we may verify that Eq. (4.82) implies their commutation relation of Eq. (4.92).
The energy-momentum tensor for the free scalar field has the non-zero components

T.=T = —%:0pdp:
Tz =T = —1: 3gdp: (4.102)

In evaluating operator product expansions of composite operators, it is useful to use Wick
theorem which expresses the time-ordered product of a set of operators in terms of their
normal-ordered product and the two-point Green function. For scalar fields ¢(x), it states
that:

T{B(x1) - $On)} = : $(xy) - Px2):
+ L 00 ) e Bx) e D)2 OITG(xIp(x) 10)

k<l

Ft T k) e ) o B, e B

ki<ky<...<kzp
x Y 01T h(xi, )p(xi,) 10 ... COITP(xi,,. JP(Xis,) 10D + oy (4.103)

where a caret above a term means it is omitted and Z runs over all distinct permutations.
. E ' p
The simplest example of such a result is:

T(x)¢(x2) = :(x1)(x2): +<OITh(x1)¢(x,) 0.

One can apply the formula to expressions- which themselves contain normal-ordered
pieces such as :

T{p(xy) ... 1 P(x,) ... (x): ... §(x,) ...} (4.104)

The only modification being that one should not contain Green functions of fields which
were originally normal ordering. The reader may recover the propagator of Eq. (4.97)
by explicitly carrying out the normal ordering in Eq. (4.104) for |z,] > |z,|. Using Wick
theorem we have

T{P(2)P()} = : P(2)P(0): +<OITP(2)P() 10)
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T N0 o T e,
=(Z-C)z +.P(()P(C)._+Z " .l:(ac) P(C):IP(C)‘.

1
=G0 4+2T(0) + terms vanishing as z — {. (4.105)

Similarly we also find that
T{TPQ)} =} T{: P2P(2): PO)}
= }: POP(PQ): +2+ P@) QITPDPQ) 0)
P(z) -

= 3 P@QPEPQ): + —— oo (4.106)
The operator' product expansion is therefore
T(z)P(C) = P(z)( g + analytic
PQ | 1
= H)‘i + (——6 6_C (P(O) + analytic. (4.107)

We recognize P({) as an operator of conformal weight one.

Using the same technique, we may evaluate the operator product expansion for two
energy-momentum tensors. The time ordered-product, using Wick theorem, is a totally
normal-ordered term plus a term with one contraction (i.e., one Green’s function) which
can be made in four ways and a term with two contractions (i.c., two Green’s functions)
which can be made in two ways. As a result

T(2)T(Q) = i—: P(2)P(2): : P(QP(L):

~ 3% P(z)P(C) )7; + analytic

(- )2+‘(—c

1 2T(C) 1 9
+ + — T(¢) + analytic. (4.108)
-0 -0 (-0 & o
We recognize that one real scalar field gives an energy-momentum tensor with ¢ = 1.
The reader may like to show that the operator :¢**®): obeys the operator product
expansion

L
2

. 1 2
T(2): e**®; ~ 2 ke,
¢ -0 &
K1 k(L) o
— 1 "°%; 4 analytic (4.109)

T2
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which implies it has conformal weight k?/2. Another useful formula is given by

- FFPED RO, (4.110)

-0 F"
Finally, let us consider the Grassmann odd fields 5 and ¢ which have conformal
weights (4, 0) and (1—4, 0) whose action [45] is

. eikqn(Z) ..

c KD,

A= — jdzdz (- wl—)(béc).' (4.111)
2n

Examples of such a system are the ghost of the bosonic string considered earlier for which
A = 2. The infinitesimal conformal transformations of b and ¢ are given by

0b = &b+ A(0e)b |
dc = gdc+(1—A)dec. 4.112)

Under these transformations the variation of the action is

04 = — J.dzdi (-— %{) {(e0b + A(6e)b)dc + bd(edc +(1— 4) (de)c)}

- fdzdi (— 2—1;) (0e) {Abdc—(1— 1) (éb)c}. (4.113)

Since J;¢ vanishes, we find that 4 is conformally invariant. The coefficient of ;¢ is the
energy-momentum tensor:

T = —Abdc+(1-24) (@b)c. 4.114)
The equations of motion .
0b =0 = dc 4.115)
imply that we may use the mode expansion
c@= Y cz "0, bz)=i Y ba A (4.116)

One can also introduce fields ¢ and b of weights (0, 1 — 1) and (0, 4) respectively. The analo-
gous results can be thought of as taking the complex conjugate of those above.

To quantize the theory, using © = In [z} as the time parameter, we impose the anti-
commutator ’

{c(6), b(o")} = 2ind(c—0"), 4.117)
which implies that
{Cys B} = Onimo>  {Cw Cmp = 0-= {b,, by} (4.118)
The propagator must satisfy

DB 1y = 32—, (4.119)
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and hence

1
{e(2)b(0)> = v (4.120)

When normal-ordering anticommuting quantities we must use a minus sign when we
interchange this order; for example Te(z)b({) = —b({)c(z) if |{| > |z|. Consequently,
we find that

O0ITb(2)e(D) 10> = —<0ITe()b(=) 10>

(4.121)

Wick theorem asserts that

Tc(2)b({) = : c(2)b(L): +<c(2)b(D)) (4.122)

and using Eq. (4.18) we find {c(z)b({)) in agreement with the above. In deriving this result
we define the vacuum by

bJO> =0 n>Ai~1,
0> =0 n>—4i (4.123)

and normal order with respect to this vacuum. This definition of the vacuum is the one
which is SL(2, C) invariant, meaning that it is invariant under L., and L, where L, is
constructed from the energy-momentum tensor of Eq. (4.114) in the usual way

d
L, = §~E 2" 2T(2)
Z J

=13 b_pc,_ (—p+nd). (4.124)
p

From the viewpoint of conformal field theories, as L_,+L_, is a translation and so it is
natural to insist on such a definition of the vacuum. We recognize from Eq. (4.122) the
operator product expansion

c(2)b() ~ ~—lz + analytic. (4.125)

We may use Eq. (4.125) to arrive at Eq. (4.118).

We now verify that the energy-momentum tensor given above generates the correci
transformations on b and ¢. To demonstrate this, it is sufficient to compute their operator
product expansions '

T@bQ) ~ (2_102 O+ (—1—0 ;%b(é’)%— analytic, @126)
T(2)e() = A=D1 2 ¢(¢) + analytic. (4.127)

@-0F z-{a
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In deriving the above results, we used Wick theorem for the time-ordered product and
disregarded the term which has no two-point functions and is totally normal ordered.

It is very useful to verify that the energy-momentum tensor of Eq. (4.114) satisfies
the correct operator product expansion, namely

2T() 1
T(Z)T() = 7 )z+ P 6( T +% = 0...

We leave the reader to verify the first two terms. The last term comes from contracting
all the fields. Although there is only one way to perform these two contractions, there are
four terms in all. One of them is given by

: —Ab(2)9,6(2): 1 —AB(DA(D): (4.129)

Carrying out both contractions, we have

(4.128)

;. W
(=PRI = = 2. (4.130)
A similar analysis on the remaining three terms yields
¢ = 2(—1461-622). (4.131)

In the above analysis, we took ¢ and b to be Grassmann odd, however, we could just
as well have taken them to be Grassman even. The only changes in the above are that now

1
<b(2)e(0)) = - " (4.132)

and
c= (=2 (~1+62-64%) (4.133)

all other equations being the same.

The above formula does not apply to real anticommauting fields with 4 = 1 -4 = },
however, the reader may verify that in this case ¢ = 1.

Using the above formula for ¢, we can test the vanishing of the conformal anomaly
for some well known string theories. The BRST structure, i.e., the action and energy-
-momentum tensor of the ghosts and antighosts is independent of the details of the two-
-dimensional theory from which one starts and only depends upon the algebra of the local
symmetry. Hence if one has a theory with a local conformal invariance we have a b—¢
system with 4 = 2 which contributes a ¢ of —26. This is cancelled by 26 x*’s of the bosonic
string which have ¢ = 1 for each pu.

For a theory with local superconformal invariance, we have a b— ¢ system with 4 = 2
and a commuting f—7y system with 4 = 3/2. These contribute respectively —26 and +11
to ¢ and so the “matter” fields must have a ¢ of +15. If we have a system with bosomic
fields x* and fermionic fields ¢* which are both real, but contain left and right movers,
then for each u they contribute to ¢ 1 and % respectively. As such we require a space-time
dimension of ten, that is the superstring [46}.
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Finally, let us consider the heterotic string [47] which has the two dimensional content
x&, yt as well as x&, ph, i = 1, ..., 32. Here L and R denote that the fields depend on z and
Z respectively. For the left movers (L) we have a left supersymmetry and so we have to
balance a ¢ of —15 from the ghost sector. Since the p index takes ten values this works
in the same way as the superstring. For the right movers, we have only conformal invariance
and so the ghost sector contributes —26 while x§ and wk contribute 10+ 1 and 32 - 3
respectively.

The superstring and the bosonic string have a maximal Lorentz symmetry in that
all the fields belong to the representation of the Loreniz group of the dimension of the
space-time. One can relax this assumption and demand Lorentz symmetry.in only a space-
-time of a lesser dimension which should of course include four dimensions. An example
of this js that the heterotic string contains fields 4 which do not belong to a representa-
tion of SO(9, 1). One can go further, and have x{, yf and x§, 4 = 0, 1, 2, 3 and then add
fermions or bosons to balance the ¢ from the ghost sector. Clearly, there are many ways
to do this. One has also to ensure modular invariance, but one is still left with many string
theories (see previous section).

5. Conformal mapping and interacting string theory

- So far we have only considered free string theory. Interacting string theory will be
discussed later. However, in this chapter we will consider how to represent the surfaces
which strings sweep out when they interact. To do this, one does not need to understand
the details of how to compute interacting string amplitudes.

Given the central role of conformal invariance for free string theory, it will come as
no surprise to the reader to be told that the surface interacting strings sweep out does not
have a unique representation, and that any two representations which are related by
a conformal mapping will lead to the same string scattering. Conformal mapping, although
physically irrelevant, may however introduce or remove technical complications and
it turns out that for certain representations of the world surface, it is much easier to compute
string scattering than for others. In particular, string computations seem to be most easily
carried out by conformally mapping to the Riemann sphere. Such an example was given
in the previous chapter where we mapped the free string world sheet when viewed as a strip
to the Riemann sphere. We will in this chapter r’epeat this exercise for the world sheet
of the interacting strings. By carrying out this exercise, we will gain a feeling for interacting
string theory before being submerged. in its complications.

5.1. The world sheet for interacting tree level strings

Two strings can interact by touching at a point to form a third string. Of course, the
time reversed process can also occur, namely a string breaks at a point to form two strings.
For open strings they join at their end points (Fig. 5.1) while for closed strings two strings
may touch at any point (Fig, 5.2). There is also a four-point interaction [48] for the open
string which cannot be drawn in the plane, but also has a natural interpretation in terms
of touching and joining of strings and there exists an open closed string transition.
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Fig. 5.1. Three open string scattering

* Fig. 5.2. Three closed string scattering

2 thTI X3 TC

q

1 T o
Fig. 5.3. Two strings joining to form a third

Let us consider in detail three open strings scattering which for concreteness we take
to be two strings joining to form a third one rather than the reverse. We may represent
the world sheet for this process as a single strip (see Fig. 5.3) in the ¢ plane where the
strip is " o

O<Img<asr and —o0 < Reg < 0.’ (5.1

The individual strings have a “length” [« |7 where we take a, negative for outgoing strings.
In the process the “length” of the third string is the sum of the “lengths” of string one and
twb. We must remember, however, since the string is reparametrization invariant and so the
“length” has no physical meaning.



542

2

S 3 &~

] of ® &
® ® '

¢ plane
z plane

Fig. 5.4. Mapping the world sheet for three string scattering to upper half plane
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Fig. 5.5. Time evolution on the world sheet and upper half plane

We note that in the interacting light-cone theory and in one of the two gauge covariant
string theories, string lengths arise as given above. In the light-cone theory [25], one can -
choose the gauge such that the string length is none other than the-centre-of-mass momen-
tum in the + (i.e., x°+x') direction. In the gauge covariant string theory, the length arises
as a remaining component of ihe metric which cannot be gauged away [27].

We now map the strip onto the upper half plane (see Fig. 5.4) by the transformation

o =o+1,=a,In(z—1+a,Inz. " (5.2)

As the upper half plane is mapped onto itself in a one-to-one way by a real Mébius
transformation (see Section 4), the mapping from the ¢ to the z plane is only fixed up to
this transformation. To resolve this 'ambigujty we can select where any three fixed points
on the world sheet, such as the ends of the three strings, are mapped onto the upper half
plane. In the above map of Eq. (5.2), we have chosen the three end points of the strings
three, two and one to be the points co, one and zero, respectively in the upper half plane.

One finds in particular that the real axis of the upper half plane is mapped onto the
boundary of the string. The three-end points of the strings are mapped onto the three
points of the upper half plane as shown. Starting at z = +o0, i.e., at point + and moving
along the real axis, we move along the strip boundary to the end of string one (i.e., point
x at z = 1). Here (z— 1) changes argument by 7 and so we jump to the top of the first
string and move towards the interaction point. When we arrive at this point, we then travel
along the bottom of string two towards the end of string two, etc. Since the derivatives
at the interaction point are discontinuous, the map is not invertible at this point, i.e.,

— =02z, = - = (5.3)
a
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oy 2
Ty = 0 ln-(— ,—) +a, ln(— —) . (5.4)
‘ o3 ‘ a3

The time evolution of the string on upper half plane is demonstrated in the diagram 5.5.
We will require the inverse of this map, that is the map from the upper half plane to the
strip. To this end, let us define the object y(y, x} by

=yIn(i+x¢&)
= p(xe’—} (x&)?+ ...) (5.5)

and

= 7x+ %(2y—l)x2+

w .
=y Z L x".. (3.6)
It can be shown that [49]
1 /ny\ 1
5w =— = —(ny=D(ny—2)...(ny—n+1). 5.7
ny \n n!
The inverse map from the ha_lf plane to the strip is given by [50]
T 1
- — for string 3
s
z=4¢ a"M for string 1 (5.8)
a n(,z)

Fie for string 2,

where

5' - el‘b‘l‘?r; Vr =7, ID (1+5rev')

o)
Yr= - : » (a34r = ay). (5.9)

r

One can easily verify by substituting in Eq. (5.2) that this is indeed the inverse map. One
can extend the range of ¢ of the open strings as for the free case. This corresponds in the
complex plane to a reflection about Im z = 0. '

For the scattering of N open string at tree level, we may proceed smllarly We represent

the scattermg by a strip in the ¢ plane of the form 0 < Im e<m Z o;, —o0 < Re g

< +o0 and map it to the upper half plane by the Mandelstam map

N-1

¢ = Y oIn(z—z) + constant. (5.10)

r=1
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Fig. 5.6. Mapping the world sheet for N string scattering to the upper half plane

(see Fig. 5.6). We choose zy = oo and so this term does not appear and we can also set
zy=1,2,=0.

The reader may readily construct for himself the analogous mappings for the closed
string.

5.2. The world sheet for quantum strmg scattenng

In this case the world sheet sweep out has holes in. it (see Flg 5.7) and so closed curves
are not contractible to a point. The world sheet is therefore a Riemann surface of genus
g=1l

-Rather than work with a Riemann surface itself, it is much more convenient to work
with a representation of it which is defined on the Riemann sphere There are two commonly
used representatlons called Shottky and Fuchsian.

Let us consider the Schottky representation of a Riemann surface of genus g. Many
mathematics textbooks discuss the Fuchsian representation. The Schottky representation
was used in string theory for the introduction of moduli in the classic paper of Alessandrini
[51] and has been used in many of the recent calculation of multistring scattering. Consider
g elements P, of SL(2, C) and their action on the Riemann sphere C. Let us denote by G the

"group generated by P,. It has elements P,, ..., P,, P}, P,P,, PP, ..., P3, ..., etc. A fixed
point z, of a transformation P is one such that P(z,) = z,. A Schottky group is a group
G as above with the restriction that the fixed points of all its elements form a discrete set.

> 5, & 0
S o o

Z—

Fig. 57. Open string multiloop scattering

\

J
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Fig. 5.8. Schottky representation of a Riemdnn surface

We now can ask what is the fundamental region of G, that is the region F, such that any
point of C can be obtained from a point of F by the action of an element of G and no.two
points of F are related by a group transformarion. It has been shown that the fundamental
region is, in fact, the region outside the 2n isometric circles -of P, and P, ln=1,..,8.
The isometric circle of a transformation z — (az+b)/(cz+b) is the one such that |cz+d|?
= |ad—bc|. Tt is straightforward 1o show that the isometric circle C,, of P, ' is mapped
into the isometric circle of C, by the action of P, as illustrated in Fig. 5.8.

The relation of the above discussion to a Riemann surface is provided by the following:

THEOREM

Any Riemann surface' can be represented by the fundamental fegion of a suitable
Schottky group. A

Indeed the elements of this Schoftky group are unique up to a single Mdbius transfor-
mation S such that P, > SP,S-! and up to modular transformations.

For example, at one loop the torus is represented by the region outside the two iso-
metric circles corresponding to a transformation P, and its inverse P;'. By identifying
C; with C,, which are mapped into each other by P, and are connected by a B cycle we
recover the torus (see Fig. 5.9).

Fig. 5.9. The Schottky representation of a torus
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For the closed string, we find that each Riemann surface is characterized
by P,, n = 1, ..., g elements of the Mobius group minus one overall MGibius transforma-
tion, that is 3g— 3 complex parameters in all. In terms of the 2g isometric circles, these
correspond to the positions of their centres (i.e., 2g complex parameters), their radii
(a further g real parameter), as P, and P, ! have the same radius namely \/ad —bc/c and
g real parameters which come from how one identifies a specific point on C, with a point
on C,, that is g angles. The — 3 is due to the fact that SP,S~! generate a group which repre-
sents the same surface. These 3g—3 parameters are precisely the encoding of the 3g—3
of possible complex structures on a Riemann surface of genus g. The case of g = 1 is
slightly different as here we have only one complex modulus.

For the open string, we first double the surface by the same process as for the g = 0
case to construct a closed Riemann surface and then we take the P,’s to be ¢lements of
SL(2, R)/Z,. Hence the surface is labelled by 3g—3 real parameters.

6. Discussion of interacting string theory

In the remaining lectures, I discussed one of the new operator methods for computing
string scattering, in particular the group theoretic method of Neveu and myself. Since I have
greatly exceeded my allotted pages, I will refer the reader to the review of Ref. [52] on
this subject and here only discuss the ill-appreciated relations between the various new
oscillator formalisms.

The “traditional” method of computing perturbative string scattering are the old
dual model discussed below, the Polyakov method [53] which is reviewed in Ref. [29]
and light-cone string field theory [25]. The latter, like gauge covariant string theory, does
lead o the correct perturbative results, but they are rather difficult to derive using these
methods.

More recently, many calculations of string scattering have been performed in the new
oscillation formalism which are the group theoretic method [54-61], the Grassmannian
approach [62-66] and the apﬂroaches of the two Copenhagen groups [67-73].

All these approaches are in effect an operator approach to string theory, and within
the context of past developments can be viewed as most closely related to the old dual
model [74], without having its defects. We recall that the old dual model consisted of a three-
-vertex [75] and a propagator which were sewn together to yield multiloop diagrams.
These results contained many of the correct features; however, in general negative norm
states propagated uncompensated for in the loops and also zero norm physical external
states did not decouple. A strategy used in this formalism was to calculate a muliiloop
diagram with one external leg [76] and obtain the general diagram by sewing an appropriate
tree graph to the one external leg. '

Several of the features of the new operator approaches to string theory can be found
in a series of papers by Neveu and West [77-81]. In particular in one of these papers [78]
the three-vertex for arbitrary bosonic string scattering was extended to include anticommut-
ing (i.e., ghost) oscillators, and shown to be annihilated by the action of the BRST charge.
These authors also realized [78-80] that the techniques [77, 78] they had used to construct
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gauge covariant string field theory could be used in strilig theory in general, and specifically
outside the context of string field theory. In particular, within the context of three-vertices,
they wrote down the unintegrated and integrated overlaps (see Eqgs. (2) and (7) of Refs.
[52)), respectively for arbitrary conformal operators, and extolled the simplicity with which
one could compute string vertices using these overlaps. In addition to the three-vertex
string with ghosts mentioned above, the three-Neveu-Schwarz vertex [80] and the non-
-bosonized ghost addition to the fermion emission vertex [81] were derived using overlap
relations.

Subsequent to the above developments, the four new approaches were given. The
two Copenhagen groups are the most conservative in stategy and so we begin with these.
The group [67-71] of P. Di Vecchia, M. Frau, A. Lerda and S. Sciuto adopted essentially
the same strategy as the old dual model. They took the ghost extended BRST-invariant
three-vertex of Ref. [78] mentioned above, and having found [70] a ghost extension of the
old dual model propagator, which also included a ghost insertion, sewed together these
objects to compute multiloop graphs [70, 71]. This procedure, due to the BRST properties
of the three-vertex and propagator, automatically ensured the correct decoupling properties
of negative and zero norm states, thus solving the most important problem of the old
dual model. Perhaps the most important achievement in this approach is an explicit
expression for the measure in the Schottky representation and vertex [71] for
a multiloop amplitude with any number of arbitrary external legs, the latter being in
agreement with the result found previously in Ref. [56] using the group theoretic method.

The- other Copenhagen group [67-71] of Petersen and Sidenius adopted a strategy
that is intermediate between the Polyakov and the old dual models. Namely, they took
as their starting point the functional integral for the sum over world surfaces [53], and in
particular showed [67] how to recover the three-vertex plus ghosts of Ref. [78] from this
viewpoint. The arbitrary external states were treated by taking them to be coherent states
when integrating between initial and final states in the sum over world sheets. Of course,
having the expression for such an amplitude, one can readily replace it by an oscillator
expression using the well-known relation between coherent states and oscillators, namely

Taplzy) = zlw), n>=> 1L

To consiruct multiloop amplitudes, these authors did not carry out the sum' over
world histories in a direct way as was done in Ref. [82] to find the measure, but rather
they chose to carry out the sum by successive sewing with the above three-point vertex
in functional form. Antighost insertions in the measure are seen in this approach as arising
from integrations over quasi-conformal ghost modes associated with the choice of moduli.
This group independently found the multiloop measure in the Schottky representation
and the multiloop vertex [72].

The philosophy behind the group theoretic [54-61] and Grassmannian [62-66]
approaches was to reformulate string theory itself. In the group theoretic approach, one
started, following Refs. [77-81], from an algebraic type of formulation unrelated at first
sight to usual starting points for string theory. One assumed that any string vertex (for
a review of string vertices in this context the reader may consult Ref. [61]) obeyed overlap
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relations (Egs. (2), (6) and (7) of Ref. [52]) for the fundamental conformal fields, and ,that
zero norm physical states decoupled. The overlap relations determined the multiloop
vertex for any number of arbitrary external states. Indeed, there is no particular simplicity
in taking only one external string. On the other hand, decoupling allowed one to find a set
of first-order diﬁ'erential‘equations for the measure. As there is one such equation for each
modulus, they uniquely determine the measure. These equations have been explicitly
found [60] when ghosts have been incorporated, into the general vertex. In this case, it was
shown that it was possible to rescale the vertex so that the measure was one, i.e., the measure
has been absorbed into the vertex.

Imporiant in finding these first-order differential equations was an understanding
of the conformal properties of string vertices (see the Introduction to this paper for a history
of this subject). In particular, one needed to know which conformal transformations anni-
hilated the vertex (the isotropy. group) and which changed the moduli. The former were
easily found by taking the overlap relations for the conformal operator L(z) = ) L_,2",

n
while the question of which conformal transformation induced which moduli change could
be deduced by their action on the overlap relations defining the vertex [54-61].

Since the group theoretic approach does not start from an action, unitarity and espe-
cially factorization are not guaranteed. However, it was simple to show [58] that sewing
any two vertices as defined by overlap relations led to a third vertex, which also satisfied
its appropriate overlap relation. Thus factorization was almost self-evident. Further,
since the three-vertex, when ghost-extended, was constructed by using overlap relations,
this result guarantees that the results of the two Copenhagen groups and that of the group
theoretic approach will be in agreement.

Some of the explicit results.found with the group theoretic method, in addition to
those mentioned earlier, were the multiloop vertex for the scattering of any number of
arbitrary external strings [56] and the BRST anomaly for all open strings except SO(213)
[55] (also found independently using very different methods in Ref. [83]). In Ref. [84]
the ghost extension of the three-Neveu-Schwarz vertex was found using overlap relations.

The Grassmannian approach [62-66] defines the state (called a vertex in the other
approaches) as an element of a Grassmannian or as a functional integral over the appro-
priate Riemann surface. It was shown independently [64], at least under certain circum-
stances, that vertices (i.e., states) obeyed conserved charge equations using one or the other
description. Conserved charge equations are identical to the integrated overlap equations
(i.e., Eq. (7) of Ref. [52)). We note that these had. been previously used in Refs. [77-81],
and independently for loops in graphs in Refs. [54-61]. Although the derivation of the over-
lap equations is different in the Grassmannian approach, their use to determine the vertices
is the same as in the group theoretic approach. The socalled g vacua are just multiloop
vertices with one external leg and follow from the conserved charge relations, taking the
special case of only one external leg. As advocated in the old dual model, one can sew
a tree veriex to the g vacuum to obtain a multileg graph. This result agrees with finding
the graph directly from the overlap relations for an arbitrary number of external legs, due
to our- previous statements on sewing and overlaps.
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~ The determination of the measure in the Grassmannian approach proceeds by saturat-
ing the vertex, when “naturally” normalized, by a suitable vacuum. It is then shown that
this state satisfies the Belavin-Knizhnik theorem [84]. Decoupling is shown, as is the fact
that this measure is globally defined on moduli space, at least for the bosonic string.

Inthe Grassmannian approach, the vertices are shown to carry a representation of
the conformal group and the energy momentum tensor acis as a connection which defines
paraliel transport as the moduli change. First found in the Grassmannian approach were
the correlation functions for the b-c¢ system. -

The Grassmannian and group theoretic approaches have many features in common,
despite their different starting points, as mentioned above. The vertices are determined
in the same way, using overlap relations, and their sewing properties were established
independently by both groups in essentially the same way. They identify the same object
for the measure; in group theoretic approach it is determined from decoupling, while in
the Grassmannian approach it is shown to satisfy the Belavin-Knizhnik theorem which
uniquely determines it to be the measure as defined by the Polyakov string. It is also shown
to satisfy decoupling [66]. Also similar-[60, 66] is the way the actual vertex with the correct:
decoupling properties is found by multiplying the BRST-invariant vertex, deduced directly
from the overlap relations, by ghost factors which are closely related to the conformal
properties of the BRST vertex.

All four groups have now tackled the Ne\{eu-Schwarz~Ramond string.

‘I wish to thank Mike Freeman, André Neveu, Jens Petersen and Raymond Stora
for many helpful discussions.

APPENDIX

- The BRST formulation of Yang-Mills theory
Let us consider the group G whose antihermitian génerators T* satisfy the Lie algebra
[1::’ T,,] = fu'To- (A.1)

The gauge fields 4} are in the adjoint representation of the group G and we define the

matrix valued field A,(x) = g4,7,. It transforms as A4, > A4,+U'6,U where

U = exp (0(x)T,). The covariant derivative is given by D, = d,+ 4, and the field strength

by F,, = gF,,T, = [D,, D,]. We normalize the T, generators by Tr(7,T;) = —Cgd,.
Starting from the usual Yang-Mills action

-1 f d*xF5 F, = fd‘*x 4g126F Tr F,,F s (A.2)
we choose to fix the gauge by a condition of the form G(4,) = 0; the most popular choice
being 9,4" = 0. We fix the gauge to prevent the overcounting in the functional integral.
That is, we wish to sum not only over a given gauge field configuration and all those related
by gauge transformation, but only over one copy. A practical reason for fixing the gauge
is that the usual perturbation theory for small coupling constant requires a propagator
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which is invertible. We implement this gauge fixing by adding to the Yang-Mills action
the gauge fixing term

— [ d*x Tr {BG[4,x]}, (A3)

where B = B°T, is a Lagrange multiplier. The sum of these two terms is no longer gauge
invariant, but this symmetry is to be replaced by a rigid BRST symmetry with an anti-
commuting parameter A which we now construct. The gauge field 4, transforms as befére,
except that we must replace the local parameter @°T, by

84, = AD,c = A{0,c+[A4,, c]}, (A4

where ¢® are the ghost. The ghosts are to transform as

/ ' A
¢ =—Ac-c=—-—{c ¢}
2
or

8¢ = — — 0, (A.5)

where ¢+ ¢ means matrix multiplication. We also introduce antighosts b = b°T, which
transform as

ob = AB, éB=0. (A.6)
The most important characteristic of the transformations of 4, ¢, b and B is that
0 ,0.(any field) = O, (A7)
ie.
840, = —8,IIc-¢) = —I(Ac-c-c+c-Ac-¢) =0. (A.8)

The reader may verify this statemént for himself for the other fields. The final task is 10
extend the action by adding a third term in such a way that the total action is
gauge invariant. This is achieved by

d4
AT | EF R p oy | dtx Tr BG4 4™ (A.9)
dg-c,
where
oG
A®® = — | d*x Tr{b—— DFc;.
sA*
For the case
G = &"4,, A®™ = — |d*x Tr {bd,D"} (A.10)

owing to its original gauge invariance, the first term is invariant under the BRST transforma-
tion. The invariance of the second and third terms may be verified directly or by noting that

A(A® +A%) = — [ d*xd, Tr {b(x)G[A(X)]} (A.11)
and as 8% = 0, it follows that & (4% +A4%) = 0.
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Let us now consider the hermiticity properties of the ghost system. Let us choose
¢ = ¢"T, to be antihermitian, that is ¢ 10 be Hermitian. Reality of the action implies that
b is Hermitian as

Tr (b3"0,c)t = Tr (8*0,¢)'b*
= — Tr (8"0,cb") = Tr (b10"9,0). (A.12)

Similarly as Ac replaces w = w®T which is antihermitian, A must be antihermitian.

Corresponding to the rigid BRST symmetry of A", we may construct a BRST current
and associated charge Q. In the BRST formalism, we have to impose that physical states
should satisfy :

Qx = 0. (A.13)

In practice, what this means is that asymptotic states, when they exist, should satisfy
this condition. The significance of this condition is further discussed in Chapter 3.

Often, one arrives at the above results in a slightly different manner. One uses the well-
-known insertion of one into the functional integral and extracts and then disregards the
group integration, to arrive at the action of Eq. (A.9). One then notices that this action
has the above BRST symmetry (see Les Houches Lectures of B.W. Lee, for example).

The BRST approach has been developed not so much as a general theory but rather
as a procedure learnt from a number of examples of which Yang-Mills is the prototype.
We now extract the general procedure. Its justification is that the final result namely a nil-
potent set of transformations and an invariant which usually define a quantum theory
which is unitary and whose physical observables are independent of how the gauge was
fixed. Another point in its favour is that it allows one to demonstrate the renormalizabil-
ity of Yangs-Mills for a general class of gauges.

We replace the original gauge transformations by rigid BRST transformations which
have an anticommuting parameter such that:

(i) we introduce a ghost ¢* and antighost b, pair for each local invariance w*; .

(i) the original fields have BRST transformations given by the replacement o® — Ac*
while those of the ghost are dc = — A/2{c, ¢} where the bracket is evaluated using the
relevant action of the generator 7, which can be a differential operator, say, for the group
of diffeomorphisms. The variation of dc can also be found by carrying out the commuta-
tors in the original gauge invariant theory, making the above substitution and extracting
one power of A. These transformations are guaranteed to be nilpotent;

(iii) in a less geometrical manoeuvre, we introduce the Lagrange multiplier B and the
gauge fixing function G. The antighost b and B transform as 6b = AB, 6B = 0;

(iv) finally, we find a BRST invariant action which is given by A(Agf A=)
= 8 (] dxbG).

The above works for many systems and in these notes we apply the method to the
point particle and string.

Of course, it could happen that having carried out the above procedure, one finds
that the ghost action has a local invariance. In this event, one must repeat the procedure
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adding ghosts for ghosts, etc., until one arrives at a set of nilpotent transformations and
an invariant action. Arriving at such an endpoint is, in general, not guaranteed but it almost
always works.

Fmally, we note that rather than use an anticommuting parameter one can regard the
BRST transformations as a derivation in the spirit of x — dx for the usual space-time
manifolds.
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