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Different types of gauge transformations in gravitation theory are examined in the
framework of its fibre bundle reformulation.
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1. Introduction

The physical specificity of Einstein gravity as the Goldstone-type field was clarified
due to the fibre bundle reformulation of gravitation theory [1-3}. By the modified equi-
valence principle Einstein gravity is responsible for spontaneous breaking of space-time
symmetries. From our point of view, a gravitational field could appear as the product of
the first phase transition which separated matter (fermions with the Lorentz symmetry
group) and the geometric arena (with the symmetry group GL(4, R)). Thereby, there are
physical reasons for existence of a Higgs gravitation vacuum (or a background metric).
Analysis of gauge transformations in gravitation theory also gives us some arguments for
existence of such a vacuum.

There are different types of gauge transformations that the Yang-Mills gauge principle
fails to discern. This defect appears to be essential in the case of space-time symmetries.
Therefore, we base our consideration on the more general principle of the field theory
formalization by fibre bundles.

This principle is based on the mathematical definition of a classical matter field as
a global section ¢ of some differential vector bundle 1 = {V, G, X, ¥} with the typical
fibre ¥, the structure group G, and the base manifold X*. The bundle atlas ¥ = {U,, y,;}
(where U, and y, are patches and morphisms of trivialization of A) and the coordinate
atlas ¥y of the base X define the reference frame and the coordinates such that a field
@(x) is represented by a family of F-valued functions

{pdx) = vi(x)e(x), xeU;}

with respect to these atlases. Changes of atlases ¥ and ¥ induce gauge transformations
and coordinate transformations of field functions g/(x). Gauge potentials appear as coeffi-
cients of a local connection 1-form A4 on the bundle A. Thus, gauge theory is the direct
issue of the field theory formalization by fibre bundles.
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2. Internat symmetry gauge transformations

In gauge theory of internal symmetries one must discern two types of gauge transfor-
mations. There are reference frame changes and transformations of fields themselves, with
a reference frame fixed. The first-type gauge transformations represent atlas changes

P={U,p}>¥ = {Ub/"Pg = g{(x)vi} )]

of the matter bundle 1 and associated bundles. Here g,(x) are elements of gauge groups
G(U) of G-valued functions on U,, and they play the role of transition functions between
charts of atlases ¥ and ¥'. The corresponding transformation of field functions {¢;}
reads

Q= VP - ¢ = YiP = SViP = 8iP:

This transformation does not change a section ¢, but alters its representation by field
functions {¢,}.

A local connection 1-form A on the matter bundle 1 results from projection of the
connection form w (defined on the total space tl A, of the principal bundle 1;) on the base
X. Such a projection can take place only relative to some atlas ¥ of A5, and 4 = wd(z)
on U, Here {z; = ¥, (1)} is the family of local sections of i; which are defined by a given
atlas ¥, and d(z,) denotes the differential of the mapping z,. Then, the transformation
law of the connection form A under atlas changes (1) reads

4; = wd(z,g; ")
Gauge transformations (1) of atlases over the same cover of the base X compose the
group which is the direct product
G{Up = I:I G(U)
of groups G(U)). Let a cover {U;} contain a cover {U;}. Then, there is an embedding of the

group G({U}}) into the group G({U;}). The set of covers of X is provided with the partial
order {U;} > {U,}, and there exists the direct limit

G(X) « G{U}D)
“e(uyy”
of groups G({U,}) with respect to this order. If groups G({U;}) are non-abelian, the limit

G(X) fails to be a group. This is a pseudo-group. Any atlas ¥ = {U,, ¢;} of the bundie
A corresponds to a certain coordinate atlas

Yu = {Us pitliap - (x,0) e Uyx V}

of the total space t1A of A. Therefore, atlas transformations (1) represent elements of the
pseudo-group of coordinate transformations of tl A. _
Since atlas changes are equivalence transformations of fibre bundles, the requirement
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of the invariance of a field action functional under the first-type transformations seems
to be quite natural.

The second-type gauge transformations are generated by equivariant mappings F of
the total space tl A; of the principal bundle A; [4], i.e.

F(pg) = F(p)g, petlig =n(F(p) =n(p), mn:tliz- X.

This mapping can be written as F(p) = py(p) where y is a G-valued function on tl A5 such

that y(pg) = g'(ple- A
Mappings F induce transformations of sections ¢ of the matter bundle A. Sections ¢ can
be defined by V-valued functions f on tl A; such that

o(n(p)) = [plf(0), f(pg) = g 'f(p),

where [p], p e tl A; denotes the mapping
[p):V - Vyyetld

by the law (p, V) — (p, V)/G (when (pg, v) is identified with (p, gv)). Then, gauge transforma-
tions F of sections ¢ read

f@) = f' () = f(pv() = v ()f (p);
¢ = [plf(p) = ¢ = [p1f'(p) = [Pl (P)f(p). @
Let ¥ = {U,, y, = [z;]'} be an atlas of the bundle 1. Transformation (2) yields the
following transformation of field functions
#i(x) = [20] 7 p(x) = f(z(x)) = @i(x) = fzM(zD)) = ¥ () Pdx) 3

with respect to the atlas V. This transformation looks like a gauge transformation of the
first type between atlases ¥ and

¥ = (U, v = v (v 'A)vi}-

According to the property of y, atlases ¥ and ¥’ possess the same transition functions
Q;j = Qij-

Thus, for any second-type gauge transformations (2) of matter.fields ¢ — ¢ there
exists the gauge transformation (3) of the first type ¥.— ¥’ such that fields ¢, look relative
to ¥’ just as ¢ look relative to ¥, i.e. ;9" = v, . This rule is also true for gauge fields

o - o' = o),
A; = 0@y ) > A} = 0'@y ) = o0 'y) ™) = 0(@(¥) ).
Therefore, a field action functional, being invariant under gauge transformations of the
first type, turns out to be also invariant under the second-type gauge transformations.

There is a one-to-one correspondence between the functions y, generating the second-
-type gauge transformations, and global sections of the associated bundle 15, possessing
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the typical fibre G. However, as distinguished from the principal bundle i;, the structure

group of 1; acts on G by the adjoint representation g: G — gGg~'. Thereby, the group

of the second-type gauge transformations is the group G(X) of global sections of the
bundle ;. This group differs from the pseudo-group G(X) of the first-type gauge trans-

formations.

Gradation of gauge transformations is important for quantum theory. By the Noether
theorems the invariance of an action functional S under the first-type gauge transforma-
tions causes constraint appearance in the system of field equations. Such a system can be
described as a generalized Hamilton system. Its solutions of the same physical coset are
related by gauge transformations whose generators, represented by certain linear super-
positions of the first-class constraints, compose the Lie algebra L; of the group G. These
gauge transformations are transformations of the second type, although the coincidence
of their family with the group G(X) is open to question. The group G(X) is usually applied
in quantum gauge theory to construct the measure support in generating functionals [5].
At the same time, one can choose another Hamilton system, equivalent to the first one in
the physical sector, but whose algebra of gauge transformation generators differs from
the algebra L.

3. Gauge gravitation theory

In fibre bundle terms the Einstein gravitational field on an orientable paracompact
manifold X* is defined to be a global section g of the fibre bundle B of pseudo-Euclidean
bilinear forms on tangent spaces 7, over X*. This bundle B is associated with the tangent
bundle TX, possessing the structure group GL*(4, R), and B is isomorphic with the fibre
bundle Q in quotient spaces GL*(4, R)/SO(3, 1). A global section A of Q describes the
Einstein gravitational field in the tetrad form. According to the well-known theorems,
this section exists if and only if the structure group GL*(4, R) of TX contracts to the Lorentz
group, i.e. there is an atlas Y@ = {U,, 7} of TX such that all transition functions of ¥@
are reduced to the elements of Lorentz gauge groups SO(3, 1) (U; n U)). All local metric
functions g; = yig coincide with the Minkowski metric #, and tetrad functions h; = yfh
take on their values in the centre of the quotient space GL*(4, R)/SO(3, 1) relative to ¥,

The tetrad field / is usually written as a family of local sections {h(x), x € U;} of the
principal GL(4, R)-bundle up to right multiplying 4; by elements of gauge Lorentz groups
S0O@3, 1) (U)) ie. h; = BSO(3, 1) (U). This freedom reflects the non-uniqueness of the
atlas 7@, With respect to any atlas ¥ of TX these tetrad functions take the form-of matrix
functions h, = p(y)-!, acting in the typical fibre of TX and describing gauge transfor-
mations from some atlas ¥@ to a given atlas ¥ = {U, y; = hy7}.

Choice of a certain atlas ¥ of the tangent bundle 7X defines a reference frame
in gravitation theory. Hence, all reference frame changes compose the pseudo-group
GL*(4, R) (X). of the first type gauge transformations in gravitation theory.

- This definition of reference frames is close to the one used in the tetrad formulation
of gravitation theory. If the atlas ¥ = {U; y;} of TX is fixed, the vierbein {7(x)}
= y; (x) {t} (where {t} is the basis of the typical fibre R* of TX) can be erected in every
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point of the space-time manifold X*. Functions #,(x) represent local sections z; of the
associated principal bundle LX in linear frames, which are defined by the atlas ¥. Inversely,
if a family of such sections is fixed, they define some atlas ¥ of TX.

The traditional generally covariant form of gravitation theory corresponds to the
special case of holonomic atlases when a bundle atlas ¥ = {U,, y; = 0y} is correlated
with a coordinate atlas ¥y = {U, x;} of the manifold X*, i.e. t,(x) = 0, are oriented
along coordinate lines. Respectively, the gauge pseudo-group GL(4, R) (X) of reference
frame changes contains the pseudo-group of holonomic gauge transformations

(WD) ™'y = gi(x): 1,(x) = 1(x") = 1,(x)0x°fox""

accompanied by coordinate transformations y;y; ':x* — x*,

The relativity principle in fibre bundle terms proves to be identical to the gauge prin-
ciple, and gravitation theory can be built directly as the gauge theory of space-time sym-
metries. However, in contrast with the internal symmetry case, in gauge models of space-
-time symmetries there are two classes of the first-type gauge transformations (see Section 4).
These are familiar atlas transformations of a matter bundle A and atlas changes ofthe tan-
gent bundle TX, because space-time transformations act on both fields and operators
of partial derivatives ¢u as vectors of tangent spaces. The specificity of the gauge principle
in the space-time symmetry case lies in the fact that the invariance of the matter action
functional under space-time gauge transformations of the second class makes it necessary
to introduce the metric field besides gauge potentials,

However, the relativity principle fails to fix the Minkowski signature of this metric,
and the correspondence of these gauge fields to the Lorentz group as it takes place in gravi-
tation theory is not indicated. Therefore, the equivalence principle is called into play in the
gauge gravitation theory.

The equivalence principle in gravitation thzory must guarantee transition to special
relativity in a certain reference frame. Since special relativity can be characterized in the
geometric terms as the geometry of Lorentz invariants, the equivalence principle must
postulate the existence of a reference frame where Lorentz invariants can be defined
everywhere on X*, and these have to be conserved under parallel transport.

This postulate admits the adequate mathematical formulation. The connection 4 on
the tangent bundle and associated bundles must be reduced to the Lorentz connection,
ice. there are atlases ¥ of these bundles such that 4, take values in the Lie algebra L of
the Lorentz group. Transition functions of these atlases are elements of Lorentz gauge
groups SO(3, 1) (U; n U;). Therefore, the structure group of TX and associated bundles
contracts to the Lorentz group, and consequently the corresponding pseudo-Riemannian
metric g (or tetrad field A) exists everywhere on X* (ie. YL = y®)

Thus, the equivalence principle establishes that the metric g and the connection A,
introduced by the relativity principle, are the pseudo-Riemannian metric and the Lorentz
connection. These quantities are independent, and the gauge gravitation theory is the affine-
-metric theory. Note that if ¥ is an arbitrary atlas the Lorentz connection form A takes
values in the Lie algebra of the .group GIL(4, R), but the identity (d—A)g = 0 holds.
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The equivalence principle singles out the Lorentz group as the exact symmetry sub-
group of the gauge group GL(4, R) (X) of space-time symmetries, broken spontaneously
due to the Einstein gravitational field as the Goldstone field [1-3].

Note that, in contrast with Goldstone fields of internal symmetries, the Einstein
gravitational field (identified in holonomic atlases with deviations of g; from #) cannot
be removed by any gauge. The reason lies in the fact that, as it was mentioned above,
space-time transformations act also on operators of partial derivatives d,. But these opera-
tors include tetrad functions d, = 4,9, relative to a nonholonomic atlas ¥Y® where metric
functions g, are reduced to the Minkowski metric 5. In other words, the Einstein gravita-
tional field does not vanish, but its metric form is transformed into the tetrad form under
the gauge g; = 1.

4. Gauge transformations in gravitation theory

As it was mentioned above, space-time symmetries (in comparison with internal
symmetries) transform both fields p* (where 4 denotes an intrinsic spin index) and non-
-field quantities such as differential forms dx* and derivatives 0,. Therefore, one must
discern two kinds of the first-type space-time transformations. There are atlas changes
of a matter bundle 4 (type (1.1)) and atlas changes of the tangent bundle (type (1.2)).
Though there are equivalent atlases of these bundles, their atlases are not always the same,
because spinor bundles 4 admit only atlases Y@ with Lorentz transition functions.

Moreover, spinor bundles A = (¥, SO(3,1), X, ¥) and 2’ = (¥, SO(@3, 1), X, ¥¢"),
associated with TX, are not equivalent if atlases Y@ and ¥%” correspond to dlﬁ'crcnt
gravitational fields g and g’. These atlases cannot be transformed into each other by Lo-
rentz gauge transformations, and they, being equivalent as atlases of TX, are nonequivalent
as atlases of spinor bundles.

Transformations of type (1.2) do not alter spinor field functions ¢;. Transformations
of type (1.1) are reduced to Lorentz gauge transformations of atlases A. They act on the
gauge gravitation field 4,, but do not change the Einstein gravitational field. These transfor-
mations alter tetrad functions

h;— hg;, ge€SO(3,1)U). Q)

However, as it was mentjoned above, the Einstein gravitational field # is defined by tetrad
functions 4, up to transformations (4).

As in the case of internal symmetries, the second-type partners (type (2.1)) of space-
~time gauge transformations of the type (1.1) represent fibre-to-fibre morphisms of matter
spinor bundles, and they compose the Lorentz gauge group SO(3, 1) (X). These trans-
formations as well as gauge transformations of the type (1.1) act on the gauge gravitation
field 4, but do not alter the Einstein gravitational field.

In the case of gauge transformations of the type (1.2) one should take into account
that these transformations act on derivatives 9, which contain no field quantities with
respect to holonomic atlases. This property must be conserved under the second-type gauge
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transformations, namely, if y is such a transformation, y(0,) must be reduced to d,,, with
respect to some holonomic atlas. As a consequence, only holonomic transformations possess
the second-type partners (type (2.2)). These represent fibre-to-fibre morphisms of the
tangent bundle 7X and associated tensor bundles which are induced by diffeomorphisms
of the manifold X*. Being written with respect to some coordinate atlas ¥y and some holo-
nomic atlas ¥, such transformations read

y:Xax »x'(x)e X,

0 Tor o O (P \p 0 o 5
: — = — oy
ys 1x3 ax’ ox’” FIC ox'’ x'(x) ( )
Transformations (5) yield familiar covariant transformations
Fifses 4 ax,“ axﬁ v
57: 'C:(x) - Ta{‘,, (x ) = o’ vee 5;; ver Tﬁ (6)

of tensor fields. For any morphism (5) one can find the holonomic transformation of ¥
(i.e. the first-type transformation) such that the corresponding transformation of tensor
fields looks like transformation (6). Therefore, the invariance of an action functional under
holonomic transformations entails its invariance under the second-type transformations (5).
~ In comparison with fibre-to-fibre morphisms of bundles in the case of internal sym-
metries, morphism (5) is not the identity mapping of the base X. However, one can consider
mappings, induced by morphisms (5) on spaces of global sections t of tensor bundles:

L,: tx) = 7'(x) = (3)(y™'(x)) U]

which transform tensor fields t(x) — 7’(x) in the same point (type (2.2'). If diffeomorphism
7 can be represented as the flow y(s) along integral curves x(s) = &(x(s)) of some vector
field ¢(x), the generator of morphism»(?) takes the familiar form of the Lie derivative

L thi(x) - — 0,80t~ ... —e°0,75 + 0,10+ .
Let us point out two different actions of morphisms (5) and (7) on integrals _{ w where
U
Uc X and o is some 4-form on X* In the first case

fo- | o=fo,
U »v) U

this quantity is invariant, whereas in the second case

j - I o = 5 w,
U U y-uy) -

this is invariant only if y(U) = U. For instance,
L,: § Ld*x - [ 0,(e"L)d*x = | ¢"Lds, =0
v U v

because ¢ is equal to zero on dU or it is tangent to oU if y(s)U = U.
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Note that there are no first-type gauge transformations such that the corresponding
transformation of tensor fields imitates transformation (7). As a consequence, the invariance
of an action functional § = | Ld*x under transformations (7) results from its invariance
under holonomic transformations only if the supplementary condition y(U) = U holds.

Gauge transformations of types (2.2) and (2.2') act not only on tensor fields, but
they also concern spinor matter fields. These transformations alter a tetrad gravitational
field A — &' and consequently altases Y@ = (U, 9! = b 'y,} (where ¥ = {U, y;}
is the fixed holonomic atlas):

VO O = UL el = (h) ek

Herewith, atlases ¥® and ¥ fail to be transformed into each other by Lorentz gauge
transformations. Therefore, as it was mentioned above, a spinor field ¢ in different gravita-
tional fields g and g’ is represented by sections of nonequivalent bundles 1 and 1’, even
if @ is expressed by the same field functions ¢*(x) with respect to atlases ¥ and ¥¢".

The invariance of a field action functional under the (1.1) and (2.2)-type space-time
gauge transformations entails the Lagrangian degeneracy, and so leads to the Hamilton
formalism with constraints. Herewith, the secondary first-class constraints H, (x = 1, 2, 3),
H,, H;; play the role of generators of the second-type gauge space-time transformations.
These constraints (except H,) are purely kinematic, i.e. they have the same form for any
action functional S, invariant under the first-type gauge transformation. As a consequence
(though H, depends on the choice of §), the first-class constraint algebra is the same for
different gravitation Lagrangians R, R+T?, R+ R*+T? (where T denotes torsion) [6, 7).
For example, the R case differs from the R+ R?>+T? case only by so-called if-constraints
(second-class) which do not influence essentially gauge symmetries of these models, although
the second type niodels are usually built on the basis of Poincaré gauge symmetries.

Since spinor fields in different Einstein gravitational fields are represented by sections
of nonequivalent bundles, the problem of the fermion functional space in a generating
functional of quantum gravity arises. Note that this difficulty does not concern gauge gravi-
tation fields, and, in our opinion, this is related with the Higgs-Goldstone nature of the
Einstein gravitational field. This problem can be solved if one assumes existence of a classi-
cal background Finstein gravity.
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