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The hypothetical de Broglie waves of the scalar bradyons and tachyons are considered.
To describe them a new variant of the Klein-Gordon equation is proposed. For tachyons,
it leads to unexpected freedom in choosing a variable scalar quantity and a constant four-
-vector. The former takes the place of the “rest mass” in the tachyon theory, while the latter
corresponds to the tachyon shock wave and expresses the tachyon-vacuum interaction.
The resulting image of the tachyon differs from that usually accepted in special relativity
and corresponds to that given by general relativity.

PACS numbers: 11.10.Qr, 14.80.Kx

1. Introduction

The generalization of the Klein—Gordon (K-G) equation presented in this paper
concerns the objects of two types, slower and faster than light, commonly called bradyons
and tachyons. Though the formalism is general, the main attention is focused on
the tachyonic case, which exhibits some peculiar properties. '

Even in the simplest special relativistic picture (in which the bare free particles of both
types are represented by the straight world lines in the flat spacetime) there are essential
differences between bradyons and tachyons concerning the concept of rest and the direction
of motion in various reference frames!. The differences become greater when the free par-
ticles are considered to be the sources of fields. It is especially so in the general relativistic
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! The concept of rest for the tachyon cannot be defined in terms of the theory of relativity [1-4],
though it can be defined in certain extensions of that theory, but in the latter cases we obtain very strange
pictures of the universe, e.g., more than one state of rest in one reference frame must exist. These problems
were analysed in Sections 4.2-4.4 of Ref. [3], and less precisely but in a simpler and shorter way in Ref. [4].
For the problem of direction of tachyonic motion, related to the so-called creation point of the tachyon,
see pp. 36 and 37 in Ref. [3], and Ref. [S]. As regards the perturbing problem of the tachyonic causal para-
doxes, it is widely discussed in Ref. [3, 6], where the most representative literature of the subject is also
given, and it is shown [3] that the existence of tachyons would not be contradictory to the theory of relativity.
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description, where the source of fields is (in space) a point in the bradyonic case and a conical
surface [2, 5] expanding along its normals with the speed of light in the tachyonic case
(the vertex of the cone, moving faster than light, is interpreted as a particle) [S]. These
sources are irremovable singularities [7] of certain exact solutions of the Einstein
and Finstein-Maxwell equations. These solutions are rotation-free, i.e, they represent
“spinless objects” what justifies the search for a generalization just of the K-G equation.
When properly combined with the flat spacetime, the tachyonic solutions reveal “comet-
-like objects” expanding into the flat space (see Fig. 1) with the mass that could be contin-
uously transformed into the field (including the shock wave), or vice versa, due to the
hypothetical interaction with vacuum, e.g., with the Dirac sea. Two of the tachyonic solu-
tions [7, 8] seem to be particularly pertinent since they yield a realistic model of the tachyon
with a well defined creation point and a shock surface closed in space (see Fig. Ic). As yet
we have not seen such a particle but the tachyon might be it, if it existed.

In the known special relativistic descriptions of the tachyon the above properties do
not appear, what makes the impression that the tachyon is an ordinary particle having
the spacelike world line. This has been the inspiration to make a different description
(in terms of quantum mechanics in the flat spacetime) in which the specific properties of the
tachyon find some reflection.

The subsequent material is organized as follows. In Section 2, beside the introductory
remarks on formalism, some interpretation problems of the tachyonic dyndmical quantities

>0 u=0

(a) (b) (c) {d)

Fig. 1. The pointlike free tachyon T moving in space along axis z with velocity w = v~! > 1 (¢ = 1) together
with its “ballistic’” shock wave Z (singular in terms of general relativity) presented in the longitudinal section,
in accordance with the general relativistic description. The cases (a) and (b) correspond to the Levi-Civita
(or Levi-Civita—Reissner—Nordstrom) solution of the Einstein (or Einstein-Maxwell) equations, whilg
(¢) and (d) correspond to the solutions given in Ref. [7, 8]. The cases (a) and (b) represent an unphysical
model since the tachyon comes from infinity. In the (c) and (d) cases the tachyon is going from its creation
point cp. The internal shaded regions are curved spaces filled with fields and they are irrelevant to this paper.
The present paper concerns the external blank regions representing the flat space into which the tachyon
moves. X expands along its normals into the flat space with the speed of light. In the reference frames char-
acterized by parameter v > 0 the shock wave Z'is an infinite (a) or finite (¢) circular cone, and in the critical
reference frame (v = 0, i.e. w = 00) it is an infinite (b) or semi-infinite (d) circular cylinder having radius
equal to  at every moment ¢ > 0 (since ¢ = 1). In the (c) and (d) cases the dashed part of X represents a tan~
gent fragment of a sphere having the centre at cp and radius equal to 7 at every moment ¢ > 0. This fragment
is a luxonic signal of creation of the tachyon, and it is irrelevant to this paper. Only the conical or
cylindrical part of X' (contiiuous thick lines) is relevant to this paper, since only this part is generated by
the tachyon. For more details see Ref. [5]
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are discussed. In Section 3 the generalized K-G equation with three assumptions is pres-
ented. In Section 4 the general properties of the equation are briefly discussed. In Section 5
the main results are presented. Owing to an additional restriction the equation becomes
invalid for bradyons and reveals the properties of tachyons (relations (25) and (27a)) that
agree with the mentioned description given by general relativity.

2. Formal and methodological introductory remarks

Our considerations concern the flat spacetime. Let us assume its signature as
(+ + + -)and choose an inertial reference frame endowed with the standard Lorentz
coordinates x* = x, y, z, . Then, for every four-vector n* and four-vector operator n*,

where ,u—xy,z t, there are n, = n* and n, = n* for y = x,y,z, and n, = —n' and
n, = —n' in terms of the chosen coordinate system in which all our formulae will be
presented.

We assume the speed of light ¢ = 1.
From the standard definition of the four-velocity u* of a free particle, we have

uut+e =0, (1)
where £ = 1 for the timelike world line (bradyon) and ¢ = -1 for the spacelike world
line (tachyon).

Defining
p* = mut, )

where m is an arbitrary real constant, we get by multiplying Eq. (1) by m? that

pup"+em* =0, (3)
which is the classical origin of the quantum K-G equation

bub"p+em’y = 0, “
where

P = —ihd", %)

for both the types of free particles; p* being here the four-momentum operator.

Constant m, that plays the role of a parameter in Eqs. (2) and (3), has the dimension
of mass (or energy or momentum since velocity is dimensionless in our units (¢ = 1)),
and is commonly interpreted in the bradyonic case (¢ = 1) as the particle rest mass. In the
tachyonic case (¢ = —1), when we cannot reasonably define the state of rest for the particle
(see footnote 1), the meaning of m is not clear (cf. also p. 46 in Ref. [1]). Anyway, for both
the types of particles the constant m is, generally speaking, a dynamical quantity transform-
ing the kinematical quantities »* into dynamical quantities p* (Egs. (2)), or kinematical
Eq. (1) into dynamical Eq. (3). We shall call m (and its generalization M below) a masslike
quantity.

For free bradyons (and luxons, i.e. objects moving with the speed of light) the compo-
nents p”, p’, and p* are interpreted as those of momentum and p* as energy (in our units).
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Such an interpretation is not obvious for tachyons, especially when we consider a tachyon
in its critical reference frame, i.e. in the frame where the tachyon has infinite velocity.
(Such a frame exists for every tachyon by virtue of the known property of the Lorentz
transformation.) However, simple analysis shows that we have to interpret p* in the same
way also for the tachyons?.

Now let us discuss a few well-known concepts and relations. Consider a plane harmonic
wave having an amplitude equal to unity and constant frequency v and length 4, that moves
with a constant phase velocity vy, i.e. v,, = vA. ‘We shall refer to such a wave as basic
wave, since it is a groundwork to construct a modulation moving with constant group
velocity v,,. The standard calculation gives v, = dv/d(4-"). If the basic wave is assumed to
be the de Broglie wave (when it is an auxiliary unphysical object) and its modulatiog is
constructed so as to form a wave packet, then such a modulation represents a particle
moving with velocity v,,. It should be emphasized that these kinematical relations are general
properties of wave motion and are independent of the relativistic or nonrelativistic points
of view, and thus they are independent of the division into bradyons, luxons, and tachyons.
This and the congeneric description of all three types of particles in terms of the theory
of relativity given by Eqgs. (1)~(3) (remarks on luxons are summarized in footnote 7) suggest
the need to assume the existence of the de Broglie wave also for the tachyon, as it is the
case for the bradyon and luxon.

We make such an assumption.

Using the mentioned kinematical equations v,, = v4, v, = dv/d(A~'), and the known
de Broglie dynamical relations, i.e. momentum 24-! and energy Av, we find from Eq. (3)
that

Upnlge = 1. (6)

Henceforth we assume, without loss of generality, that each particle considered in the

further text moves along the axis z of our frame.

Let v and w be velocities constant in our frame and parallel to its axis z, and such
that

w=1 0<¥<l, w?*>1 )

2 Assuming that a pointlike tachyon moves along z-axis with velocity w > 1 and calculating #* we get
from Egs. (2) that p™ = p¥ = 0, p* = mw(w?*—1)""2 and p' = m(w?—1)~ /2, This implies p* = m and p*
= 0 in the critical frame, in which the tachyon world line coincides with z-axis. The latter equations may be
interpreted in two ways. In the first way, the tachyon moves with infinite velocity and has momentum p* = m
and zero energy (p* = 0). In the second way, there is no motion in the frame and thus no momentum{p* = 0),
but there is only an instantaneous flash stretched on axis z and having the total energy p* = m. The second
interpretation seems to be intuitively much more obvious than the first one, however, it leads to nonsense.
In fact, rotating only the spatial axes and leaving the time axis intact we make p* # 0 or/and p¥ # 0 while
there is still p* = 0. Thus, in terms of the second interpretation, we obtain, by invariant Eq. (3), either more
than one energy component, what contradicts our concept of energy, or the appearance of momentum
and the alteration of energy by means of formal rotation of the spatial axes, what is nonsense. Note that
this would take place in the usual subluminal reference frame. (We reject the unfortunate concept of the
so-called superluminal reference frame; see Section 4.4 in Ref. [3] or Ref. [4], cf. also Ref. [9] and appropriate

references in Refs. [3, 9].) Concluding, we have to assume the first interpretation, i.e. p* as momentum
and p' as energy.
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In accordance with the known rule that the velocity of a particle is the group velocity
of the de Broglie wave of the particle and with relations (6) and (7), we assume that in our
frame we have

V=10, w=u, for e=1, (8a)
V=10Up, W=10, for = —1, (8b)

for a chosen bradyon and tachyon, respectively.
The assumption on motion along axis z, relations (1), (7), and (8), and the condition
vy = dz/dt = */u’ determining the world line of our particle, give

U, =u"=u, =u =0, (92)
and
u,=u"=y, u=-u=-y for e=1, (9b)
u,=u"=y, u=—u=—yw for &= -1, (¢)
where
yi=(1-0)"V2 > 1, (9d)

Equation (1) gives «,’s with accuracy up to the sign, which can be chosen arbitrarily
without loss of generality. Above we chose y positive and the signs of u,’s in accordance
with the rule for d{ given just below Egs. (10).

Let x* = x*({) be equations of the world line of our particle, where the real variable
{ is an affine parameter of this line. Thus, by definition, { is independent of the choice
of coordinate system as being dependent only on spacetime points, in this case on the points
of the world line. We can determine { more precisely in the standard way when defining
the four-velocity, i.e. assuming v* := dx"/d({. This gives —e&(d()* = dx,dx" = ds* by Eq.
(1), where ds? is the standard infinitesimal invariant of the world line. These relations enable
us to express { in terms of our coordinate system, namely we have

—&d{ = u,dx* = u'dx,. (10)

Equation ds? = —&(d{)? gives us the freedom in choice, without loss of generality,
of the sign of d{ (do not confuse ¢). Here we choose the d{ sign so as to have { increasing
with ¢ for ¢ = | and with z for e = —1.

Relations (7)-(10) give d{ oc dz—u,,dt.

For every differentiable function f = f({), Egs. (5) and (10) give

pf = ihefu®, (11
where an overdot denotes throughout the differentiation with respect to {.

The basic de Broglie wave fulfilling Eq. (4) in terms of p, and { is = ¢, where

¢ :=expih™'px* = exp —ih~'em(, (12)

an insignificant constant phase shift having been neglected.
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Note that we use two languages in this paper, namely the language of classical relativity
when we speak of pointlike particle, its world line, or affine parameter, and the language
of quantum mechanics when we speak of de Broglie wave or operator. This will be held
in the further text to make our considerations clearer, since our subject belongs to quantum
mechanics but it is based on the results obtained in general relativity (see Section 1).

The present section was dealing with a constant masslike quantity. The following
will be dealing with one that can be a function of .

3. The generalized equation and three assumptions
We consider the equation
P P'yp+eM*y = 0, (132)

from which by substituting Isﬂ = p, and M = m we get the free particle K-G equation (4).

The general and obvious restriction of P* M, and w (and thus of H, k*, and F in the
following) consists in assumption that Eq. (13a) is Lorentz invariable (cf. footnote 4).
Other assumptions are given below.

3.1. Assumption on constant velocity and function M

We assume that Eq. (13a) describes free particles in classical vacuum. The condition
of being free is expressed by the assumption that the particles move with constant velocities,
i.e. their world lines are straight. The de Broglie wave model for the particles and relations
(6)-(10) are assumed here.

The hypothetical interaction between classical vacuum and the particle moving with
a constant velocity may be manifested by a change of the masslike quantity (cf. Section 1).
Thus we assume a disposable differentiable real function M instead of the constant m in
the K~G equation (4). Variability of something in spacetime means dependence on coordi-
nates. It seems to be obvious that the variable intrinsic properties of particle should depend
on coordinates only through the affine parameter of the particle world line (cf. Egs. (10)).
The masslike quantity can be treated as an intrinsic property of particle. Thus we assume
that

M= M. (13b)

3.2. Assumption on operator P*

The interaction between a free particle and classical vacuum considered here is defined
on the analogy of the interaction between a charged particle and electromagnetic field,
namely we introduce a four-vector operator

P* = p*—HEK* (13¢c)

instead of p* in the K-G equation (4).

It is seen that H and k* take the place of the electric charge and electromagnetic four-
-vector potential, respectively. Thus, by virtue of this analogy, — Hk" is an interaction
term of P*,and H should be a kind of dynamical charge. Therefore H may be treated as an
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intrinsic property of the particle and in accordance with what was said in Section 3.1 we
assume that
H = H((), (13d)

where H is a disposable (temporarily, lest we lose the generality) differentiable real function.

As regards the four-vector k", let us note that the field potential is assumed to give
interaction forces by differentiation of that potential with respect to coordinates, while
in our case we should have no forces since our Eq. (13a) is expected to describe free particles
having constant velocities in the classical vacuum. Thus k* should be coordinate independ-
ent and we assume that

k* = constant. (13e)

We assume here a situation opposite to the standard ones, namely we assume a variable
(in general) dynamical “charge” H and a constant “potential” k*. We do not determine
precisely the meanings of the quantities H and k* since Eqgs. (13a)-(13¢) represent only
a scheme containing various theories, in which H and k* may have various senses (see the
last paragraph of Section 4). For instance, in Section 5, where we assume H = M, k* is
interpreted as a kind of local reaction of the vacuum to the presence of the particle and not
as a four-vector field in spacetime.

Now, thanks to the direct affinity between Eqs. (4) and (13a), P* has acquired the
direct physical meaning of a four-momentum operator, while p* given by the standard
definition (5) has lost that meaning. Now, by definition (13c), p* is the generalized four-
-momentum operator that need not have a direct physical sense. Such a standpoint is just
the same as the one in the case of charged particle in the electromagnetic field?, and is in
direct agreement with the common interpretation used in quantum (and classical) me-
chanics. '

Ini the further text Eq. (13a) together with Egs. (13b)~(13e) will be referred to as Eq. (13).

3.3. Assumption on the existence of a generalized basic solution

The basic solution (12) of Eq. (4) need not be a solution of Eq. (13), although, as we
shall see in Section 4, it is the one in particular cases. On the other hand, the existence
of a basic de Broglic wave solving Eq. (13) is necessary to construct a wave packet as
a realistic model of the particle. Thus we generalize the concept of basic wave replacing
only the term —em{ with a function F({) in ¢ given by Eqgs. (12).

Thus we assume that there exists a solution v of Eq. (13) such that y = 0, where

:= exp ih "'F, F=FQ{, F=#0, (14

and where F is a disposable (temporarily, lest we lose the generality) differentiable real
function. An overdot denotes throughout the differentiation with respect to {. Condition
F # 0 is obvious, since for F = constant there would be no wave motion.

3 For instance, considering a charged particle moving along a constant magnetic field we have the
real momentum parallel to the direction of motion, while formally there are transverse (and even nonunique)
components of the generalized momentum given by the field vector potential.
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The use of a disposable (imaginary) exponent in the basic wave expression, instead
of the standard linear one (cf. relations (12) and (14))*, agrees with assumption 3.1 by
which m is replaced by M({), v, being constant. In terms of the de Broglie wave, taking
into account that the exponent in the expression of ¢ is proportional® to A-1(, 8 could
be understood as a basic wave (being an abstract groundwork for constructing a wave
packet) with A = A({) and v,, = constant, and vi = v,

4. General results

Substituting y = € in Eq. (13) and dividing the result into real and imaginary parts
we obtain two equations

e(M?*—F?)—2a,FH+H*k k* = 0, (152)
eF+a,H =0, (15b)

which determine more accurately Eq. (13), and where k" = kZ+k2+kZ—k? and the
constants a, are for £ = 11 the following:

ay = — '}’(Ukz + kt)9 (163)
a_y = y(k;+0vk). (16b)

If H = O or all the k,’s are equal to zero, then M = constant and 6 = ¢ (with accuracy
up to the insignificant constant phase shift), and thus Eq. (13) becomes the K-G equation.
If H # 0 and H = 0, when we can put H = 1, then also M = constant and § = ¢ (up to
a constant phase shift). In this case, therefore, Eq. (13) is also the simple K-G equation
presented in the shape of a constant shift of the four-momentum (p* — p*+k*)S.

Thus, to obtain a true generalization of the K~G equation in the framework of Eq.
(13), we should assume k* as a nonzero four-vector’ and

H+0, amn
what we do.

+ Having F # 0, one can always make the transformation F({) = —eml’ that gives 6(5) = ¢(C"),
i.e. one can always have a linear exponent in the basic wave expression, if one were, e.g., to construct a wave
packet in the standard way. However, if F({) is not linear and one uses the new variable {’, then to preserve
the invariant form of Eq. (13) one has to replace p* by —i#6" in definition (13c), where 8y is the covariant
derivative, and then some quantities may lose their direct physical sense in the flat spacetime.

5 Note that for ¢ we have A = constant and A = A! {df = [ A'dl, <f. Eq. (22).

¢ The use of such a shape of the K-G equation would be justified if the existence of a hypothetical
free object having four-momentum calculated from Egs. (2) different from its four-momentum directly
measured were assumed. '

7 Let us make some remarks on luxons. Assuming vpp = vg = *1 and £ = 0 we pass to the luxonic
cases described by relations (1)-(6), (9a), (13), (14), and (15). Then Eq. (4) becomes the wave equation. To
obtain the dynamical Eq. (3) from the kinematical Eq. (1) we have to assume m oc hv. (Note that the phrase
commonly used saying that “luxons have the zero rest mass” does not seem to make sense in terms of relativity
since we cannot define the rest for the luxon in that theory and the term em? is absent in Eq. (3) because
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Relations (15) and (17) give
M?—m®+ H¥ ek, k*+a2) = 0, (18a)
= —ea, { Hd{—em, (18b):

an insignificant additive constant having been neglected in Eq. (18b).

From relations (17) and (18) we conclude the following:

0 = ¢ if and only if a, = 0.

If a;, = 0, then k k" > 0 since k* has been assumed to be a nonzero four-vector, and
then m # 0 and M # 0.

If a_, = 0 or a, # 0, then there are various possibilities that are seen from Egs. (18).
Among others, there is a tachyonic case created by the assumptions a_; = Oand kK k* = 0,
where we have M2 = m*> # 0, 8 = ¢ (correspondence to the K-G equation), arbitrary-
H # constant, k, # 0, and k,2,+k§ > 0 (cf. inequality (25) and the comments directly
below it).

The theory presented above, and its special case in Section 5, does not precisely deter--
mine all the functions of { and the constants under consideration, giving us the freedom
in choice of additional assumptions for these quantities, within the framework of rela--
tions (16)-(18a) of course. Note that our quantities may also depend on parameters that.
are coordinate independent but can depend on certain physical conditions (e.g., our quanti--
ties may be different for different particles). Generally speaking, our theory is a scheme:
containing various more particular theories.

5. A restriction of assumption 3.2

It seems reasonable to assume that the interaction between the particle and vacuum:
is proportional to the particle masslike quantity, i.e. to put

H= M, (19a).
what by inequality (17) gives

M # 0. (19b)

of the property ¢ = 0, already on the kinematical level of Eq. (1), and not because of m = 0.) To obtain
Eq. (13) different from Eq. (4) we have to assume k* as a nonzero four-vector and H # 0. Choosing a null:
coordinate as the variable { such that 95 = 8,{ = 0 and (2:£)* = (8,{)*> = 1, for the luxonic motion along.
axis z, we get ap = k*3,(, where ap = a, fore = 0in Egs. (15). Assuming g, # 0 we obtain H = 1, k,k* +# 0,
and F o« {, and thus Eq. (13) becomes the wave equation in the shape of a constant shift of four-momentum
(see footnote 6). Assuming ao = 0 we get F and H as arbitrary functions, kx = ky = 0, k2 = &7 + 0,
i.e. kyk* = 0, and we find that Eq. (13) is fulfilled by every complex function y({). Would therefore Eq. (13):
be, for £ = 0 and ay = 0, a generalization of the wave equation in the spirit of the interaction between.
the spinless luxon (if it existed) and classical vacuum ? Perhaps it would, if something similar to that mentio--
ned in footnote 6 were admitted. However, it seems to be reasonable to acknowledge Eq. (13), for ¢ =.0
and a, = 0, as a simple wave equation in a transformed form since kx = ky = 0. In connection with these
considerations, note the existence of the rotation-free plane luxons in the theory of relativity (Section IV
in Ref. [7]).
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It is easy to see that relations (18a) and (19) give together a self-contradictory system
for ¢ = 1.-In other words, Eq. (13) with restrictions (19) is invalid for the bradyons. This
result seems to be important since a free bradyon interacting with classical vacuum by
changing its rest mass would be a strange thing in our contemporary image of matter.

On the other hand, the variability of the masslike quantity M (i.e., M # 0) during
the interaction secems to be a reasonable assumption for the tachyons, if we assume the
tachyon description given by general relativity (see Section 1).

Henceforth we shall consider only the tachyonic case € = —1,

5.1. Properties of the tachyonic case
For ¢ = —1 we get from relations (13c), (14), (16b), (18), and (19) the following:

m =0, (20)

1—kk*4a%, =0, 21

F=a jl Md¢, (22)

a_; #0, (23)

P9 =—Mk0, P0=—Mkp, (24a)
0 = vP, (24b)

PO = M(a_,yo+k)0 = My*(vk,+k,)0. (24c)

Function M is arbitrary here (with the condition M # 0), i.e. the theory presented
here gives us the freedom in choice of M({). Also the values of k,, which are determined
only by relations (16b), (21), and (23) (and as a result by (25) below), are not unique. In
other words, we have here a set of arbitrary descriptions of the interaction between the
tachyon and vacuum, partially determined by the just mentioned relations involving
k,’s. To obtain an explicit description we have to make additional assumptions or use
data from another theory to determine uniquely M({) and all the k,’s.

Equation (21) means that k* is a spacelike four-vector and constant @> , is a scalar.
Thus a_, can be regarded as a constant characterizing the interaction between the free
tachyon and vacuum, and then Eq. (16b) can be applied to determine, ¢.g., k, in terms of
k, v, and a_,. Equation (21) determines the relationship between scalars %, and k,k*,
one of which should be given. For instance, if we assume the possibility of small variability
of M (i.e. M = constant; note that M = constant is forbidden by inequality (19b)) and of
condition ¢ =~ ¢, what seems to be reasonable by correspondence to the K-G equation,
then equality a_; = 1, and thereby k k" = 2, can be regarded as a conclusion from Eq.
(22). Note that if a_, = 1, then P*0 = M(u"—k")9.

By virtue of assumption 3.3, the basic solution of Eq. (13) concerns only a motion
in the z direction since 6 is assumed to be independent of x and y. When the
pointlike tachyon moves in the z direction, its shock wave expands in other directions by
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virtue of the general relativistic description (Fig. 1). In the tachyonic case we are obliged
therefore to interpret Eq. (13) as one concerning only the pointlike free tachyon (i.e. describ-
ing the interaction only on the tachyon world line, in terms of relativity) and not the tachyon
shock wave, which is a luxon®. The existence of the shock wave can, however, be inter-
preted in terms of the quantum mechanical description presented here as an effect of the
interaction on the tachyon world line. This can be seen as follows.

Equations (16b) and (21) give

ki+k: =1, 25)

what means that there must exist certain interaction between the tachyon and vacuum
transverse to the direction of the tachyon motion. Components k, and k, appear in the
relations determining k,’s only as a term k2 +k?. Thus we can assume the circular radial
symmetry (with axis z) of the transverse interaction. This can be figuratively represented,
at every point of the tachyon world line, as a continuous set of interaction “arrows”.
The “arrows” have equal and constant length (k2 +42)'/?, they are perpendicular in space
to the z axis and fixed to it, and they are directed in all the transverse directions. This and
relations (24a) and (25) mean that a radial (in space) momentum impulse exists at every
point of the tachyon world line. Such impulses can be directly interpreted as creation of
the shock wave. Thus, the theory presented here describes the creation of the tachyon
shock wave, being thereby in direct agreement with the general relativistic description.
In fact, in terms of the latter the shock wave is an irremovable singularity [5, 7], thus
it inseparably accompanies the pointlike tachyon.

Choosing the above picture, we have at every point of the tachyon world line not one
but an infinite number of four-vectors k* having the same k2+kZ, k,, and k, (thus the
same k,k"), and different k, and k,. The set of constant four-vectors k* does not represent
a four-vector field in the spacetime but it is such a potential property of the vacuum that
is revealed only on the world line of the tachyon. It can be regarded as a kind of local
reaction of the vacuum to the presence of the tachyon. Let us remind that the
tachyon is never at rest (see footnote 1).

5.2. Situation in the critical reference frame

Putting v = 0 we assume that our reference frame is critical for our tachyon. This
is of course admissible since we have chosen our frame arbitrarily. Then there are k(v = 0)
=a_,, ie. kX(v = 0) is a scalar, and

kI +ki—k}p=0)=1, (26)
P9 =0, (27a)
P'0 = Mk,(v = 0)0. (27b)

8 Note that we can reverse that argumentation as follows. Since Eq. (13) concerns the pointlike tachyon
(for ¢ = — 1) moving in the z direction, while the shock wave is a luxon, 8 should be independent of x and y.
Both the approaches are connected with the general relativistic description of the tachyon as a foundation

of our considerations.
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In terms of relativity the tachyon has in this frame the infinite velocity, it exists only
in the instant ¢t = 0, and its world line coincides with axis z (or its half). In time ¢ > 0 the
tachyon does not exist and there is only its shock wave that is a radially expanding cylinder
(infinite or semi-infinite, see Fig. 1b, d).

In accordance with what was said in Section 5.1, Eq. (13) concerns in the critical
frame only the situation on axis z in the instant ¢ = 0, i.e., the one-dimensional flash without
the longitudinal momentum component (by Eq. (27a)), with transverse momentum compo-
nents (by Eqgs. (24a) and (26)), and with enexgy (by Eq. (27b)) (distributions of the dynamical
quantities along axis z are determined by function M({); note that fore = —1 and v = 0
we have d{ = dz). However, this causes of course a subsequent situation in time ¢ > 0
in the neighbourhood of axis z, what is not described by Eq. (13). We should therefore
have there a luxonic signal radially expanding from axis z. These agree very well with
the general relativistic description of the situation in the critical frame (Fig. 1b, d).

Such agreement is due to Eq. (27a), which therefore should be acknowledged as an
important property of our theory.

Assumptions that k(v = 0) is equal to or different from zero are equivalent to those
that relation (25) is an equality or a strong inequality, respectively (see relations (25) and
(26)), and each of the assumptions is formally admitted by our theory. Assumption k(v
= 0) = 0 would lead, however, to difficulties in interpretation of Egs. (24a) and (26),
and of the general relativistic description. Assumption k(v = 0) # 0 seems to be reasonable
since it means that the tachyonic flash and luxonic signal have energy in the critical frame.

Finally, let us note that the description of the free tachyon presented here (Eq. (13))
does correspond to the general relativistic picture, but does not to the special relativistic
image of the bare free tachyon with constant masslike quantity (cf. Egs. (27) and footnote 2)
corresponding to Eg. (4). This reflects in terms of quantum mechanics, the differences
between the general and special relativistic descriptions of the tachyon.
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