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THERMODYNAMICS OF NONINTERACTING SUPERSTRINGS
By K. ZALEwski
Institute of Nuclear Physics, Cracow*
(Received December 16, 1988)

The gas of noninteracting strings is a very crude approximation to the description
to a multistring system. This approximation has been used to discuss string models of the
big bang and of the last stages of black hole evaporation. We review the thermodynamics
of the gas of noninteracting strings, which are an unusual thermodynamic system, because
the density of states instead of growing as a power of energy explodes exponentially.

PACS numbers: 05.30.-d, 11.17.4-g, 98.80.Cq

1. Introduction

String theory is actually the candidate for a theory of everything. There are many
versions of string theory, however. The early versions had striking defects. Bosonic strings
had ground states with imaginary mass (tachyons). Fermionic strings had not enough
internal quantum numbers to describe known particles. The first string theory, which avoids
these two difficulties, was the theory of heterotic superstrings [1, 2]. The arguments in the
present paper apply to a wide class of string models, all the numerical estimates, however,
have been made for heterotic superstrings. Thus, where not stated explicitly otherwise,
we mean by string a heterotic superstring. '

It is hoped that string theory contains the quantum theory of gravity. Since no one
has succeeded in building a satisfactory quantum theory of gravity starting from more
standard field theories, this is a very attractive possibility. Simple dimensional arguments
indicate that quantum gravitational effects, if existing, can be observable only in very
strong gravitational fields. Using simplified versions of string models people have studied
the Universe soon after the big bang [3-5] and black holes towards the end of their evapora-
tion [6, 7]

The common approach has been to reduce the dynamics of strings to that of an ideal
gas (with suitable quantum statistics) enclosed in a classical vessel of volume V. In this
approximation the admittedly unusual features of this gas result only from the fact that
the degeneracy of the energy levels in the spectrum of each string grows exponentially
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with the string mass. Therefore, the description becomes very similar to that of the Hagedorn,
gas [8, 9] and classical papers on the thermodynamics of the Hagedorn gas [10, 11] have
been much used. Nevertheless, two important differences should be stressed. First, the
masses of excited strings are of the order of the Planck mass, while the masses of Hagedorn’s
fireballs are in the GeV range. Thus, gravitational collapse of the string gas is a new possibil-
ity. Secondly, for the Hagedorn gas only the asymptotic form of the particle spectrum
was known, and even there some parameters were controversial. For strings, on the other
hand, given a string model the spectrum is known from ground state to arbitrary high
masses.

In the present paper we discuss the thermodynamics of noninteracting strings, as well
as some limitations of this model. As opposed to earlier papers by other authors on
this subject (cf. e.g. [12-14]) we consider the exact discrete string spectrum and not just
the asymptotic high mass approximation. This makes it possible to answer quantitatively
a number of new questions and to use elementary thermodynamic arguments instead of
more complicated estimates of phase space integrals (cf. [15-17]).

2. Energy spectrum of a heterotic string

The mass levels of a single heterotic string are given by the formula [2]:

MN=2\/§I,- N=0,12. ... )
In the following we choose the mass unit so that the string constant ' = 1, which is believed
to correspond to a mass unit of the order of the Planck mass. Then formula (1) simplifies to
My=2J/N N=0,12, ... )

The degeneracy of the N-th mass level is [2]
d(N) = 16P(N)P(N), 3

where the factors on the right hand side can be obtained from suitable generating functions:

] a ) M8
I ) ()
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2 PBV(N)xN = [(1 +480 Z 07(m)x'") H m - 1] —x- . (5)
N=0 m=1 n=1

In the last formula o,(m) denotes the sum of the seventh powers of alt the divisors of m
including m and 1. We have calculated numerically the degeneracies &N) for the first 100

mass levels of the heterotic string. Their logarithms exact to one part in thousand are given,
in Table I
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TABLE 1
Logarithms of the degeneracies of the first hundred mass levels of the heterotic string
N In d(N) N In d(N) N In d(N) N In d(N) N In d(N)
0 8.995 20 76.671 40 112.755 60 141.087 80 165.253
1 16.754 21 78.784 41 114.309 61 142.378 81 166.381
2 22.549 22 80.854 42 115.846 62 143.659 82 167.504
3 27.458 23 82.882 43 117.367 63 144.930 83 168.620
4 31.814 24 84.872 44 118.871 64 146.192 84 169.729
5 35.871 25 86.824 45 120.359 65 147.444 85 170.832
6 39.452 26 88.742 46 121.832 66 148.688 86 171.930
7 42.889 27 90.627 47 123.291 67 149.923 87 173.021
8 46.133 28 92.481 48 124.735 68 151.149 88 174.106
9 49.215 29 94.305 49 126.165 69 152.367 89 175.186
10 52.158 30 96.101 50 127.582 70 153.576 90 176.259
11 54.981 31 97.870 51 128.968 71 154.778 91 177.327
12 57.698 32 99.614 52 130.377 72 155971 92 178.390
13 60.319 33 101.332 53 131.756 73 157.157 93 179.447
14 62.856 34 103.028 54 133.123 74 158.335 94 180.449
15 65.316 35 104.700 55 134.478 75 159.506 95 181.545
16 67.706 36 106.351 - 56 125.821 76 160.669 96 182.587
17 70.031 37 107.982 57 137.154 77 161.826 97 183.623
18 72.296 38 109.592 58 138.475 78 162.975 98 184.654
19 74.509 39 111.183 59 139.768 79 164.117 99 185.680

For high masses the degeneracies can be computed from the asymptotic formula

Using relation (2) to eliminate N from this formula one obtains equivalently

d(N) ~ 2~ 13/4 N 11/2e21|:(2+\/2)‘/N.

Mn
dMy) ~ 2°M*My e Tn,

This equation defines the Hagedorn temperature

1

Tu= n(2+/2)

From formula (7) one obtains the asymptotic density of levels

dN M
o(M) = d(M) o = 2°*M 0T

©®

(7

®)

®

We shall not use this density, but it is useful for comparison with the work of other authors.

Approximation (6) does not converge very rapidly. For N = 100 it gives In (d(V))
= 186.940, while the value obtained from the exact formula is 186.701. Actually, as pointed
out in Ref. [18], only the constant factor in front of the formula depends on the details
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of the model. For closed strings the constant in the exponent depends only on the central
D+1
charge of the Virasoro algebra of the mode! and the power of Nis — --;— , where D is the

space-time dimension.
The constant can be calculated using the method introduced in [19]. Using the defini-
tion of the 6, function

]

1_ ]
8,0, z) = H 1+; (10)

n=1

one can write

1 dz
dF(N) = i_'ﬂ.'i § ZN+192(0’ Z) * (11)

The integration contour is around the point z = 0. The integrand has a saddle point for
z real and just below one. For large values of N one can use the steepest descent method
with the approximation

0,(0, z)zz\/—-—’f-e‘m. (12)

Inz
The standard calculation yields for high N
P(N) = i (2N) ™ 1/4e2*/%N, (13)

For the other factor in (3) one finds first, calculating as above [19),

1 dZ 1 JN
Py(N) = — = N7 244N 14
3(N) 2m‘fH l(l—z")24 NG ¢ (14
n=1
then
N
Pg(N) = Pg(N)+ Y. 4800,(m)Pg(N—m). @1s)
m=1

Replacing the sum by an integral one sees that it is dominated by the contributions from
small m. Expanding the integrand in powers of % and keeping only the leading terms
one finds

1

Pp(N) = \—/—2_- [480 C((281:)73'] N~ L1/4gseN 16)




607

where according to the general definition of the { function

=
{8 = Z 5 an
n=1

The term in the square bracket exactly equals one, therefore combining (13) and (16)
one finds the result (6).

3. Definition of temperature

The simplest definition of temperature uses the notion of a heat reservoir. The system
has temperature T, when it can be in equilibrium with respect to heat exchange with a large
heat reservoir of temperature 7. The heat reservoir is at temperature 7, when it can be in
equilibrium with respect to heat exchange with a thermometer at temperature T. The
temperature of the thermometer is by definition possible to read off. E.g. in the gas thermo-
meter the pressure of the gas, or its volume, is a known function of the temperature of the
thermometer. This definition of the temperature assumes that it is possible to put the system
in equilibrium with respect to heat exchange with some heat reservoir. For strings this
is not aiways the case.

If the system is at temperature T, then the probability of finding it in a quantum state
Q of energy E is given by the canonical distribution

1 _E
P =—e T, 18
(Q) 7 ¢ (18)
where the partition function
_EQ '
Z=3e T. (19
Q

Here and in the following the temperature scale is chosen so that the Boltzmann constant
k = 1. Denoting by g(E) the degeneracy of the state with energy E we can rewrite the defini-
tion (19) as

E
Z=YgE}e T (20)
E
Similarly, the probability that the system has energy FE is
1 _E
P(E) = 7 g(E)e T. (21)

Usually the degeneracy g(E) is an increasing function of E, but it increases more slowly
than exponentially, so that the exponential dumping factor on the right hand side of
equation (21) is sufficient to make the sum convergent for arbitrary temperature 7. As seen
from formula (7), however, the degeneracy g(E) for a string increases exponentially with E.
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The sum converges only for temperatures T < Ty. For higher temperatures of the heat
bath, the string keeps absorbing energy and never reaches an equilibrium state. Thus 7}, is the
highest temperature, where the string can be in equilibrium with the heat bath. Conse-
quently temperatures higher than Ty cannot be defined for the string using the heat bath
picture.

The statement made sometimes that the Hagedorn temperature T is the highest
possible temperature for the string refers to the definition of temperature given above.
It is possible to give another definition, however, which is also often used in
standard thermodynamics. The entropy of a string at mass M is well defined by Boltzmann’s
formula

S(M) = In (d(M)). (22)

The standard thermodynamic formula is

1 oS

T 5 (23)
where the increases of M and S correspond to a process, in which no external work is done.
For strings the mass is quantized. This has two implications. Firstly, the derivative in the
definition (23) must be replaced by a ratio of finite differences. Secondly, temperatures
are ascribed to transitions between adjacent mass states and not to states themselves.
Thus for a state two temperatures can be relevant: one for the transition increasing its
mass, the other to the transition decreasing its mass.

Denoting the temperature corresponding to the transition between states N and N+1

by T(N+3), we obtain using formula (2) and the numbers from Table I: T(}) = 0.2578,
T(13) = 0.1430, T(21) = 0.1295 etc. For large masses, where the mass spectrum is practi-
cally continuous, one finds taking the logarithmic derivative of the degeneracy (7) with
respect to the string mass

TH
- 11T,
1_ H
M

(24)

It is seen that the temperature of the string is always higher than the Hagedorn tempera-
ture. With increasing mass it decreases monotonically from 7(}) to the limiting value
Ty ~ 0.0932. This implies in particular that, if by pumping energy into the string
it is possible to reach a phase transition at high mass, the transition temperature must
be close to Hagedorn’s temperature. A phase transition is expected for two reasons. For
the hadron gas, which has been the first dystem known to exhibit a Hagedorn temperature
[8], there is the transition of hadrons into the quark-gluon plasma (the deconfinement
transition) which has been interpreted as the transition at the Hagedorn temperature
[20]. Even if there is no phase transition due to nongravitational interactions, strings are
so heavy that gravitational effects, collapse or something more complicated [21] must
be included in the analysis.
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The definition of temperature (23) and the principle of entropy increase for isolated
systems imply that heat flows spontaneously from higher to lower temperature and cannot
flow in the opposite direction. Since the string temperature always exceeds Ty, an excited
string cannot be in equilibrium with a large heat reservoir at temperature lower than Tj,.
This is a much simpler derivation of the result deduced before from the discussion of the
partition function. A string in its ground state (massless) can be in equilibrium with a heat
reservoir at lower temperature, because it has no more energy to loose. As discussed further
an excited string can be in equilibrium with a sufficiently small heat reservoir whatever
its temperature.

4. The string gas as a two temperature system

For a single string at rest the energy supplied is used to excite the string to higher
mass. This changes both the energy and the entropy of the system (string) and the cor-
responding temperature has been discussed in the preceding section. For a string gas,
however, it is also possible to pump energy into the translational motion of the strings.
The temperature again can be calculated from formula (23), but the result in general will
be different from the string temperature calculated before. Thus the string gas is a two-
-temperature system. In physics there are many examples of two-temperature systems.
In a plasma the temperature of positive ions is usually different from the temperature
of the free electrons. In a crystal there can be a temperature of the spins which is different
from the temperature of the lattice. In the Universe the temperature of the electromagnetic
background radiation is believed to be different from the temperature of the neutrinos. In
daily life a system consisting of two cups of coffee, one hot the other cold, is a two-tempera-
ture system. In general the system has two temperatures, when there are two ways of sup-
plying energy to the system, with different entropy changes per unit supplied energy.
When it will be necessary to distinguish explicitly the two temperatures of the string, we
will denote by T, the temperature corresponding to the mass excitations and by 7, the
temperature corresponding to the kinetic energy of the translational motion.

The coupling of the mass excitations to the translational motion is in many ways
similar to the coupling of a string to a heat reservoir described in the preceding section.
Let us consider one massive string, or more, in a string gas at temperature 7, < Ty.
Energy will flow from the mass excitations (i.e. one or more of the string masses
will decrease) to the translational motion of the gas and the temperature 7, will grow. One
of the following two things must happen. Either the massive strings will become massless
before the temperature 7, reaches the Hagedorn temperature Ty, or T, reaches Ty before
the strings become massless. In the first case we obtain a gas of light, mostly massless, strings
at a temperature below Ty;. In the second case there may be an equilibrium at a temperature
above T;;. Let us note that according to formula (22) the sum of entropies of two massive
strings with masses M; and M, is lower than the entropy of one string of mass M, +M,.
Therefore, in equilibrium all the heavy strings will have given their mass excitation energies
to just one heavy string. We will refer to the gas of light strings as the L-phase, or low tem-
perature phase, and to the phase where one heavy string is in equilibrium with a gas of
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light strings, as the H-phase, or high temperature phase. The thermodynamics of the L-phase
will be discussed in Section 6 and the thermodynamics of the H-phase in Section 7. First,
however, we must discuss the stability condition for the string gas.

5. Stability condition

It is a well-known implication of the second principle of thermodynamics that under
usual conditions a system in order to be in stable equilibrium must have nonnegative heat
capacity

0E
C=—r (25)

T’
i.e. its temperature must increase, when its energy increases. As seen from Table I and
from the asymptotic formula (23) the string is an exception in that it has a negative heat
capacity. There is nothing unphysical about it. For instance stars, which keep loosing
energy by radiation, have in certain stages of their evolution temperatures rising in time,
which means according to (25) a negative heat capacity. For a black hole of mass M its
temperature, known as the Hawking temperature, is given by the formula [22, 23]

1
T = v _ (26)
This is a decreasing function of energy (mass) and consequently again the heat capacity
is negative. Nevertheless, many of the unusual features of the string gas follow from the
observation that, when energy is pumped into the mass of a string, its temperature T,
decreases, so that it becomes easier to put in more energy instead of more difficult as for
usual systems.
Let us recall the derivation of the condition for equilibrium with respect to heat transfer.
We will see which condition necessary to prove that the heat capacity is positive is not
satisfied for $trings and how the equilibrium condition is modified when a negative heat
capacity occurs. Let us consider a system split into two subsystems A and B. It is not
necessary for the two subsystems to be separated in space. It is suficient that energies and
entropies are well defined for A and B separately. For instance for strings one may choose
as A the mass excitation and as B the translational motion of the strings. Consider a small
transfer of energy as heat AE from A to B. It is assumed that no work is done on the system
in the process. The system is in equilibrium, only if the total entropy of A+ B does not
increase whatever the sign of AE. Using the definitions of temperature and heat capacity
one writes the equilibrium condition

1 1 1 ‘ 1
ASyy =|— — —|AE4+Li| —— + AE)* <0. 27
o <TB TA) “(T,ch T,fcn)( s @n

The assumptions implicit here are that the entropy of A+ B is the sum of the entropies
of A and B and that the energy of A + B is the sum of the energies of A and B. The second
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of these assumptions implies because of energy conservation (first principle of thermo-
dynamics) that the energy decrease of subsystem A equals in absolute value the energy
increase of subsystem B. The linear term in (27) cannot be positive definite, therefore,
it must vanish, which yields T, = Ty The quadratic term yields the equilibrium
condition

1 1

+——>=0. 28
ata (28)

This is obviously satisfied, when both heat capacities are positive and obviously not satisfied,
when they are both negative. The case, when one is positive and the other negative requires
a separate discussion.

The usual argument is that as subsystems A and B one can choose two halves of the
total system. Then the two subsystems are identical, which excludes heat capacities differing
in sign, and the positivity of the heat capacity follows. This argument does not apply
to strings, because the entropy of a string of mass 2M is not equal to twice the entropy
of a string of mass M. An analogous situation holds for black holes. For a different reason
the argument does not apply to stars. There, because of long range forces the energy of the
system is not equal to the sum of energies of its halves. Thus, for strings, black holes and
stars in certain stages of their evolution negative heat capacities are possible and in fact
are realized. Condition (28) means that in the equilibrium between a system with negative
heat capacity and a system with positive heat capacity the positive heat capacity must be
smaller than the absolute value of the negative heat capacity. This has been pointed out
long ago for black holes [23], where it implies that if a black hole is in equilibrium with
radiation the amount of radiation, which is the subsystem with positive heat capacity,
cannot be too large. For example, if the black hole and the radiation are contained in
a box at given temperature, equilibrium is possible only when the volume of the box is
smaller than some critical volume ¥,. Note the difference with usual systems, where if the
systems is in equilibrium with respect to heat transfer (which just means has equal tem-
perature as) a cubic centimeter of water, it will surely be in equilibrium just as well with
a cubic mile of water at the same temperature. Also for the H-phase of strings one finds
at each temperature a maximal volume V, (cf. e.g. [6)).

6. Low temperature phase

We shall see that the string gas at temperatures below the Hagedorn temperature
is dominated by massless strings. Therefore, it is useful to begin by considering the sub-
system consisting of all the massless strings in the system. The chemical potential is zero,
because strings can be reversibly produced and destroyed. The thermodynamics is similar
to that of the photon gas, except that instead of the two polarization states of the photon
there are 4032 bosonic states plus 4032 fermionic states and that the space is nine dimen-
sional.
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The logarithm of the partition function is given by

+e

~|w

| 4 1
In Zy = —; 4032 fdgp In- (29)

(2n)° 1—e

1]

‘The integral can be done by changing to hyperspherical coordinates, expanding the loga-
rithm in powers of the exponential and using formulae for { and I' functions. The result is

Inz, =317°vT°. (30)
This yields the free energy F,, the energy E, and the heat capacity at constant volume Cy,
Fo=-TlnZy = - 3L7°vT", (31)
oF,

Ey = Fy—T — = —9F,, 32
0 0 oT 0 ( )

0E, 90
Cyo = — = — — F,. 33
Vo OT T 0 ( )

Let us consider the validity limits of this calculation. It has been assumed that the gas
is contained in a classical box of volume V and that there is one translational state per
each h? of phase space volume. This is the quasiclassical approximation valid only when
the size of the box R is much larger than the inverse temperature (in units & = ¢ = 1).
For definiteness we will assume that the box is a sphere of radius R. Then it is necessary that

R» T ~ 10.7. (34)

Without the quasiclassical approximation the calculation could in principle be done, but
the results would depend on the exact shape of the box and on the boundary conditions
on the walls. Thus they would not be very useful. In nine dimensions the volume of a sphere
is related to the radius by the formula

V=~ 3.30R°%, (3%)
Thus condition (34) implies

Vs> 6.2x10°, (36)
By standards of particle physics, not to mention astrophysics, this condition is not very
restrictive, because the unit of volume is o’ ~ /2, which is believed to be of the order of the

9-th power of the Planck length (1.6 x 10-33 cm).
Another limitation is implied by the use of standard thermodynamics, where both
the temperature and the energy are simultaneously well defined. Thus, the fluctuations

of energy must be much smaller than the energy itself. The mean square fluctuation of
energy is T2C),, which is small compared to E? when

V> 3.3x 108 ' (37

i.e. under a condition much weaker than the previous one.
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For massive strings one can use the nonrelativistic approximation, because the min-
imum mass M; = 2 exceeds by a factor of more than twenty the maximum temperature
Ty = 0.093. The exact calculation can be done, but it leads to complicated formulae and
no more physical insight. The logarithm of the partition function for the subsystem consist-
ing of all the strings of mass M corresponding to the n-th mass level of the string is

Vv _M 7
InZ, = d(M) e e T J‘dgpe 2MT, (38)

This corresponds to the free energy

9 9 11 M

F, = —d(M)V(2r) 2M3TZ¢ T. (39)

For high masses, when the asymptotic approximation to d(M) can be used, this reduces to

13 9 13 11

_13 9 13 _M(_L_.l_)
F,x -2 47 2Vn 4T2e \Iu T/ (40)

1t is seen that the summation over n, necessary to calculate the total free energy, converges
rapidly for temperatures not exceeding the Hagedorn temperature T3;. The corrections
to the thermodynamic functions of the gas of massless strings are small [17]: about 0.5 per
cent for the free energy, about 2 per cent for the energy and about 6 per cent for the heat
capacity. The number of strings in the n-th mass state, where n > 1,isabout 3 x 10-8 V™ 13/4,
Thus, it is a very good approximation to interpret the string gas at temperatures below
the Hagedorn temperature as a gas of massless strings.

An attempt has been made by Glaser and Taylor [5] to extend a description similar
to that for the low temperature phase to all temperatures. These authors point out that the
interaction between strings introduces a finite width for each of the massive states. Further,
they assume that this width increases with M and at some M = M, becomes so large,
that there is no point in considering higher mass states as bound states. Formally this means
that the partition function is obtained by summing over string masses to M, instead of
to infinity. The assumption about the increasing width is made plausible by analogy with
resonances built from light quarks, which indeed tend to become broader, when their
mass increases. It is certainly not a general theorem, however, because for bosonic strings
it had been demonstrated that the width decreases with increasing mass [24]. Consider
the string gas in equilibrium with a heat reservoir at a temperature 7> Ty. Accepting
the assumption of Glaser and Taylor, one concludes that since T'> T, and since energy
flows spontaneously from higher to lower temperature, almost all the strings are in their
highest allowed mass states i.e. have M = M,. Glaser and Taylor suggest that

i
Mo = — ln T, (41)
Y
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where we have absorbed the slowly varying factor In M, into the constant y. Thus, at
high temperatures M, is very large and one can use the crude approximation

Mo 1
d(My) =~ CeTn x CT?Tn, (42)

where C is a constant. The free energy of an ordinary gas of massless particles in D space
dimensions F ~ VTP*!, because it must be proportional to the volume (extensive) and
have the dimension of energy. The free energy of the gas proposed by Glaser and Taylor
has the additional factor (42) and behaves as an ordinary gas in

, 1

D' =D+ T (43)
spatial dimensions. The same is true for other thermodynamic functions. In particular
the entropy grows with temperature as T instead of the usual T? i.e. faster. As stressed
in [5] this may be important for cosmology. If the very early universe is filled with the string
gas, and if as is usually assumed the product SR” is constant, than the more rapid decrease
" of the entropy during the expansion must be compensated by the more rapid increase of
R i.e. the Universe expands faster than for models, where the very early Universe is filled
with an ordijnary gas.

7. Thermodynamic limit

In the thermodynamic limit, by definition, the volume of the string gas tends to infinity,
while the energy density and the fraction of the energy contained in the heavy string remain
constant. As long as the energy density corresponds to temperatures below the Hagedorn
temperature, the string gas consists almost entirely of massless strings. Therefore, using
the relation (33) between the energy and the temperature of massless strings one finds an
estimate of the limiting energy density

0o =2 1°T;° ~ 2.8x107". (44)

A better estimate of g, including the effects of massive string excitations, is higher by about
two per cent.

For energy densities exceeding g, the gas of light strings becomes unstable with respect
to mass excitations and the excess energy density goes over into the mass of one very heavy
string, which consequently acquires the mass

M, = (¢—eo)V. (45)

In the thermodynamic limit this mass is very high, therefore, the temperature T, = T, = Ty
and the system is in equilibrium. It is not possible to increase the temperature of the system
by pumping into it more energy, because all the surplus energy goes into the mass of the
heavy string, which does not increase the temperature. Thus, for the string gas in the thermo-
dynamic limit the Hagedorn temperature is indeed the highest temperature attainable.
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As explained in the following section the string gas model used here is likely to break
down much before one is any near to the thermodynamic limit. This limit is described here
only for completeness.

8. High temperature phase

Let us consider now the phase, where T,, = T,. Thus, equilibrium between the mass
excitations and translational energy is achieved by equality in temperatures and not, as
for the low temperature phase, by pumping all the possible energy out of the mass excita-
tions. Since T, > Ty this kind of equilibrium is possible only above the Hagedorn tempera-
ture. In equilibrium the phase consists of one heavy string of mass M and of a gas of light,
mostly massless, strings in equilibrium with it. The equilibrium is stable, when the heat
capacity of the massive string exceeds in absolute value (it is negative!) the heat capacity
of the gas of light strings. This implies [16]

V < 3.25x 105 M2. (46)

In the thermodynamics limit, where both M and V grow to infinity while their ratio remains
constant, this inequality is always satisfied. There, however, Ty — Ty, so that the high
temperature phase occurs at one temperature only — the highest possible i.e. Ty. For
finite systems, on the other hand, stability at given string mass M imposes an upper limit
on the volume of the string gas. Since the applicability of the quasiclassical approximation
imposes a lower limit for the volume (36), the two limits taken together impose a lower
limit on the mass of the heavy string. One finds N > 5000. This in turn can be translated
into an upper limit for the temperature. From formula (24) and the preceding discussion
one finds the allowed temperature range

Ty, < T < 1.007T;, (47)

Thus, the temperature cannot exceed very significantly Ty.

Serious doubts about the existence of the high temperature phase, as described here,
follow from the following argument. The string size should increase with its mass. The
relation R(M) for heterotic strings is not known, for bosonic strings, however, Mitchell
and Turok [25] find for the root mean square radius the asymptotic high N formula

*l4n’D?N
&= Lo “w

where D is the number of space dimensions. Applying this with D = 9 as a crude estimate
for heterotic strings, one finds [16]

M < 1R (49)

The model of a noninteracting string gas must break down, when the radius of a string
becomes bigger than the radius of the box. The importance of this trivial remark has
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been stressed in the context of the Hagedorn bootstrap by W. Nahm [26]. Combining
the estimate from the formula of Mitchell and Turok with the stability condition one finds

V <3x10° (50)

in direct conflict with the condition (36) for the applicability of the quasiclassical approxima-
tion. Thus, unless we have grossly overestimated the string radius, the noninteracting string
model yields no support for the existence of the high temperature phase of the string gas.
A separate problem are gravitational effects, but these will be discussed in a further section.

9. Phase diagram

For the gas of noninteracting heterotic strings one can distinguish three phases.

® 2a) The phase consisting of light, mostly massless, strings. ’

@ b) The phase consisting of one heavy string with little or no light strings. It is
assumed here that the energy carried by the light strings is smaller than that
necessary to increase the mass of the heavy string to its next mass level.

@ c) The phase, where both the heavy string and the light strings carry nonnegligible
fractions of energy.

Let us note first that these phases are not phases in the usual thermodynamic sense of the
word, because the thermodynamic limit cannot be taken and, therefore, there can be no
singularities at the transitions between the phases. One can draw, however, a kind of phase
diagram [17] by finding in the energy-volume plane the regions, where the situations (a) or
(b) or (c) are respectively the most probable.

The phase consisting of light strings has been described as the low temperature phase
in Section 6. It is the most probable phase whenever the temperature calculated from the for-
mula (33) for E, = E is less than T};. The correction due to including higher mass strings
in the derivation of the relation between energy and temperature is smail and allows some-
what higher energies. Another region, where massless strings dominate, is the region E < 2,
where there is simply no energy to produce a mass excitation. Note that in this situation
the temperature may be arbitrarily high, provided that the volume is sufficiently small
to keep the energy within the bound.

The phase (b) dominated by the heavy string is stable if the entropy loss of the string,
when its mass drops one level down, exceeds the corresponding entropy gain of the
accompanying gas of light strings. Including as light strings massless string only, one finds
approximately

AS > 23 5V'T®. (51)

Here AS = Sy—Sy_, can be calculated from formula (22) and the temperature T of the
added gas is fixed by energy conservation

AM = & VT, (52)

The maximal volumes allowed for this phase turn out to be smaller than required by the
applicability of the quasiclassical approximation (36), therefore the quantitative applicabil-
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ity of the noninteracting string gas model for this phase is doubtful. Qualitatively, the
result must be correct: a massive string contained in a sufficiently small volume will not
be able to emit massless strings into this volume.

Finally, the phase with coexisting light and heavy strings, which has been described.
in the preceding section, occupies the remainder of the M-V plane. In the preceding section
we argued that the finite extension of massive strings makes the applicability of our model.
to this phase unlikely. In the following section we will present further support for these.
doubts from a discussion of gravitational effects.

10. High energy density limit

When at given volume energy is pumped into the string gas, gravitational collapse-
must happen at some point. The energy when this happens is of course a function of the-
volume occupied by the gas. We propose the following (conservative) estimate. Let us.
replace the gas in the box by a single point of nrass M = E located at the centre of the box..
The horizon created by this mass is a hypersphere in the 9-dimensional space. The radius.
of the hypersphere can be calculated from a formula given by Acetta and Gleiser [7]..
It is plausible that the box containing the gas must have collapsed, if the assumed radius.
of the box is smaller than the calculated radius of this horizon. The resulting condition
for a non-collapsed box is

7

2
T
R <—= myR” ~ 4.Tm},R’. 53); -
1.,( -g_) PI Pi ( )
When the energy of the string gas consists mainly of the mass of one heavy string, one can.
combine the present condition with the stability condition (46) to derive a lower bound for:
the radius of the box

_1s
s

R > 0.05mpl N (54)

where the Planck mass should be expressed in units where ' = 1. Let us note that according
to Ref. [21], even below the Hagedorn temperature the simple model used here will break.
down because of vacuum polarization.

11. Application to black hole evaporation

There has been a proposal to describe the last stage of black hole evaporation as
a transition of the black hole into strings [6, 7]. According to the string paradigm everything,.
also a black hole, consists of strings. Therefore, some care is necessary when interpreting
this assumption. The string system into which the black hole goes over must be sufficiently
different from the string system referred to as the black hole. The usual assumption has
been that the black hole goes over into a string system, which can be described as a gas of
noninteracting strings. Since at total energy M the entropy of the string gas is proportional
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to M and that of a black hole to M2, the two string systems are indeed very different from
each other. 7

From the point of view of the present paper the question naturally arises, into which
of the three phases of the string gas does a string go over [17]. It seems that, if the black
hole ends as a string gas in the sense as specified above, the transition must be directly
into ag as of light strings, without the intermediate stage of a gas containing a heavy string
alone or containing a heavy string in equilibrium with light strings. Firstly, there are the
general doubts, whether the phases containing the heavy strings exist as equilibrium
states. Secondly, a heavy string has in most of its states a high angular momentum, while
a black hole towards the end of its evaporation is believed to have angular momentum
zero, or very nearly zero. Thus, angular momentum conservation would strongly suppress
transitions of old black holes into heavy strings.

Another question is, whether this transition takes place at all. The standard argument
[6] is that since the entropy of the string gas grows linearly with energy and that of the black
hole quadratically, at sufficiently low mass the entropy of the gas is higher than the entropy
of a black hole of the same mass. Then, the black hole becomes unstable and the transition
takes place. For a gas of massless strings at given total energy the entropy grows with
increasing volume as ¥°-!. Therefore, whatever the mass of the black hole it is possible
to find a box so large that compared to the black hole, the gas has the same total energy
but higher entropy. The very probable existence of black holes in nature [28] means that
in spite of that the transitions do not occur. The reason is, of course, that the transition
probability of a black hole, which is for its mass a very small object, into a large box of gas
is very small and the transition has no time to happen. The same may be true also for
smaller black holes. The question, whether black holes go over into a gas of massless
strings before something else happens to them, is a dynamical question, which cannot
be solved by thermodynamics alone.

12. Conclusions

Our discussion applies to a gas of noninteracting heterotic strings confined in a classical
box. The absence of interactions here is understood as in the thermodynamics of the ideal
gas: strings can exchange energy, split and join, but in the Hamiltonian the interaction
energy is neglected.

Within this model it is possible to describe the string gas using standard thermo-
dynamics. The gas has some unusual features: existence of the Hagedorn temperature,
two temperatures which do not have to be equal at equilibrium and a negative heat capacity
corresponding to mass excitations. Also for most applications the thermodynamic limit
cannot be taken and consequently phases and the phase diagram cannot be defined as
usual.

The gas of noninteracting strings in a box can exist in three states, which we call
phases.

® A gas of ligh.,, mostly massless strings. This phase occurs at temperatures below

the Hagedorn temperature and at any temperature, when there is too little energy
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for mass excitations. We argue that, if black holes go over into something like
a gas of noninteracting strings, then they are the most likely to go over directly
into his phase.

® A heavy string with either no light strings accompanying it, or so few that
their total energy is too small to produce a mass excitation. At high energy the
quantum numbers of this system are essentially the quantum numbers of the heavy
string. Thus angular momentum, charge etc. are likely to be high [27, 10]. Since
transitions between states differing in angular momentum or charge are impossible,
it is not clear that the entropy defined as the logarithm of the total number of
states is relevant. In particular a black hole with both angular momentum and
charge close to zero can communicate only with a very small subset of states of the
heavy string, unless there is some mechanism to remove the surplus charge and

angular momentum.

@ A gas, where a heavy string is in equilibrium with light strings, which carry a finite
fraction of the total energy. The difficulty with this phase is that according to the
stability condition the box must be sufficiently small in order to have equilibrium.
An estimate of the string size as function of its mass suggests that it may
be impossible to squeeze the heavy string into the box.
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