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For the case of one-particle irreducible, separable divergent Feynman diagrams the
classical definition of the R-operation is compared with some intuitive approach to the

problem of overlapping ultraviolet divergences. The freedom of the generalized fi-operation
is analysed.

PACS numbers: 11.10.Gh

1. The ﬁ-operation

The R-operation is a standard method used in order to remove the ultraviolet diver-
gences from the perturbation calculations of quantum field theory [1, 2, 3].

Notation and definitions: w, — the index of the diagram y, w, = 4N—2/ (only scalar
fields and no derivatives), / — nuber of lines of y (propagators), N — number of inde-
pendent loops.

The divergent Feynman diagram I' = one-particle irreducible Feynman diagram
with nonnegative index or (and) containing some one-particle irreducible divergent sub-
diagrams. {y; ... y,} is the family of divergent subdiagrams of the diagram I" (if w, > 0,

-~ ~ w
then I' € {y; ... y,}). (1—M,) is a subtraction of the first —2—7 +1 terms from the Taylor

expansion of the regularized amplitude A3(k) with respect to the external invariants k.
The R-operation is defined [3]:

R= ¥ (-M,)..(-M,). (1)

over forests Fi

This definition may be rewritten in the equivalent factorized form [2]

A

R=(1-M,)([i-M,)..(1-M,) )

if all product MWMW‘ for overlaping y;, 7, are put to be zero operators.
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2. The R-operation for separable diagrams

The diagram is separable if the removal of some vertex divides the diagram into two
parts.

Let us consider a separable divergent diagram I' with two one-particle irreducible
divergent subdiagrams y,, 7, bound by one vertex

K wa,>/0
OO R

wb,z >/0

7:(y2) contains n,(n,) vertices, I' contains n,+n,—1 vertices. The “line” k denotes all
external lines of y, ; k itself is a set of external invariants of the diagram y,. The same is for
y,. The sets k and q have one common element. Some internal lines of 7, are external lines
for y, and vice versa.

For simplicity, let y, and y, be primitively divergent diagrams, i.e. diagrams contain-
ing no divergent subdiagrams.

We want to “clean” the amplitude Cy from ultraviolet divergences. The most natural
way to do it is to come back to the n, and n, perturbation calculation orders. In these
orders the regularized amplitudes for y, and y, were respectively

a_ (k)

AL (K) = ( +a0(k)+Oa(s)). 3)

b-.@)
&

B, (q) = € ( +b0(q)+0b(5)> . @

w w
The residues a_,(k) and b_,(q) are polynomials of the order -% and —5”3— respec-

tively. The R-operation applied to A4;, and By, gives

(A-M,)4;,(k) = (ak)—Wk)) = 4,,(K), ®)
(1—M,))B;(a) = (bo(a)— W) = B, (), (6)
w‘h

where W, (k) is a polynomial, it consists of the first +1 terms of the Taylor expansion

of ay(k). (The same for W,(q).) The terms O(¢) are dropped out here — they are assigned
for liquidation anyway. The operations (1—M, ) and (1—M,,) may be represented in the
Lagrangian by counterterms A, and A, [1] proportional (in momentum space) to

(. b_ .
M (a 1(k) + Wa(k)> and e"z( ) + W,,(a)) , respectively. The finite amplitude
&€

&
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CH{k ! q) is expected to be equal to

Crk U @) = """ (ao(k) — W,(K)) (bo(@) — Wi(@)). M

However, the counterterms A, and A, if present in the Lagrangian, do not realize
the proper R-operation with respect to I'. (The reason is the common vertex connecting
y, and v,.) The R-operation (1) for the diagram I is

R=1-M,—-M, —M, +M M, +M M, =(-M)(1-M, -M,). (8)

In order to realize this f(-operation in the counterterms scheme, a new counterterm
(except 4, and A,) would be necessary, namely Ak | J q) (see the Appendix).

At this point one can be interested in comparing the intuitive formula for C(k |} q)
(7) with the result given by the R-operation (8) realized by three counterterms Ay, 4,,, 4,,
Let us take into account, that

(I M)M, M, (“—‘;@ +ao(k>)( @ 4 by ))

—d-Mp (“‘;(") W(k))( =@ |y )) =0 ©)

w1+w2

because (1 — M) acts here on a polynomial of the order . (This is a singular case

of a general theorem about overlapping divergences, e.g. {4, 5].)
From (8) and (9) we have

A

RiCkUgq) = ™ \d-Mp(I-M,)(1-M,)

x (‘j_—;_(’f_) +ao(k)) x ( -19) +bo(q ))

= "+ (T — M) (ao(k) — W,(K)) (bo(@) — Wi(@))
= &N ag(k) - W,(8) (bo(@)— Wa(@) a0
(compare with (7)) if

M (aq(k)— W, (K)) (bo(g) — Wi(g)) = O. (10)

Up to now nothing has been assumed about the subtraction points (around these
points the Taylor expansions are realized). However, to have (10") we must take (k | 9)o
= ko U go.

Our result is the following: in general, the subtraction points cannot be treated as
independent variables.

We are now ready to study the case of the generalized R-operation.
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3. The generalized R~operation

Instead of subtractions (f—-x\?I,) let us introduce generalized “subtractions™ [1, 2]
(I—M.i+f’,), acting in the following way:

(1=M,+P)Ci(k) = (1—M,)Ci(k)+ P,(k). (11)

w
where P (k) is some polynomial of the order —2’—- .

The generalized R-operation is a suitable product of generalized subtraction operators,
for which all prescriptions connected with overlapping hold [2].

There are two possible interpretations of this generalization. The first interpretation
refers to the choice of the subtraction points. Let (1—A7,) and (1—M.) be subtractions
for some points k, and k; respectively. Of course,

1-M)=1-M,+P. (12)

Keeping k, fixed and manipulating with k; we come to some class of polynomials
P(k). In fact, this “generalization” illustrates only the freedom of choice of the subtraction
points. In the previous section we have derived, in which way this freedom should be limited,
when a separable (scalar and without derivatives) diagram is concerned.

There is also another, wider as the previous one, possible interpretation of polyno-
mials P. Let us choose some definite subtraction point. After the subtraction is realized
(let the Feynman diagram be primitively divergent for simplicity), the amplitude ai-m )
A’ is not yet renormalized — only the divergent part of it’s Taylor series is “amputated”.
After subtraction there is the time for renormalization: we have to build up the “amputat-

ed” part of the Taylor series by some polynomial of the order 22—"— ; this is }37.

These two interpretations are not equivalent (cf. [2] page 108). If we want to call
P, the finite renormalization operator, we have to take Lthe second interpretation. In the
first case the class of possible polynomials P, is determined by the class of possible sub-
traction points. In the second one, P, seems to be completely free, not being determined
by the theory. Exactly this freedom is studied in what follows.

For our diagram (Fig. 1) the generalized R-operation is

}ir :.(T_Mr_!-ﬁr)(in'M?l‘lw}’z’{'ﬁh'*'I;n) (13)

RyCik U q) = eﬂn*nz**{(i -Mp)(-M, +P, —M,,+P,)

< (“-;("? +ao(k))(b—_i(i) +bo(q>) +Pk U q)}. (14)
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Making use of the formula

(A-Mp (~M, +P,) (~M,,+P,) (““(k) +ao(k)> x (b‘;(“) +bo<q))

& @

A o~ ) -1k b_
= @10 [ (- =2 —m+p,0) (- L —wm@+r@) =0 a9

. . w, +o
(because the contents of the square bracket is a polynomial of the order —732—2—) we

have from (14)

R Cik | Jgq) = ™! {(i -Mp)(I-M, +B,)(1-M,+P,)

_(k b_
< (“_._;( ) +ao(k)> (—;(—“) +bo(q)) +Prlk U q)}

= "1 = Mp) (ag(k)— W (k) + P, (k) (bo() — W@ + P,(@) + Pk U @} (16)

and to have (16) reduced to
R Cik U @) = €7 (ao(k)— W, (k) + P, (K)) (bo(a) — Wy(@) + P,.(2)), an
we must take for P(k | q) a polynomial, which turns out to be determined by P,, and P, :

Pr(k U @) = M ((ao(k)— W, (k) + P, () (bo(@) ~ Wi(@) + P,,(q))- (18)

General conclusion is the following:

If we operate within the framework of pure subtractions (the “first” interpretation)
we are — in general — not allowed to treat the subtraction points as independent variables.
If we realize the renormalization procedure (the “second” interpretation), similar restric-
tions refer to the renormalization parameters®.

APPENDIX
Calculation of ALk q)

From (8) we have

. e _ b_,
RiCitk U ) = &A=t (¥, =18, (22 ) (222 10

& g tn=i(i - Mp) (- M, — M)A, (0B} (0), (Al

! Restrictions connected in our example with the separable diagrams in scalar theories are of the
same kind as — for example — the Ward identities in gauge theories.
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from which
Ap ~ =TI - M, - M, ) A2 (k) By (g).

(The normal product of suitable field®operators is absent here.)
From (10") we have

M{(i-M YAB+M M, M, AB = 0
Finally
Ap ~ &N M, M, AB
k
= gMtn- 1M < -1 )+W(k) ( ;(‘1)+Wb(q)>

— en1+nz—1<a_:-_;(k_) +Wa(k))( ~1(q) +Wb(¢I))
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