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Thermodynamical functions are determined for the bosonic gas distribution in the
external gravitational field described by multidimensional cosmological models having
the structure FRW x B?, where BP is any D-dimensional compact space with the scalar
curvature R(?), Universal asymptotics of this function are found for the following situations:
1) at high temperatures, with 82R <1 and Bm, <1, 2) at low temperatures, with SR> |
and fmg > 1, where R is the scale factor of the physical space, and § is the reciprocal of
temperature. It is shown that if RO/R(® > 1 (where R and R} are curvature scalars
of macro- and microspace, correspondingly), the Casimir energy is always negative. These
results are applied to discuss the dimensional reduction generated by the classical Einstein
equations with quantum corrections. The idea of the dynamical dimensional reduction is
expressed, in terms of the dynamical system theory, as the problem of the existence of a single
stable critical point representing a configuration with the static internal space. It is demon-
strated that, in the low-temperature approximation, there is no effective mechanism of the
dimensional reduction to a static internal space, if BP is a group manifold (with the same scale
factor in all internal directions). On the other hand, the effective mechanism of the dimensional
reduction to the zero size does exist. The existence of such mechanism for the full class of

multidimensional homogeneous cosmologies with the hydrodynamic energy-momentum
tensor is also- discussed.

PACS numbers: 98.80.Cq

Introduction

Multidimensional theories of the Universe, such as Kaluza-Klein theories, super-
gravity [1] or superstring theories {2}, belong to the contemporary cosmological paradigm.
It is a common feeling that they pave the way towards the unification of all physical forces,
accompanied — as a necessary by-product — by the unification of physics and cosmology.
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Although all these theories present quite different pictures of the world, they share certain
common features which completely change everything we were accustomed to when studying
the very early Universe (among many other things also the problem of the chaotic behav-
iour in the asymptotic initial state, see for instance [4]). According to these theories, at
the very early epochs of the world evolution the size of the physical space (macrospace)
and that of the internal space (microspace) were comparable, and the internal space could
substantially influence the dynamics of the Universe. The question of how the size of the
microspace has been reduced to non-observable dimensions is known as the dimensional
reduction problem. The idea of the purely dynamical dimensional reduction, i.e. the reduc-
tion done entirely by the Einstein dynamical equations, has been proposed by Chodos and
Derweiller [5). Many solutions of these equations are known [6] for which such a reduction
occurs.

Main objections against the above approach are connected with the fact that the ex-
istence of solutions with the static microspace and expanding macrospace is a consequence
of a special choice of the initial conditions, whereas a “correct” mechanism of the dimen-
sional reduction should be independent of such a choice. Indeed, in the present work it will
be shown that, within the class of multidimensional homogeneous world models being
solutions to the Einstein field equations with the cosmological constant and hydrodynamic
energy-momentum tensor, the set of those solutions which admit the static microspace
is a “zero-measure” set in the space of all initial conditions for these cosmological models
(Section 2, 3). On the other hand, the dimensional reduction took place at Planck-length
scale and quantum effects were then important for cosmological evolution [7]. Therefore,
conclusions drawn from purely classical equations of motion can be illusive. Quantum
effects should probably be computed at finite temperatures if they are to be used within
the cosmological context [8].

Main objections against the above approach are also connected with the fact of the
non-existence of asymptotically stable configurations with the static microspace (Section 4).

Our analysis is based on the full clasification of homogeneous arbitrarily-dimensional
cosmological models.

1. Einstein's equations for multidimensional homogeneous cosmological models

The assumption of homogeneity of the macrospace has an observational justification
in cosmology. We assume, by analogy, that the D-dimensional internal space B is also
a homogeneous but anisotropic space, i.e. it is a group manifold rather than only a coset
manifold. In other words, the total space-time has (D+ 3)-dimensional spatial sections
being orbits of simply transitive isometry groups. ;

First, we classify all (D+ 3)-dimensional isometry groups. (In Ref. [9] the classifica-
tion of 10-dimensional groups has been performed). In the spirit of the Bianchi classifica-
tion we enumerate all the relevant (D + 3)-dimensional Lie algebras. The total space-time
is a trivial principal bundle P(M, G,) with P = M x Gp, where M is external physical
space-time (of the Bianchi type), G, = B is the structure group. The bundle space P is
a metric product space in the sense that: gp = g,; ® gz. The isometry group for P = M,
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TABLE 1
Simple compact Lie algebra Dimensions
SL (N, O) (N+1Y(N-1)
SO (2N, C) , NQ@N-1)
SO(2N+1,0) ! NQ@N+1D
SP(N, C) : NQ@2N+1)
special algebra G, 14
E. ", 52
Es f 78
E, | 133
Ea . 248
TABLE II
} M; (the Bianchi type)
B, 1‘ ..... —_ -
I | } 1 t Vi, ! Vii, vii ! 1X 1 v } v , Vi Vil
- N : | ! ! !
A ! 0 3 5 ’ 5 | 6 6 3 5 I 6 6
B 6 ' 9 | u 1 12 12 9 n 12 12
C 12 15 . 17 17 18 18 15 17 18 18

7

4
A= & L‘;, B= & L’l @ B(IX), C=L,® B(IX)® B(IX), LyIX)—3dim algebra B(IX),
i=1

i=1

Ly(IX) ~ SO(3) algebra, L, — 1 dim abelian algebra.

x Gp is a direct product Gp,; = G; ® Gp of the standard Bianchi isometry group G,
and Gp. Therefore for its Lie algebra £, 5, one has &, ; = Ly @ Ly, 3; the problem
of classifying all the &, , is thereby reduced to enumerating all relevant Lie algebras &,

We assume, for physical reasons, that G, is a compact Riemannian space, and con-
sequently we classify all distinct real D-dimensional compact Lie algebras.

By using the theorem on decomposing compact Lie algebras into the sum of simple
Lie algebras and the centre, we are able to generalize the classification given by Demianski
et al. (in Ref. [9]).

The classification of compact simple D-dimensional real Lie algebras is known (for
example [10]). Table I contains all simple real forms of the Lie algebras which can be
used as algebras of the isometry group of a D-dimensional compact internal space. By
forming direct sums of simple compact Lie algebras and of Abelian ones we obtain all
possible algebras generating algebras of isometry groups of the internal space B (the total
dimension must be D because the group of isometry is acting simply transitively on B” [11].
Since these Lie algebras have the structure of direct sums, one can easily determine the set
of equivalence classes of the structure constants [12]. The case D = 7, for example, is shown
in Table II. The types: VI, VII,, VIII, and IX with the microspace of the form B(I1X)
x B(IX) x S!, have the highest dimensions, i.e. any open subset in the space of the initial
data must have a non-empty intersection with the one of the above distinguished four types.
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From Table 11, one can also see that the world models with the microspace of the torus
type (which are most often analysed in the literature) form a “zero-measure” set (in the
Collins-Hawking sense) within the class of all multidimensional homogeneous world mod-
els (for details see [12]).

One can make use of the tetrad formalism [13] and take into consideration the metric
of the form

ds® = df* —g;(Dei(x)el(x)dx"dx", (1

where g;; are {unctions of the cosmological time ¢ only, and ex),i,j=1,2,3,.. D+3
are the basis vectors. We will assume the Einstein equations in the form

i 2
R, =Ty~ —— g, T— —— A,
w = T a8 T b 2)

where

Tuv = (Q'*'p)“uuv_pguv (3)

is the hydrodynamic energy-momentum tensor, ¢ the energy density, p pressure, and
A the (D + 3)-dimensional cosmological constant; o, f, u, v = 0, 1, ..., D+3. The compo-
nents of the Ricci tensor for the metric (i) are

RS = —4ra—$ i, @
) ) 1 I —
24|gl dat

ki = gug”s  igl = idet (g,
Pij = —Fﬁfﬂ-k Clkr

ij
I ij = 2 (C:‘l + Cll gmjg + Cﬂgnug“)a

where P;; is the Ricci curvature tensor expressed in terms of the structure constans; the
dot denotes differentiation with respect to the cosmological time ¢.

For a compact Lie algebra £ the structure constants C!, may be represented with
the help of a third-order totally antisymmetric covariant tensor. Indeed, if we use the metric
tensor g, in . for lowering indices of contravariant tensors, then the tensor C,y = C;,84%,
by virtue of equations g, = C,,C* (Cartan metric tensor), may be written in the form:

4 m 4 n m
rsl = CsmC" Clu + Cmrcts “nl*

The last expresion is invariant under the cyclic permutation of the indices and is skew
symmetric in r and s, hence the tensor C,,, is totally antisymmetric. On the other hand, for
a compact Lie algebra &, the Cartan metric tensor may be assumed to be in the form
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gu = 043 hence C,; = C',, i.e. the structure constants C}, and the components C,,, of tensor
= coincide [10].

The above properties enable us to construct the Ricci curvature tensor of a constant
time-space. For the metric (1) we can \zrite the components of the Ricci tensor as

i=1% ; (Cin) (44,4072 (A} — (A} - 4D}, (6)
. Js

where C;;, are the structure constants of the Lie algebra of the respective isometry group,
and

gi;‘(‘) = dlag (Afa eey A[2)+3)9 ’ (7)

where 2,- (i =1,..., D+3) are the scale factors of the macro- (\ = 1, 2, 3) and micro-
(i = 4, ..., D+3) space, respectively.

By generalizing the standard reduction procedure of a metric to the diagonal form,
for the classical Bianchi types expressed in terms of the group of inner automorphism
preserving commutation relations (see e.g. [11]), one can show that for multidimensional
homogeneous world models with the type A macrospace metrics (together with their first
derivatives) can always be reduced to the diagonal form (7) at any time instant #,. The
Einstein equations transfer this property to any other time instant. In such a case the
components (0, i) of the Einstein equations are identically satisfied. For the considered
world models, (having the macrospace of type B) the metric can be reduced to the form,
having one non-diagonal component g, ,(¢), with the help of the group of inner automor-
phisms. For such a case, the components (0, /) of the Einstein equations give the additional
condition R = 0. In the exceptional case, when the macrospace is of B(V) type, the metric
can be reduced to the diagonal form with the additional constraint R = 0. In the follow-
ing, we shall assume the diagonal form of the metric (7).

Dimension 11 is distinguished by a realistic supersymmetric version of Kaluza-Klein
theories based on the gauge group SU(3) x SU(2) x U(1). In this case, N = 1+3+7 (N is
space-time dimension) and the Einstein equations (2) assume the following form:

10
A, 80+10
L __Q.__p +.% A,
A 9
i=1
3 10

/i" : /i" 4&’ d' i Q p =
L E) IP:—_“"’}‘A’ i =1,2,3),
(Ai) A; (Z A; ai) 9 ’ ‘ !
. Yy

4,5, 6),
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U=
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4,

oln

() + a,o(Z Z 250

—2RS = a(zc1+xz-—2tc3)4~n1x,—n2x§ =0, (8)

where n,, n, are eigenvalues of the symmetric matrix #° such that we can write n*® = n® §°
for the standard decomposition of the structure constants C§, = e, 1™ +64a,+d5a, (for
details, see [12]), and they refer to the macrospace. P, QJ, R} are the Ricci tensors of the
macro- and microspace, respectively, (Qj R are either always null, for B(I) microspace
sector or have the B(IX) form), 4; = a; (j = 4, ..., 10).

From equation (8), one can see that the solutlons with the static microspace A4 = ...
= A, = 0, in the case of (1+3+7) dimension are admissible only if Qj Rt =0 and
A =0, p = g (massless scalar field). If p = ¢ = 0 a transition to the vacuum case takes
place. We can formulate:

Conclusion 1. Within the class of homogeneous 11-dimensional world models the only
general solutions with the static microspace, are the following ones: (Bianchi type) x T7.
They form the “zero-measure” set within the considered class of models (Table II).

The conditions stated above are, of course, the necessary but not sufficient ones for
the existence of solutions with a static microspace. In the work by Demianski et al. [13],
the case B(V) x T7, admitting asymptotic solutions with the static microspace, was investi-
gated. It will be demonstrated that, within the class of B(V) x T type solutions, the set
of models, which admit the static microspace is of a non-zero measure.

Conclusion 1 is also valid in the case when the dimension of space-time is: 5, 6, 8, or 9
(from Table 11, we can see that the S! sector is present in this case). In this case, the only
solutions having static microspace are the following ones: (Bianchi type)x T”.

If space-time dimension is 7 or 10 we can formulate the following conclusion:

Conclusion 2. Within the class of homogeneous 7 or 10-dimensional world models,
the only solutions having the static microspace are the solutions: (Bianchi type)x S3,
(Bianchi type) x 83 x $3, where S* is a maximally symmetric space. These models are either
sourceless or with an energy-momentum tensor describing a massless scalar field (p = g).

From Eq. (8), one can see that, in general, solutions with the static microspace, d4 = ds
= dg = d, = dg = dy = 0, are admisible (for the case 1 43+ 6 dimension only if @} = R}

24 D—1|
) ok (Rﬁ = — 0’,;) and p = o). In the next Section it will be demonstrated that,
a

within the class of (Bianchi type) x S x S3 solutions, those models which admit an asymptot-
ically static microspace form a “‘zero-measure” set in the full class of solutions.

Now, we shall investigate the existence of solutions with a static microspace in the
general case: (Bianchi type) x B®. In this case, the dynamics is described by equations (4)
and (5) with curvature tensor (6). Although system of Eqs (4) and (5), with the curvature
tensor (6), does not behave chaotically near the singularity [11, 14], the type of solutions
in general depends on the space symmetry and it is hard to give a general solution. However
for our purposes, it is sufficient to investigate the system in the physically motivated appro-
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ximation: ay, ..., dp,3 = a. In such a case the solutions with the static misrospace are
admitted if p = ¢, and one has

Y (Cp)=p8 foralli=4,.., D43

(1,4,k)
no sung over |

D+2
The radius of the static microspace is equal toa = \/ ﬂ(ZA ) . System of equations

(4) and (5) with curvature tensor (6) is then reduced to the following form

3
A4, i 24
E —4D-=—,
A; a D+2
=1
- - 3'.‘
Al'+Ai A,-+Dd VP = 24
A4,) 4 A, a) ' D42’
. -
a\' 4 4, da p 24
-] +- E 24D+ 5= 9
(a) a( A; a)+a2 D+2 @

i=1

Although equations (9) have been, for simplicity, written for the vacuum case (p = ¢
= 0), our conclusions remain valid that only a “zero-measure” set of trajectories, being
solutions to the system (9) with a hydrodynamical energy-momentum tensor, leads to
a static internal space. If § = D—1, we obtain the previously discussed case.

2. Asymptotic stability of classical solutions with the static microspace

2.1. The method of the dymamical system stability

First of all, equations describing a cosmological model should be reduced to the form
of a dynamical system: x; = f(x,, ..., X,) in such a way that solutions with a static micro-
space (with some other property of interest) should be critical points of the system, i.e. all
filX1s o %) = 0,(i = 1, ..., n), and (X,, ..., ,) = P should be a critical point. As it is well
known, such points represent asymptotic states of system [16]. ‘If a critical point
x = (xy, ..., X,) is non degenerate, i.e. if at this point all real parts of the eigenvalues
_a_jj1

x} x=%
-to-one continuous mapping of a neighbourhood of this point which transforms trajecto-
ries of the original system into a linearized one. In this sense, the qualitative behaviour
of the original system is equivalent to the behaviour of its linearized part. If (&), ..., (§)
are eigenvectors of the linearization matrix A}, the solution of the linearized system has,

(Re A) of the linearization matrix Aj- = do not vanish, then there exists a one-
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in general, the following form:
x{t)—X; = Re z C Ere™,
k=1

where C, are constants. A non-degenerate critical point is called the attracting point if, for
all eigenvalues, Re 4; < 0. In this case, all trajectories from the neighbourhood of this
point go to this point if # —» co. A non-degenerate critical point is saxd to be repulsing point
if, for all eigenvalues, Re 4, > 0.

In this case, all trajectories from the neighbourhood of the point x go to it if # - — co.
A non-degenerate critical point is said to be non-stable saddle point if the dynamical
system has, at X, negative eigenvalues oy < ... < a; <0, Re 4; = «; and n—d eigenvalues
with positive real parts.

When investigating stability of solutions with a static microspace, the following theorem
proves to be of special interest.

If x is a non-degenerate critical point and if the dynamical system has, at x, d eigen-
values 1, ..., i; with negative real parts oy < ... < gy <0, then there exist (Iocally) an
invariant d-dlmensmnal manifold W, on whlch all trajectories of the system go to X as
t — oo. A manifold M is said to be an invariant manifold of the system if every trajectory
passing through a non-degenerated point of M lies entirely in M (for —o0 < ¢ < +0o0).
For every such solution there exists the asymptotic

lim ¢~ In [( Z (xAD-%))"] = o (10)
t—+w
for a certain i. Analogously, if at certain point x the system has k eigenvalues with positive
real parts, then there exists an invariant k-dimensional manifold W, , on which all trajecto-
ries emanate from x [16].

From the last theorem it follows that, for a saddle point, there are two invariant
manifolds Wi, and W)_* containing this point and filled with trajectories (separatrices)
going to, and emanating from this point. These manifolds are said to be stable and non-
-stable manifolds, respectively. All other trajectories (not contained in W4, or in Wi’

do not meet the critical point in question.

2.2. The stability of solutions with the static microspace

2.2.1. Stability of solutions with the static microspace within the class of B(V)XTP models

By using the last equation of (8), one obtains: A,(t) = A(t); A,(t) = A(t) - S(¢);
Ax(t) = a- A(t) - S~*(¢) (for the B(V) model all n; are zero), where S(¢) is an unknown
function of ¢.

Equations (8), for sourceless case or for a massless scalar field, can be reduced to the
form of the dymamical system:

. 2
H - _._3H2'—H(h4+ Ve +hn+3)+ ‘Ez',

é - —~¢(3H+h¢+ “se +hD+3)3
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hy = —hGH+hy+ ... +hpss),

hpes = —hpisGH+he+ ... +hpis) (11)

where H = AJ/A, ¢ = SIS, h; = ajla;, j = 4, ..., D+3.
By introducing the new variables U= H-R, V =¢ - R, y; = h; * R, the above set
of equations can be given the form of the autonomous dynamical system:

U' = =2U02~Uy,—Uys— ... —Uyp,3+2,
V’ = —ZUV—V'Y4“Vy5_ e —Vyb+3a
Va = "2)’4U".Vi_)’4YS_ vv ~Ya¥VD+3s
‘ Yp+3 = —=2Yp+3U—ypisya— - _,V§>+3’ (12)
where prime denotes differentiation with respect to the new time variable 7, dr = dt/R.
System (9) has, in a finite region, the only critical point (P) = (y4 = ... = yps3 =0,
v =0, u = +1). It represents the solution with the static microspace and the isotropic
Friedman (k = —1) macrospace. System (12) is determined on a region given by the
(0, 0) component of the Einstein equations:
‘ D+3 D+3
204% = 6U2=2V2 =6+ (Y y)* = ¥ yi =0. (13)
= =

If p = g = 0 (sourceless case), one can easily verify that the critical point, represent-
ing soluffons with a static microspace and an isotropic macrospace with the Milne-like
evolution: R o t, is situated on the boundary of “constraint condition” (13). The phase
portrait, for the case of {FRW with k = —1} x T7 with the identical scale factors, is shown
in Fig. 1. Now, we will demonstrate the stability of the critical point P. At this poxnt
system (9) has real negative eigenvalues of the linearization matrix, i.e.

Ay = ——4“, A‘Z = —2“, cees }'D+2 = _2u' (14)

This means that P is an attractive poiht (for u > 0). One can see that, in our case,
there exists (D + 2)-dimensional invariant manifold in the (D + 2)-dimensional phase space.
In other words, there exists a non-zero measure set of trajectories.for which the solution
with the static microspace is an attractor. It can be also shown that this property is
characteristic for the macrospace with Ellis-Mac Callum metric [15, 16] and with n; = 0.

~ Cosmologies resulting from the bosonic sector of the N = 1, D = 10 supergravity
theory, or equivalently from the theory with the Chapline-Manton action and vanishing
Yang-Mills field, have been studied in the literature [17]. If one assumes that fields Fypq
vanish and dilaton field is homogeneous: ¢ = ¢(r) (see Gleiser, Stein-Schabes [17]) one
obtains solutions with the static microspace, for {B(V)xT¢} models. This solution is
asymptotically stable in the full class of solutions. Fig. 2 shows the phase portrait for the
FRW space-time (with k = — 1) x T® (identical microspace scale factors) with the dilaton
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z=x"} U=yx
db = Hdt

Fig. 1. The phase portrait for space-time FRW (with k = ~1) x T” with the identical scale factors of the
microspace in the vacuum (a) and with radiation (b); H = AjA, h = daja, x = HA, y = hA4 are Hubble’s
functions in the macro- and microspace, respectively. The shadowed region is excluded by the constraint
condition. The critical point P;(1, 0) representing the asymptotic state of vacuum solutions is an atracting
point. The behaviour of trajectories of the dynamical system FRW (with k = —1)xT? with radiation,
in neighbourhood of the singularity, is represented in (c). To investigate the system at infinity, the projective
coordinates turn out to be useful (z = 1/x, ¥ = y/x). Typical behaviour of the system near the singularity
is represented by the repulsing point P,

field. Critical point P, represents the asymptotic state of the classical (sourceless) solutions.
It is an attracting point because the macrospace is expanding. If the system is initialy in the
neighbourhood of this critical point there is a non-zero measure set of trajectories for which
it is an attractor (dim WA* = D-2).

2.2.2. Stability of solutions with the static microspace within the class of (Bianchi type) X BD models

For simplicity, we assume that A4, 4,, 4; > a so that the curvature of physical space
can be neglected. However, the conclusion remains valid for the case when the physical
space is a generalization of Bianchi V model to the model of Bianchi VI, with the Ellis-Mac
Callum metric and n2 = 0 {15). In this case equation (9) can be reduced to the form of the
autonomous dynamical system

, D, ,-D’+5D+2+D(D—1) , D
p+2" "7 b3z p+z ¥ T D¥2’

6 2 DD, MDDy 2
D+2 D12 7 D+2  D+2

, 15
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Fig. 2. The phase portrait for FRW space-time (with ¥ = —1) X T® (scale factors of the microspace are

identical) with the dilaton field in N = 1, d = 10 theory of supergravity. The critical point P,(1, 0) represents

the asymptotic state of the classical (sourceless) solutions. It is an atracting point x = HA, y = hA, where

H and k are Hubble’s functions of the macro- and microspace, respectively; 4 represents the scale factors
factors of the macrospace

with the constraint condition

- D(D~—1 D ,
Aa? = 3x*+3Dxy+ —(-2——) yi+ o> > 0, (16)

where x = y a, y = a, and prime denotes the differentiation with respect to the parameter

D-1
.

1: dv = dit/a; if it is assumed that the radius of the microspace is now equal to

o - [T
Dynamical system (15) has the critical point P: x; = +./3/3 (Ho =+ \/ m) ’

D—-1)(D+2 . : . .
Yo =0 (a = \/ (—2;(7—)> , which represents the solution with the static microspace

and inflationary phase on the macrospace. This critical point is a saddle point, i.e. if the
system is in the neighbourhood of this point then only a zero-measure set of trajectories
leads to P (dim WA = 1), see Fig. 3a.



Fig. 3. The phase portrait of FRW space-time (with k = 0) x B (scale factors of the microspace are identi-
cal). The critical point P, (representing a solution with the static microspace) is a nonstable saddle point

(2), (b) shows the behaviour of the system near the singularity in projective coordinates z = 1/x, ¥ = y/x.
The typical behaviour near the singularity is represented by the repulsing critical point P,
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In Fig. 3b the behaviour of the system near the singularity is shown. For this purpose,

) 1
we introduce, as previously (Fig. 1c), the following projective coordinates (z, u): (z = -,
x

X
u= —) , (w =-,v= —) . In these coordinates, the sphere S! is covered by two straight
y y

lines which correspond to points (x, y) at infinity; 2 =0, —0o <u < ow0; w=0, —o0
< v < oo [16]. In the coordinates (z, u) system (15) takes the form
dz 3D 5D+2-D* D(D-1) , D

dr, D+2° Y " D+2 " D+2 "*TD+2°

du 6 _DD-7) , 6D-H 2 , DO-1 ,
dty, D+2 D+2 D+2 D+2 D42

D(D-1)
2

3

an

in the region 3+3Du+

w4 522 >0, and where dr, = z-'dr. From Fig. 3b

we see, that the typical behaviour near the singularity (represented by the repulsing point P,)
corresponds to the situation in which the dimensions of the micro- and macrospace are not
compatible (as Fig, Ic).

3. Quantum effects in homogeneous multidimensional cosmological models

Quantum vacuum energy can essentially influence both the cosmological evolution
or the stability of compactified solutions [18]. Let us now consider the thermal bosonic
gas in external gravitational field of multidimensional cosmological models. ‘

For simplicity we shall assume one-loop quantum effects arsing from scalar particles
contained in multidimensional cosmological models. We shall determine quantum distribu-
tion function in case when scale factors are slowly variable in time (quasistatic approxima-
tion). Let the background space have the M3 x B? structure, where M3 is a maximally
symmetric space, whereas B” is an arbitrary D-dimensional compact space with the curva-
ture scalar °R.

The action for the system under consideration is

S = S,+% [ d¥x \/— g (83,40, +m3+{R$?), (18)

where R is curvature scalar of the total space, { the coupling parameter, m, the effective
mass. We shall quantize the scalar field only, whereas the gravitational field remains classical
(for the review of problems connected with quantum field theory in a curved space-time
see Birrel-Davies [19]).

We shall determine quantum distribution function by using the {-function regulariza-
tion method

nZ%p) = -1 (;; {($)s=o+In uzC(O)) , (19)
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where
1 -1
{(s) = 6 tr exp [ —t4].
[

The operator 4 for the metric gy ® gao, after the Wick rotation ¢ - —itr assumes the
form

62
4= = 2+ a4, (20)

where 4} is the Laplace-Beltrami operator on the sphere (pseudosphere) S* of a unit

radius, m? = mZ+{R is the effective mass, A{%) is the Laplace-Beltrami operator on
D-dimensional compact manifold

App = 34V Pg g*0y), 1)

\/w)

where Pg = det Pg ;.

We shall discuss cases when M? is a sphere S or a pseudosphere PS3, or R* or T = §!
x S! x §! whereas BP is D-dimensional compact space with the curvature scalar PR (not
necessary homogeneous).

In order to determine the function {(s, #) we must know the spectrum and degeneracies
of the operators 4{°} and 4{°}. In the case when the physical space is a sphere S3, the
spectrum and degeneracy of operators 4} and A"} are equal to /(/+2) and (/+1)?
respectively, where / = 0, 1, 2, ... (the respective eigenfunctions are spherical harmonics
on $%). In this case the function {(s, f) has the following form

2 - [( ) ,(l+2) +ip+m ]
s, B) = T )Z Z d,(1+1) j‘ dut (22)

n=-o Aip

where
2 2 6 D)
m* =mg+{| 5 +'R}).

If the physical space is a flat R® one, the spectrum of the operator 43} is (k3 +k3 +k3)
with the degeneracy equal to 1; k e (— o0, o) (respective eigenfunctions are plane waves
in R3). The function {(s, #) takes the form

3 - [(3—) +(k)3+lp+m2
. = i Z Z o 5 )sjd K fdn )

n=—w 4D
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where V, is the volume of R3, (k)2 = k2 +k2+k2, m? = {®R+m?. By using the fact
3/2

T
that | d3%ke™*" = —7 we can write (23) in the form

3/2 V3 5 (Znn) +1D+m2]
(s, B) = @ )3F( ) Z z d jdt ¢ 2 . (24a)

n=—ao0

In the case when the physical space is a three-torus T3 = S! x §! x §1, the spectrum of the
operator A’} is the following:

21 \? 27 \? 2n \?
-——) ni+ ——) n3+ ——) n?,
R, R, R,
where n, = 0, +1, ..., R, (i = 1, 2, 3) are radii of respective spheres S. In this case the

degeneracy is equal to 1 (the respective eigenfunctions are the product of three eigenfunc-
2

tions of the operator—d—a on the sphere S'). The function {(s, §) is equal to
X

U, B) = F()Z Z Zdl fdus 1t (Y s T () wioen],

(24b)
When the physical space is a pseudosphere PS3, we can use the identity
InZ%p) = —%ur ln( ) sz J d’x j d”y
g Z [<x, v, TIB)I* (B ln =5 1By Vg /P, @9

B

2 2
where thp set of eigenvalues {B} contains “energy modes” <—ﬂz> n*, modes (k, J, M)

corresponding to Laplace-Beltrami operators on PS3 and mode: 1, corresponding to L.-B.
operators on My,
Hence

" .
¢x y 1By = \/— exp [ ( ;) m] <xlk, J, M) <yldp)
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and
(xiA gk, J, My = (K2 +1) {xIK, J, M),

where ke [0, 0], J =0, 1, ..., Me [—J, J].
As a result of summation over.J, M of the squared modulus of the function (25),

we have:
Kxlk, J, MY|* = ! 521
' Kxlk, J, " 2n*\a/) a?
M

' d
s )» 2 - AD ,
E i[<yldp)i Vol M,

AD

and

where Vol M, is a volume of M,; Vol M,, = [ ./®gd"y. Therefore we, obtain

3 2
In Z%p) = V:'f;f Z Zdb J — k% { (2’;") + k;l +,1D+m2}. (26)

n= a0

6A'5

Because In 4 = —

fdxx’e"’z" = 47; , we obtain the following formula
r

V]

for {(s, B)

Vol PS3 S (Y i apt L em2
s, B) = sn(::/zr(s) Z Zdl fdtt 2¢ [(ﬂ) Aot o7 ]’ (27)

n=—ow ip

6
where m? = m2+( ((D)R— —2-) , a—radius of the microspace.
. a

By comparing formulae (24) and (27) we see that formulae for the physical spaces
R? and PS? are similar. The negativness of the curvature of PS? is taken into account in
{(s, p) through the effective mass m?>

3.1. Universal high-temperature approximation

Our task will be to show the universal high-temperature (8 — 0) behaviour for cases
of S*xB”, PS3x B” and -R3 x BP, respectively.

The function {(s, B) for the thermal scalar bosonic gas in the space S°x B” has the
form

n=+a o

(s, ) = r()z f ar- -1t Q) *""]Zd e"’“Zd e (28)

n=-ow 0
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where a = —f—- , m?* = mi+{(PR+PR). Using the fact that
7T

Y dy e = tre”t e = | dPx(xle™ "V x),
M3

’ - - ) - D)
Z d;_De tAip _ tre tAL.B. = j'd,’,’(yle tay.s. |y>
ip Mp

2
and if the quantity [(-"-) +mz] tends to infinity, i.e. if  — 0 (8 — 0) or if m? —» w (i.e.
a

AR+ PR -5 ), one can see the major contribution to the integral over ¢ comes from
a neighbourhood of ¢ = 0
For small values of 7, the following asymptotic expansion are valid:

1 ——
wern L f Nen Z AP, 29
M =0
- 1 (D), i
o othin® _ e J \/w)gz AP oy, (30)
Mp i=0

where A{», 4{” are DeWitt-Schwinger coefficients [21, 22]. For the spaces considered
by us, these coefficients do not depend on coordinates; they are constants dependent on
scale factors. By using equations (29), (30) we obtain

s, B) = Yol M, Vﬁi?" Z Z AD4D Jdt [ream1-22) = [C) +m] G1)

F(S)(47t) 2 n=-ow ,j=0
where Vol M, = [ d®x V®g, Vol B? = | dy /@y
After some transformation of (31) we obtain the following formula

+ o

Vol M; Vol B,p*
C(s, B = I,(:)) (415(1):)4)/2;0*'3 Z Z (ﬁZIA?) (ﬁZjA;)) (ﬂ,n)D+4—2(s+l+j)

Li=0n=~w

> K/p+s (Bmn)
D+4 =5 —GHED
x| |s+14j-—) +2 ( 5 (32)
2 ( mn)—-—- ~(s+1+)
n= -0 5

where K, is the third order Bessel function and prime means that we omit the term n = 0
in the sum.

D+3
The terms, for which /+j < —;— , give the leading contribution to the quantum

i . D+4\.
distribution function for g — 0. If D+4 is an odd number then I' (s+l+j-— ; )15
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non-singular at s = 0, for any / and j. Therefore {(0, f) = 0, and

Vol M, Vol B? ! .
Inz%p) =% ( 413(1)4-43)/2 ° go+3 Z (B*41) (ﬁDJA;D))

nia+i< 232

K/p+a N\(fmn)
D+4 ! (———+l+1)
pra-2@+ D P 14j— -—) +2 E : . 33
X (ﬂm) ( J 3 (ﬂmn)’-’-;—‘-(nj) ( )
2

If B?m? - 0, then

+

Vol M, - Vol B,**
C(Ss B) = I.(:) (4;)(94-3)/2;5«1-3 Z z (ﬂzzt‘ﬁ”)

n= -0 Lji=0

1+5< B¥3

2
D+3
I'(s+l+j-— T)

¥ )
2s+14j- -0—23)

x (8 AP)

(34)
(2nn)

where we have omitted the contribution of the zero mode n = 0 to the sum. By using the
x x-1 1~
identity: n~Z I (;) fxy==n2 T ( 2x) {g(1—-x) we obtain the following high-

-temperature asymptotics of the function {(s, f):

o S (0 (1)

TITF(S)/;D*’3 L,j=0 2 2
Li< %3
xI (D:4 —-s—-(l-{-j)) La(D+4~25=2(1+)). (35)

D+3 i
Ifl+j< ——%’—— , the Riemann function {z(x) does not pass through the pole x = 1
and we can go to the limit s = 0. ’Hence we obtain {(s, f) >0, and

Vol M, - Vol B u 2
w2 0 S ((8)')(3)%)

Li=0
-+
1+j< Dz3

xI (2;—4 —(l+j)) {x(D+4-2(1+)))- (36)
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From formula (36) we see that the leading term in the expansion of the function is

o Vol M; Vol B, D+4
in Z%B) —5=5> BFOIgDTS r {x(D+4). 37

As it is known, the distribution function for a scalar thermal radiation in a three-

-dimensional box of the volume  ¥; is equal to InZ%pB) = n2V,/(908°). Because
2

Lp(d) = ga and I'(2) = 1, we see, from formula (37), that the high-temperature asymptot-

ics of quantum distribution function of a thermal gas contained in the (D + 3)-dimensional
compact space, corresponding to an arbitrary cosmoiogical model, is the same as the distri-
bution function for a scalar thermal radiatiop contained in a (D+ 3)-dimensional box.
This fact can be explained as follows: at very high temperatures particles do not “perceive”
the gedmetry of the space in which they are placed, they behave as particles in a flat multi-
dimensional box. It can also be shown that when D +4 is an even number (then {(0, B) # 0),
asymptotics (37) remains valid, i.e. the anomaly effects are negligible in high-temperature
approximation, as compared with tetm (37).

In the case when the physical space is a pseudosphere PS®, the function {(s, g), for
the thermal gas of scalar bosons in the space PS®x BP, is the following:

Vol (PS?) 5 __,.2+Mz]
P = di- ¢ 2 d; e ", 3
{(s, B) (4m) 2 (s ) e p€ (38)
where M2 = mj+{'"”R+(1—6{)/4*> and 4 is the scale factor on the pseudosphere. For

the minimal coupling { = 0, for massless particles, we analogously obtain the distribution
function in the form

in Z%p) = VOL(PSD?; Vol B® Z (514 ( 8 )n+4-z;'
24m) T o+3 4

. Dad +o D_"‘_‘-j)(% n)
x r('- —+—> +2 Z Al | (39a)

If (BM)? > 0 (M = 1/A4) then (39) takes the universal form (37). We can obtain quantum
distribution function for the case M, = R* from the one for PS® by substituting M? — .#2
= mi+{PR and Vol (PS?) — V,, where V, is the volume of R>.
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3.2. Universal low-temperature approximation
We shall find the low-temperature (f - co) approximation of quantum distribution
function for massless scalar bosons contained in spaces $* x B® and PS? x B'?, respectively.

After simple transformation the following formula is obtained for the function {(s, §)
in the case of S°xB®

B [ s-3,— 1y % 2 "(7:“)2 —
{.B) = 32T di- 7% " p'e d, e "? (39b)
0 p=0 ip

where A is the radius of S?. If we now change the variables: /4% = z, we obtain, from
(39b), the following formula:

BAzs F
21t”2I(s)A 34

03T b
m 2 [(J2 P+ A dp+(Ap) T
p=0. Ap

Let us consider, for simplicity, the case of massless particles (m, = 0). In such a case,
A?p? = (AP R4 (6L —1) and if 424 — oo (which takes place when (P’ R4? - o, i.e. when
the scale factor on the macrospace is much greater then the scale factors on microspace),
the major contribution to the integral over z comes from the neighbourhood of z = 0.

In this case, we can make use of the following asymptotic expansion:

‘:(59 ﬁ) ( )l} 1 (40)

where

+ a0 X )
_Z(J}p)z n 12 1 0 - .1.
¢ = g 10 )
p=—o
z : _ Vol B® z : .
d;e zA2ip - (4nzA—Wi A§D)(ZA2)’-
Ap =0

Then we obtain

D+4
r(s+j— —-—)
51/
(. B) = pA*r'’> Vol B Z AP 4% 2 )

= - — 41
8nl(s)A°" '(4m)P'? - (4 )z(su vy 258 “n
If D+4 is an odd number then {(0, ) = 0, and we obtain
' , D+4
B Vol B®Vol §°
In zq(ﬁ) = p3a (A(D) Zj) (Au )21 2j=(D+4) * (42)

2(4m) 2 AP*4
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In the case of PS®x B”, the function {(s, §) has the form

B Vol (PS%) ¢ s _,M,Z —tip
(s, B) = m—16n21'(s) dt- 7% e P,
0

ip

1-6
where M 2= mi+{ PR+ Zz——c— , A is the radius of pseudosphere.

By introducing the variable z = /4%, we obtain

€L

B Vol (PS*)4*~* e3 e _
{(s, B) = 16n2F(s) dzz* " 3o AM? d).ne 242ip . (43)

0 ADp

In analogy to the previous case, if A2M? - o0, i.e. if 4P R - oo (for m, = 0), the major
contribution to the integral in (43) comes from the neighbourhood of z = 0, and by using
the asymptotic expansion

we obtain

rl D+4
j-—
. B Vol (PS®) Vol B 4% ; 2
(s, p) = D+a (A¥AP) —— D4 44
2(47:)’2— _AD+4 e (AZMZ)J -3

If D+4 is an odd number we have {(0, f) = O (the terms from anomaly are, in the
general case of the low-temperature approximation, of a lower order as compared with
the term j = 0 — for details see [23]). Finally, we obtain

D+4
r{j—-—
In Z%(f) = B Vol (PS°) Vol B z :(AZ’A?’)) _“__2___ 45)

D+4 D+4 "

24m) 2 - AP “=3 (A2M?' " 2

Formulae (42) and (45) are of general character and are valid when the scale factors
on the macrospace are much larger then scale factors on the microspace. By assuming
D+2

4D+3)

D+2 1/,D+2 ,
2o FL gy (3272 4)) 4
b =a0+3) +A’<7D+3 ) “9)

that particles are massless, and that coupling is conformal (C = ) , we obtain
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If the.scale factor 4 — oo, we can neglect the second term in (46); in such a case,

D+2 1/2
~(——-®Rr}) | and the quantum distribution function takes the fo
H (4(D+3) ) q 1 1 S 1 form

. D+4

B Vol B® Vol §3 ===~
n 288 & g7 — Z A7 Tora) 5 N, “n

2(4n) 2 7=0 (—-— “”R) 2
4D+3)
Analogously, quantum distribution function (45) is
"D+4

8 Vol B® Vol PS® F(’_ 2 )

n 29() = P VOB VoIPS Z AP 48)

D+ ! ((D+2 - 2ra-
2(4m) 2 j=0 (‘%;:32) ‘D)R>J 2

The first term of the expansion (45> = 1) is the leading one in (47) and (48), for the low-
-temperature approximation 4 > ay, ..., ap., ;. In this approximation terms from anomaly
(if D+4 is even) are of a lower order.

4. Metric back-reaction on low-temperature quantum corrections

The assumption of the quasi-static approximation enables us to determine thermo-
dynamical characteristics of a bosonic gas in external gravitational fields multidimension-
al cosmological models. The internal energy can be computed from the formula

-z
= -7 Z® “9)

and the energy-density is

E

- 50
Vol M3 - Vol B? (50)

@

Free energy and pressures on the macro- and microspace are given by the following
formulae

- - %-’m 29(p), 1)
W1 oF

PM) = — Vol (B®) &(Vol M)’ 2)

pB) = - — (53)

~ Vol M® 3(Vol B%)
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By using the general high-temperature asymptotic (37), from (49)-(53), one obtains

E

~(D+3) Vol M; Vol B® .(D+4)\ ...
70" AP O2gDTE 2 (D +4),

. (D+3) r (D~+

B0 n(D+4)/2ﬂD:§-4

4CD‘4
72)11("")’

1

T 9

The above relations show that high-temperature quantum effects are dynamically
equivalent to effects of radiative matter, i.e. to a hydrodynamic energy-momentum tensor

T! = diag (¢, —p, ..., —p) with p=-—0H!

The problem of the existence of solutions with the static microspace and their stability
has been discussed in Sections 1 and 2.-

Now let us investigate the existence and the stability of solutions in the low-tempera-
ture approximation of quantum effects. For simplicity let us assume that we investigate
the system in a physically justified approximation a, ..., ap,3 — a. From the universal
asymptotics (47) and (48) and for relations (49)-(53) we obtain

oy 4
p(M3)=p=-g=»a—m;- <m35=p=39, a=const>0. (55

From the above, it follows that low-temperature quantum effects are dynamically equivalent
to effects of the amisotropic energy-momentum tensor

T} = diag (¢, —p, ~p, =P, =P, ..., =P').

The Einstein equations, with quantum corrections on M3 x BP, take the form

3,4 +D¢'i oD+ +3p+Dp’ 24

A a D+2 D+2°
2K (A Af A _a (1-D)p+Dp'~¢ 24
— +(=)+=(3=+D-) =~ + , 56
A? (A)+A( a” a) . - D+2 D+2 (56)

where p, p’ and ¢ are given by (55), K = 0, +1.
System of equations (56) can be reduced to the form of the autonomous dynamical
system
dH D(D-1)

H="—=—-H*+DH-h h?
: + R T v

A1-D)4 ,_ 2
" =73 QU 2,
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. du
= — = —2uh, 7
u T u &Y))

where u = 1/a?, g = 0o/a®*?¥, go.= P*Y, H = A/A, h = dfa.
System (57) is defined in the region

3K 4+D D-1) .

>0, K=0,
~F = Qo "2 4+ A-3H*— K +1

<0, K=-1 (58)

D
3DH'h—-2—ﬂu{

We are interested in the stability of the solution with static microspace, i.e. in the
behaviour of the system in the neighbourhood of the critical point by, = 0, ¥ = uy, H = H,,.
In order to investigate the character of this critical point it is convenient to use the Routh-
-Hurwitz criterion [24] which gives us the necessary and sufficient condition for the existence
of negative real parts of eigenvalues of the linearization matrix.

This criterion, when applied to our case, gives us the following stability condition
for a solution with the static microspace and an inflationary phase in the macrospace:

24+D)  B¥2
e ) gutts = > B. (59)

Condition (59) should be understood in the following way: if system (57) admits the
solution H = H,, hy = 0, u = u,, this solution is represented by am attractive critical
point, provided condition (59) is satisfied. If, for example, f = 0 (the microspace is a hyper-
torus) condition (59) requires that Casimir energy be positive. Because it is not satisfied
in the low-temperature approximation, dim WA* < 3 and only a zero-measure set of trajec-
tories leads to the solution which is interesting for us. Condition (59) is not satisfied in the
general case of low temperatures which proves the asymptotic non-stability of solutions
with a static microspace. If K = 0 and § = 0, i.e. for the case of FRW (with K = 0)x T’
model, the behaviour of the system in the neighbourhood of the saddle point A, = 0,

D
H, = + \/ 6(D+ 754 s illustrated in Fig. de.

If A = 0, the solutions, for which quantum effects are negligible, are asymptotically
admissible (for example FRW (with K = —1)x TP), but they are nonstable (Fig. 4a).
The solutions, for which curvature terms are proportional to the terms arising from quantum
fluctuations are stable (Fig. 4b).

From first integral (58) ome sees that quantum effects do not prowde effective
mechanism of dimensional reduction which could lead to a static microspace, but they can
provide an effective reduction mechanism leading to the zero size.

For example, if K =41 and A4 = 0, one sees, from (58), that the physical space
expands if and only if the microspace contracts.
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5. A simple mechanism of dimensional reduction with the help of low-temperature corrections
for FRW x {small world of Ellis}

So far our conclusions have shown the noneffectiveness of mechanisms of dimensional
reduction. Finally, we shall show the existence of a certain theoretical possibility of internal
space compactification with the help of low-temperature quantum effects for the case when
the internal space is a compact form of negative curvature. As it is well known, the Einstein
theory of gravity determines the local structure of space-time, i.e. the metric, whereas the
compactness of the internal space is its topological property [25]. The problem of topologi-
cal classification of three-dimensional maximally symmetric spaces was investigated by Wolf
[26]), and in cosmological context by Ellis [27]. In the case of negative curvature the classifi-
cation is not known, but for compact spaces one can use their volume for classification
purposes {see Thurston {28]). The number of such spaces is infinite. We shall assume that
the internal space is compact D-dimensional space of negative curvature PS?/I
(I is a discrete subgroup of the isometry group) whereas the physical space is an FRW
model, If I % I (I is the identity), its action lowers the dimension of the isometry group,

D(D+1)

- -dimensional isometry group any longer.

and the space does not admit the full

In this case, Einstein equations with quantum effects can be reduced to the form of the
following three-dimensional dynamical system

DO-1),, DO-D 42

H= -H*+DH -h+ U—5gou 2 ,

3
4+D
h= —3H-h—Dh*+(D-1u+ > gl 2,
4= —2uh (60)
in the region
3K 2 bDp-1) , DDO-1){>0 for K=0, +1
_AT = Q—3H —3DH - h- 2 h* - 202 <0 K=-1,

where H = A/A, h = d/a are Hubble functions on the macro- and microspace, respectively;
u = 1/a2, ¢ = go/a'®** is the density of Casimir energy, g, < 0.
D-1
System (60) has the eritical point 12 = 2P~ g1 _ 3 D 1yug, = 0

4ol . _
which represents the state of the system with a static microspace and an inflationary phase

on macrospace. Eigenvalues of linearization matrix (60) are negative at this point
A= —=2H; <0 when Hy >0, 43,43 <0
where A, A, satisfy the equation

=0

Qolo 2

24+D) P
}.2+3H0).+2uo[(b—-1)+ @+D) ]
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if-the following condition is satisfied:

2(4+D 2+D : 4+D
@+ )Qouoz- Z20wa < =

detA =D-1)+

TrA <0< H, > 0. (61)

If condition (61) is satisfied, dim WA'* = 3, then a non-empty set of trajectoriés of the
system leads to the critical point (Ho, 0, ho). This proves the asymptotic stability. of solu-
tions with a static microspace when the physical space expands.

6. Conclusions

In this paper we have investigated the effectiveness of the mechanism of the dimensional
reduction leading to the static size of the internal space. We have discussed the classical
Einstein equations and Einstein’s equations with quantum corrections arising from massless
scalar fields. The universal low-temperature asymptotic has been determined by using the
additional assumption that the scale factors on the physical space are much larger than the
scale factors on the microspace. The fact that the Casimir energy is negative turns out to be
a basic propeity of this approximation. Consequently, there are no asymptotically stable
configurations with the static microspace. The negative character of the Casimir energy
has not been taken into account in many papers [29]. The asymptotically stable configura-
tions with the static microspace are admissible by the classical Einstein equations only for
the torus as a model of the internal space. However, such models form the zero-measure
set in the space of all initiat data for homogeneous multidimensional cosmological models.
When investigating the stability of configurations with the static microspace, we have used
the dynamical system methods and we have based our considerations on the full classifica-
tion of arbitrarily dimensional cosmological-models.

A criterion of the existence of an effective dimensional reduction mechanism: can be.
formulated in terms of the dynamical system theory: there must exist exactly one critical
point in the phase-space (in the physical region), for which dim WA'* = n (nis the dimension
of the phase-space) and which represents the solution with a static microspace.

- Finally, we have constructed a toy.model FRW x {small world of Ellis} for which the
mechanism of the dlmensmnal redyction by Iow-tempel‘ature -Quantum etfects leads to the
configuration with the static microspace and the inflation phase on the macrospace (the
problem of cesmological constant is here solved in a natural way):

The obtained results concermng the existence of the effective dimensional reduction
mechamsm, are based on the assumption that the mternal space is a grolp. manifold (of
Bianchi types generalized to higher dimensions). The ‘assumptions “of homogeneity and
anisotropy seem to be. reasonable from the cosmological point of view. Some classical
3-dimensional Bianchi types (e.g. B(IX) and B(VIID)) turn out to be, in a sense, “clos¢”
to “general” non-homogeneous world models. However the vamshnng ‘of the chiaotic
behaviour in higher dnmensxonal generahzed Bianchi types [11] suggests that these models
are not generic. In such a case the Einstein equations for the multidimensional homoge-
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neous cosmology would be not rich enough to describe the early cosmic evolution [11].
The problem of the generic character of the Einstein field equations for such a cosmology
has been discussed in [30].

In the present work, we have investigated the influence of quantum effects, in the low-
-temperature approximation, on the existence of assymptotically stable configurations
with the static internal space. If one takes into account field effects with the Freund-Rubin
Ansatz, the effective reduction mechanism exists, provided that the internal space is non-
isotropic and the cosmological constant different from zero. The existence of such a mechan-
ism has been also demonstrated for the case of non-isotropic physical space of the type
(Kantowskx-Sachs) x TP (see [31]).

-One should also notice that, although quantum effects do not lead to asymptotically
stable configuration with the static internal space, they do provide an effective mechanism
of the reduction to the zero dimension. When the internal space is sufficiently small, one-
-loop approximation breaks down.

In investigating the back reaction we have used approximations of thermodynamical
distribution functions. The assumption that the size of the physical space is'much larger
than that of the internal space leads to a negative Casimir energy. To solve the problem
of the existence of the effective reduction mechanism one should first solve the problem
of the back reaction on fully determined distribution functions. This could be done with the
help of numerical methods. Let us stress this out that exact formulae of quantum distribu-~
tion functions, found in the present work, are independent of the assumption that the inter-
nal space is a group manifold B” (it is an arbitrary compact Riemann with the curvature
scalar ‘P R).

The author would like to thank J. Szczesny for reading the manuscript and for many
valuable suggestions.
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