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Examples of non-Abelian adiabatic connections derived from 4 x4 matrix Hamilto-
nians are presented. We find a multimonopole type non-Abelian connection.
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1. Introduction

Recently there is a revival of interest in adiabatic approximation in quantum mechan-
ics and quantum field theory. It has been initiated by papers [1, 2], in which it has been
noticed that a phase factor, which appears when solving Schrédinger equation in the
adiabatic approximation cannot be ignored in some cases, in spite of a common practice [3].
It has turned out that the phase factor is essential in many problems, see, e.g. [4] for a review.
In particular, one can regard gauge anomalies in field theory as a manifestation of Berry’s
phase [5].

In paper [1] the phase has been computed for a spin 5 interacting with a slowly changing
external magnetic field B — the corresponding Hamiltonian is

H = psB, (1

where 5 are the spin operators, B # 0. This Hamiltonian has non-degenerate eigenvalues.
In this case Berry’s phase can be related to a non-trivial Abelian connection on the space
of the adiabatic parameters B.

In paper [6] it has been noticed that in the case of a Hamiltonian with degenerate
eigenvalues a non-trivial, non-Abelian connection might appear. Examples of such non-
-Abelian connections have been presented in literature [7].

In the present paper we would like to give new examples of non-Abelian adiabatic

* Work supported in part by the Polish Ministry of Education, project CPBP 01.03-1.7.
** Address: Instytut Fizyki, Uniwersytet Jagielloniski, Reymonta 4, 30-059 Krakow, Poland.

(579)



580

connections. We consider 4 x4 matrix Hamiltonians of the form
H = Be° ® o', (2a)
H(i) —_ ni(o_o ® o_iio.i ® o_o)’ (2b)

where ¢° ¢, a = 1, 2, 3, are the Pauli matrices, g, is the 2 x 2 unit matrix, and B?, n' are
external, adiabatic parameters. Hamiltonian (2a) can be regarded as the Hamiltonian
of a static, SU(2)-gauge quark (in the A5 = 0 gauge). In the following we shall consider
the cases

—— a —
Bg = &qixly;s Bi - niaab

where n, are external parameters. Hamiltonians (2b) can be regarded as the Hamiltonians
of two spin 1/2 particles, with equal or opposite giromagnetic ratios e/m, interacting with
an external magnetic field B' = _:%c n'.

The plan of our paper is the following. In Section 2 we recall the definition of the
adiabatic connection, mainly in order to set a framework for subsequent computations
and a discussion. In this Section we also generalize to the non-Abelian case some useful
formulae for adiabatic curvature. Section 3 contains the examples of non-Abelian connec-
tions. We find rather interesting connections of a non-Abelian multimonopole (m = —2)
type. In Section 4 we present comments and remarks. In this Section we point out that the
results of our computations contradict some statements found in literature.

2. The definition of the adiabatic connection

Let {la, 2>}, a = 1, ..., N, be an orthonormal set of eigenvectors of a Hamiltonian
H to an N-fold degenerate eigenvalue E,

H(\a, 2> = E(Dla, 7). (€)

We assume that H depends on n continuous parameters A = @), i = 1, ..., n. Therefore
E and the eigenvectors |a, A) can also depend on A. The eigenvectors |a, 4) span the eigen-
space # . If we change the parameters A’ with time, i.e. A* = A'(f), then E and |a, 1) are
time dependent too. (A(f)) can be regarded as a curve C on a manifold A4 = {(A)} of the
parameters A. The manifold A by definition consists of all A} such that the energy level
E is N-fold degenerate with fixed N. This implies that the level E does not cross any other
energy levels for any (A1) e 4.
We would like to solve time-dependent Schrodinger equation

7
ih % lp(6)> = HA®) lv()> 4

in the case of validity of the adiabatic approximation. Then, if
N

lp(t = 0> e g, Qe Iyt =0 = ¥ cila, A(0)),

a=1
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we can write

N t
(> = Z ¢ exp [— T f E(t')dt'] Uas(t) 16, 4, )
a=1 ]

where the matrix U = [U,,] is to be determined from the equation
nq R d )
(O™ 0) = —<a, 201 = 1b, (1), (6)

which follows from (4) and (5) after neglecting transitions to other energy levels. The
initial condition for U(¢) is U,,(0) = J,,. Equation (6) has the following solution

t

- Cdr |
U =T ¢Xp dt —d—t‘,‘ [',(l(t)) . (7)
0
where T denotes the ordinary time ordering, and I; = [[%"],
df bl
I = b, 4l = la, 4. )
04

I, is the adiabatic connection. From the definition (8) it follows that I, is anti-Hermi-
tean, Nx N matrix. Therefore U(f) is a U(N) matrix.
If we unitarily change the basis eigenvectors ja, 1), i.e.

Y~ N
|b’ A> = Z Qba(j') Ia’ A>’ (9)
a=1
where O = [Q,] is a U(N) matrix, then it follows from formula (8) that
X AA A a A A
Ii=0ro '+ ( S Q) QY (10)
A
where
G,

£ = (b, 4l — |a, ).

From formula (10) we see that in general I'; transforms like U(N) non-Abelian gauge po-
tential. '

In the particular case of the lack of the degeneracy we have N = 1, and I, becomes
U(1)-type Abelian connection. This case was considered in [I, 2].

It is natural to ask whether the connection I’; can be trivialized (i.e. put to zero) by
a unitary redefinition of the orthonormal basis {|a, 1)}, i.e. by transformation (10). In this
context it is useful to consider the curvature

A A dF R PN
Fik(r) = airk_akri_[ri’ Fk]’ (11)
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ie.

F,,,=((,M,<b zu) 5 la, = Z« A o la, > <bAl o ), les A =G k). (12)

F, () is an anti-Hermitean matrix. From formula (10) it follows that
Fu(P) = GF (DG (13)

For I'; =0 we have F () = 0. Therefore, the connection can be trivialized only
if ﬁik(f) = 0. The converse is not necessarily true. It can happen that ﬁi,‘ = 0, yet the
connection cannot be trivialized because of non-trivial topology of the parameter mani-
fold A.

Analysis of examples reveals that even for simple Hamiltonjans one obtains, as a rule,
a topologically non-trivial manifold A, and also non-trivial connections, e.g. belonging
to non-trivial Chern classes. In this way algebraic topology and mathematical theory of
connections find a rather unexpected application in quantum mechanics.

Let us introduce a complete set of orthonormal eigenstates of the Hamiltonian H in
Hilbert space ¢, dim # < o0;

H|E,, ™) = E,|E,, a®, (14
I1=1Y |E,a“)(E,a"|. as
aal®)

Here o enumerates different eigenvalues of H, and a® = 1, ..., N enumerates eigenstates
belonging to the eigenvalue E,. I is the identity operator in 5. It follows from definitions
(11), (8) and formula (15) that

F?I:u)b(a) = (b—?{l <Eu’ b(a)l) z lEﬁ (ﬂ)> <Eﬂ, (ﬁ)l lEa’ a(a)> (l « k) (16)
B.ctB)
f+a
Differentiating both sides of formula (14) with respect to ' and using the identity
obtained in this manner on the r.h.s. of formula (16) we obtain another useful formula
for the adiabatic curvature

FioP® = Z(Ep E)"*(E, b‘“’l lEp, ¢® (E,, C“”I——IEa, ay—(ierk). (17)

B,c(8)
B+a

Thus, we see that the well-known formula for F,, proposed in [1] for the case without
degeneracies, is valid also in the general case after the obvious modifications.
Using formula (16) we can prove that

Y Fi" =0, (18)

«,a(®)
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i.e. the sum of diagonal elements of all adiabatic curvatures for given Hamiltonian
H vanishes. This formula generalizes the formula given in [8] for the Abelian case. Let us
present the proof of formula (18). From (16) it follows that

Z F"(""'(" _ Z (A _ (E,, a(“’l) \E, SN <E;, b(ﬂ)l IE,, a‘”) —(ier k)

a,a{%)
a(ﬂ) b(ﬂ)

2
=3 Z [( -~ <E,, aml) \Ep, b (Ep, bP| — T IE,, a®)

a,
al@) b8

(@

In the last step we have used twice the following identity

. {Eg, b“”[) |E,, @ (E,, a(”l .E,,, b“”)] —(iek)=0.

0
(61‘ {E,, a‘“’l) |Eg, b = —<(E,, a®| a7 s b®. 19)

3. Examples of non-Abelian connections

Let us first consider the simple matrix Hamiltonian (2a). It can be regarded as a 4 x4
matrix. The space A for Hamiltonian (2a) depends on choice of degree of degeneracy for
the eigenvectors. We have many possibilities: no degeneracy; two degenerate levels, the
other two non-degenerate levels; two pairs of degenerate levels; triple degenerate levels.
The corresponding manifolds A are algebraic submanifolds of R®, defined by algebraic
relations between parameters S (following from the condition that certain eigenvalues
are degenerate and the others are not). The situation is too complex to allow for a general
analysis. For this reason we shall carry out analysis for Hamiltonian (2a) simplified by
restricting Bf to some subspaces of R®.

A. Let us consider as the first example

B! = g un,, (20)
where n,, k = 1, 2, 3, are the adiabatic parameters. Now the Hamiltonian can be written as
0 o* —w* 0
W 0 29 w*

-0 =2 0 —w*
0 0w - 0

H= , 21

where @ = n,—in;, ¢ = in;. It has the following eigenvalues:
E, = =2\n|, E, =0 (double degenerate), E; = 2ii|. 2)

We see that degree of degeneracy of the eigenvalues is constant for all n except for n = 0.
Thus, 4 = R}\{0}.
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As the corresponding, orthonormal eigenvectors we will choose

w* —20

1 | —~\n— ) :

Ed ==l Tl @ ED=a| ol 24)
i w 0
"__w*z o*

IEy 2 = 0 |7 @) |Ep=—| Vi-e 26)

» in| | e0* |’ ¥ 7 2| —lal—e |’

n?+4nl o

where ¢, = [2(n2+n2)]~!/2. This choice of the eigenvectors is not a trivial one. The point
is that in general explicit formulae for eigenvectors are valid only in some subsets of 4. In
many cases it is not possible to find for mulae forthe eigenvectors which are correct glob-
ally, on the whole parameter manifold A. Discussion of this problem can be found in [9].
In the spirit of paper [9] existence of the global system of eigenvectors (23)-(26) is due to the
fact that

m2(U4)/U(Q2)) = 0.

It is easy to check that the adiabatic connections for non-degenerate eigenvalues
EL: E3 Vanish,

0 0
IV =(E| — |E\> =0, TI'P =(E)—|E)=0.
on; on;

For the degenerate eigenvalue E, computation of the connection and curvature is
rather tedious. Convenient starting point for computation of the curvature is formula
(17), which in the case at hand reads

Fi = Z E; 2<E2bl - IE,;> <Ep| IEz, ay—(i > k). (e4)

B=1,3

Because 0H/0n, is a Hermitean matrix, it is sufficient to find
5H Ve 2y—4 2 sel . 3
CEy, 1§ I |Ey> = /2 i(n* +n3)"% [n3(8; +id;) — (ny +in)d; ],
k

oH O0H
(Ez, 1 57— |E> = —<Ez, 1| —|Ey),
d on,

e

<Ez,2| |E3>—J2|n| Y2 +nd) " [(nd+nd+inyn,)0;
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—i(n§+n§—in,n2)5,§+n3(inl—nz)éf],
(E,, 2] — |E1> = —<(E,, 21 |E3> (28)-

These formulae follow directly from formulae (23)-(26). Using formulae (28) we obtain.
from (27) that

where b°, s = 1, 2, 3, are defined by
(B = —% euFi, (30).
ie.
Fif = — e (B,
Thus, the curvature is non-zero. From definition (8) we obtain that
I = i(n®+n3) " '[o' 0]~ "(nyn38; —nan36i +(n3 —n})s3)
+02|n| " (211,83 — nynydp — nynaydd) + 03 (ny 67 — nydp)]. (31)

We see that I, and b* are regular everywhere except for n = 0. At this point pattern_
of degeneracies of the Hamiltonian changes. For |n] — co b® behaves like |71|-2. Such behav-
iour is characteristic for a non-Abelian (SU(2)-type) magnetic monopole. It is well-known
that the monopole-type non-Abelian magnetic fields b° are divided into topological classes.
enumerated by an integer m, [10]. m is called the monopole number. Form = 1 (m = —1):
we have the famous ’t Hooft-Polyakov monopole (antimonopole), for |m| > 1 one speaks.
about multimonopoles.

It is interesting to find out to which monopole class belongs our b* given by formula
(29). To this end let us introduce a 2 x 2, Hermitean matrix f(n) and-a vector B = {9,
a=1,2,3, defined by the formulae

b = —ingln|"3p(m), (32)
B = pa". (33)

In the monopole case E2 - const # 0 for |n| — co. Thus, vector b can be normalized to
1 (at least for sufficiently large |n[). Therefore, we can pass to e(n) = B/|f|. We shall regard .
e(n) as a regular mapping from S? = {n: |n| = const} into S? = {¢:[e| = 1}. Such.
mappings are divided into homotopy classes enumerated by the integer m[e] given by the
following formula

1 ¢ 3¢
mle] = — f b = 2 49dg, (34),
4n @
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where (3, @) are spherical coordinates on the sphere S2. The integer m[e] is just the mono-

pole number.
In our case, b* is given by formula (29) — the corresponding e(n) has the form

2n,n,
e(n) = (n*+nd)7 [ni-ni|. (35)
2"3"?1

In the spherical coordinates
= |njsin8cos ¢, n, = |n|sindsinp, ny; = |n|cos$.
Inserting these formulae into the r.h.s. of formula (34) we obtain that in our case
mle] = —2. (36)

This is a rather interesting result because monopole numbers [m| >> 2 are in general hard
to come by. For instance, construction of multimonopole solution of Yang-Mills-Higgs
system is very complicated and it leads to extremely complex expressions for Yang-
-Mills and Higgs fields, [1]. In our case m = ~2 comes out of a relatively simple computa-
tion.

Let us remark here that if we take B = n,; in (2a) then we shall obtain

H = né ® nd, 37

which looks like a nice candidate for a next example. However, one can check that this
Hamiltonian commutes with Hamiltonian (21). Therefore, the both Hamiltonians have
common eigenvectors (23)(26). Hamiltonian (37) has two eigenvalues Ei = +ﬁ , both
are doubly degenerate — now the eigenvectors |E,, 1, |E,, 2) belong to E, = n?, while
IE), |E;> belong to E_ = —n2. From formula (8) we see that adiabatic connection for
the level E, is the same as for the level E, of Hamiltonian (21). For the level E_ we now
have to compute non-Abelian connection, because of the degeneracy. Thus, we have
to compute two more matrix elements, i.e.

0 0
F? = Bl 53 |Es), I = CEsl o IEv,
which have not been computed in the example A because there the levels E,, E; were not
degenerate. After a simple computation we find that

F 21=0’

i.e. the connection vanishes.
B. As the second example let us take

B! = n,0, (38)
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(no summation over a), i.e.

3
H=1Y no"® " (39)
a=1
After simple computations we obtain the following energy levels and eigenvectors
[0] 0
E, = £y === |1, B = Ey =4 ]
1 = ny+n;,—n;,, 1) = \/2 1l 2= —Ny—Nny—n,, |E)) = :/_j _1l°
0 0

1

1
Q

Ey = ny+n3—ny, 1E3>=\'ﬁ ol’ E, = ny+n3—ny, |E, =\_/_§ (40)
1 —

—_ O O

L.
Because the eigenvectors do not depend on n, the corresponding adiabatic connections
vanish,
r,=0, (41)

in spite of the fact that for some values of n, the energy levels become degenerate.

The eigenvectors (40) do not depend on n, because matrices ¢! ® o', 62 ® 02, 6°* ® o3
commute with each other.

C. As the third example let us consider Hamiltonians (2b). These Hamiltonians do
not commute with Hamiltonians (21), (39). It is easy to guess the eigenvectors; they have
the form [+) ® |+), where |+) are normalized eigenvectors of ng, i.e.

ngl+> = +inl |+ (42)

For the sake of completeness let us quote explicit formulae for [+, |—>. We have
to use two coordinate patches on A = R*\{0} marked by I and II: A'= {neAd:n,
# —[n}, A" = {neAd:ny # |n]}. In A" we have

|+ = 2] (|ﬁ|+n3)]‘*["3+'"'], = = 21 (|ﬁ|+n3)]‘*[i"’“"‘], 43)

. -
ny+in, ni+|nj

while in A"

|+ = [203] (il —n3)] 72 [xn?ﬁ_mz]’ =" = 20 (il =ns)] ™ [n3—|"l ] (44)

—n, ny+in,

It is easy to check that
|+)" = e 1), (45)
where
e’ = (n, —iny) (ni+n3)” 12

is. 2 phase factor.
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More precisely, Hamiltonians H'*), H(™? have the following eigenvalues and eigen-
vectors.

H™):
E{Y = —2/nl, E{™) =|->® |-
ESV =0, IES”, D =10+ E.2D=1+>0I-);
ESY =2l ES) = 1+> @ [+). (46)
H(")
ETV = =2, |E{7) =1->®I+);
ES7 =0, [ES7,D=[+>®1+), IE,2>=]->®[-);
ESV =2in, IESD =1+>®1-> (47)

The vectors |+ are defined locally, in the patches A', A". In spite of this, it follows
from formulae (45) that [EY), 1>, [ESY, 2), [E{7)), |[ES)) are defined globally on the
whole A.

After a simple computation based on definition (8) we find that the corresponding
adiabatic connections vanish, i.e.

[;=0 for the levels E$7), ES*. (48)

For the eigenvectors [E{*’), |E§™) we have to use the patches. This follows from the
fact that we only have at our disposal the freedom of choosing a single phase factor standing
in front of these vectors — it is too little to cancel ill-defined at ny = # [n| phases occuring
in some components of |E{*)>, |[E{")) without introducing them in other components.
Therefore, the adiabatic connection has to be computed on the patches. After simple com-
putations we obtain the following results. For the level E{*’

i, 82 —n,o;
R I T

P o,
ony [n| (In]+n3)
1 2
1 . N0 —ny8;
=—l= ) 49)
« Inl (Il —n3)
and the corresponding curvature
bs . ns (50)
= 1=
nl®

for the both patches.

For the level ES") the connection and curvature differ from the ones given by (49),
(50) only by the overall sign, i.e. one should replace i by —i. Thus, in these cases
the adiabatic curvatures coincide with the Dirac magnetic monopole of the strength +2.
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nS
2 |n?
as the adiabatic curvature for Hamiltonian H = no considered in [1].

Now let us analyse the level E5). The eigenstates [ES7), 1), |ES™), 2) are defined
locally, on the patches. However, it is possible to choose linear combinations of them
which are regular everywhere except for n = 0. Moreover, quite unexpectedly, the new
eigenvectors coincide with eigenvectors (24), (25). One can check by an explicit computa-
tion that eigenvectors (24), (25) of Hamiltonian (21) are also eigenvectors of H'™, while
eigenvectors (23), (26) of Hamiltonian (21) are not eigenvectors of H(™). As an example
let us present one of the appropriate linear combinations:

Here we choose as the unit Dirac monopole 4° = — such a monopole appears

|Ez, 1) = —i(lnl+n3) " '[2(n* +n3)] " {(n3 + 10| +)' @ [+ + 0% =)' @ [ =)'}

From formula (8) it is clear that adiabatic connection is determined by the eigenvectors
and the degree of degeneracy — for the levels E, and ES ™’ both are identical. Therefore,
the adiabatic connection is again the m = —2 non-Abelian magnetic monopole found
in the example A.

Finally, we would like to remark that H*) commutes with H(™). As one can see from
(46), (47) both operators have all eigenvectors in common. Nevertheless, the adiabatic
connections are different for both operators — for H'*? we have the two Dirac monopoles,
while for H™) we have the m = —2 non-Abelian multimonopole. This example clearly
shows that the adiabatic connection depends not only on eigenstates but also on dimension
of eigenspace to which the eigenstates belong.

4. Conclusions

The main goal of the present paper is to provide examples of non-Abelian adiabatic
connections. We have produced non-trivial monopole-type adiabatic connections.

One may ask about physical relevance of our examples. At the moment we do not
know any direct physical application. However, a possibility of a physical application is not
excluded. Our 4 x 4 matrix Hamiltonians can be regarded as particular cases of a general
Hamiltonian for a four-level system; it is obvious that any Hamiltonian for such a system
can be represented as a 4 x 4, Hermitean matrix. Four-level physical systems are in abun-
dance, e.g. two static spin 1/2 particles, a static nucleus of spin 3/2, a nucleon with its spin
and izospin degrees of freedom. Such a system would provide a physical manifestation
of magnetic monopoles in the form of adiabatic connections. In this sense magnetic mono-
poles do exist in Nature.

The particular case of Hamiltonian (39) with n, = n, = n; = v has been considered
in paper [12], with the result that the adiabatic connection is non-zero, in contradiction
with the result of our straightforward computation. The method of the computation utilised
in [12] is indirect. Our opinion is that the non-zero connection obtained in [12] is a result
of a singular (incorrect) choice of the basis of eigenvectors of the Hamiltonian.

Finally, we would like to make a comment on a topological analysis of Berry’s phase
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which is attempted in paper [9]. In that paper the existence of the phase is associated with
the impossibility of finding a global, smooth over the parameter manifold A, system of
eigenvectors of Hamiltonian. Such a situation happens in our example C; in the cases
E{}) no global systems of eigenvectors exist. However, in the example A we have the global,
smooth system of the eigenvectors, yet there is the non-trivial (m = —2) adiabatic connec-
tion. Therefore, we think that the topological classification presented in [9] is not complete.

One of the authors (H.A.) thanks Dr. Piotr Kosinski for valuable discussions.
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