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1. Introduction

The non-linear spinor theory plays considerable role in field theory and in the particle
physics. For the first time the non-linear spinor equation has been proposed by Ivanenko
fifty years ago [1] and since then it was used by many authors in attempts to construct
unified field theory (for the list of references see [2]). Today, the four-fermion interactions
are considered in connection with the problems of dynamical symmetry breaking in many
field models [3~5]). We consider here only the chiral symmetry breaking in the non-linear
spinor field theory.

We believe that the non-perturbative effects such as formation of condensate have
great influence on the symmetry breaking. At present there are different methods to estimate
the value of fermionic condensate, for example, Monte-Carlo technique [6], the sum rules
[7]), strong coupling expression of lattice theories {8] etc.

The value of condensate is sensible to external conditions (external fields, temperature
¢tc.). Some time ago several works were published in which the influence of different factors
on the condensate value was investigated {9]. In our previous work [10] we considered the
dependence of this value on the boundary conditions.

The aim of the present work is to study the behaviour of the vacuum fermionic conden-
sate (Py) in four-fermion theory with respect to the non-Euclidean properties of flat
space-time. In particular we will try to find a connection of vacuum condensate with the
space-time topology and will investigate the evaporation of condensate due to change
of topology. Formation-of condensate leads to the breakdown of the chiral symmetry. In
order to study these effects we will use a2 mean field method [11] which is a very convenient
analytical technique for our case. The philosophy of this approach is analogous to that of
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the case of mass gap equation. In our earlier papers the method was used in torsion theory
[12] and for investigation of the behaviour of effective potential in approximation of mean
field [13).

For simplicity we consider in this work the 3-dimensional space-time. The mean field
method will be described in the next section for the model of four-fermion interaction with
scalar connection. In the third section we will study four different topologies of 3-dimen-
sional Euclidean space and will calculate the value of {y®) in these spaces. Fourth sec-
tion is devoted to discussion of the stable trivial solution of the gap equation.

2. Mean ﬁeld method in non-linear Jermionic model

Massless fermionic field with non-linear interaction 1s described by the Lagrangian
s Ao

L(x) = Py WY+ —(ww) ) 1)

where 1o = g2/u2, po has a canonical dimension of mass, g, is a dlmenswnless parameter.

The Lagrangian (1) is invariant under the chiral transformations

yoysy, P —Pys ¢
Now, in order to study the dynamical properties of the model we introduce the auxiliary
field and rewrite (1) as

y®
L) = P(irou+ gaohp— 2 0. @

The invariance under the chiral transformations can be maintained at this level if we add
to (2) a simultaneous change ¢ - —o.

"~ The generating functjonal with the Lagrangian (3) can be expressed in the following
form '

Z{ij; n, J] = | DPDy2J exp {i | d"x[L'(x)+iiy +Pn+Ja]}, )]

where 7, n and J are the sources of fermions and auxiliary fields respectively.

Evidently the integration in (4) over ¢ field leads to (1). The classical field equations
for o and fermionic field can be found by applying the variational prpcedure to the Lagran-
gian (3) and have the form

(iy*0,+800)p =0, 0 = go/usPy. &)

Thus the field o presents the bound state of the mteractmg fermionic, field.
The integrating over y and J in generating functional (4), therefore gives

Z[#, n, J] = exp {iW[fj, n, J}

, _ ) _
=. JDG exp {i fd"yd"x [—vr‘l(x)SA_(x, ym(y)+ (— %3 o* +Ja) o"(x, y)]} ; (6)

where $-1(x, y) = (iy"9,+800)3"(x, y) is the Green’s function of fermionic field.
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A quantization of (6) can be performed under the assumption that
o = U’o+5 (7)

where o, is the vacuum average with respect to {0/0/0) and & is the quantum fluctuation

of the field 0. One can construct the loops graph’s method for the calculation of the Green’s

functions. These Green’s functions will depend on ¢,. Let us find this functional dependence.
The vacuum average of the mean field in the external source J is

o ST _ (00,
Y P

®

The vacuum average o, has the limit 6, = (o) when J — 0. The effective action I'[G,]
may be defind by

I'e;] = WJ]-(J - ay). 9
One can write I'[G,] in the form of series
I[o;] = | dx{~V[o,]+} 0,(3) S@)osxy*+ ..} (10)

¥[o,] is the effective potential and f{s,) is a certain function of o,.
Combining the results of variation

oWiJ] - 8J(y)

orfe,] = W —-J(x)-— Jd"y 30,(x) o,(), 1)
with
WJ &J
- o 29 o
we obtain
ff- = —J. (13)
da;

Since we do not expect translational invariance to be dynamically violated, o, should
be independent of x. Hence it is sufficient to study I'[o;] for constant ¢,. The value o, is
then defined by the equation

orfe,]

= (. 1
o, 0 (14)

a=dao

Thus this equation defines the minimum of the effective potential Vio,].
From (9) and (14) it follows that
L0871
pie, = iTr (S ———-——)

0 (15)

o=ag
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This is the gap equation. It can be written in the momentum representation in the following
form
d*k 1

— (16
(2m)" vk, + 8000 )

#o0o = —igo Tr

Performing the usual Wick rotation k, — ik,, k, — k, we find the gap equation for dynami-
cal fermionic mass. M = go0, in Euclidean space

M = Mi.sI{0) an
where s is the dimension of y-matrices and
d'k 1

1(0) = (18)

Q@ny K2+ M?

3. Influence of non-Euclidean topology on the fermionic condensate value

In this section we show that the value of fermionic condensate which is ruled by the
equation (17) depends on the space topology. The space-time is assumed to be 3-dimensional
flat manifold with boundaries. There are eight 3-dimensional spaces with Euclidean signa-
ture which are locally Euclidean, while globally they are non-Euclidean due to boundaries.
We examine here only the cases in which the space M, is the direct product of one-dimen-
sional Euclidean space by a two-dimensional globally non-Euclidean space. There are only
four different situations, namely, when two-dimensional subspaces are the cylinder, the
Maébius strip, the torus and the Klein bottle. In all these situations different boundary
conditions must be imposed on the spinor field. Let us consider the above mentioned
cases in detailes.

3.1. Case M3 = R,_XRI_XSL
The fermions satisfy periodic boundary conditions
(x4, X2, 0) = 9lxy, x5, L).

These boundary conditions determine the discrete momentum
27
ki(n) = T n, .n€N.

In order to find the influence of the boundary conditions (non-trivial topology) on
the gap equation we must calculate the value (L), which is written for the cylindrical
topology as

aO

I(Lj—- L) E ! (19)
=537 -
(2m)” L (2—nn) +ad*

n=""o
L
where a2 = kI +k2+M>2.
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We first perform the summation in (19)

1 B 1 _ 1 + 1 20)
L 2 N2, 2a  a(e=1)’
L
Substituting this expression into (19) we have
‘ =~ I(0 1 -LM
I(L) = 1(0)~ — In (1 — e~ EM), (1)
2nL

It can be easily shown that the gap equation (17) for the nontrivial topologies takes the
following form:

M = MAiosi(L). (22)
Integrals I(0) and /(L) diverge. Therefore, we have to introduce ultraviolet cutoff
4
k1

A
@n)® K2+ M?

—-4A

The ultraviolet divergence of the gap equation can be removed by the renormalization
of the 1, constant in such a way that

ho = A = Aol(0)s, Ao/A = A.

Then the renormalized gap equation for the cylinder is

1
M= M{1-— In(1—-e"")¢. 23
{ _y ( )} (23)
3.2. Case M; = R; x Mobius strip
On the spinor field should be imposed the anti-periodic boundary conditions

W(xl,a X3, 0) = - "P(xls X2, L)
and

ky(n) = %(2:: +1).

The value /(L) for this case can be found by calculation of

2]

{d*k 1 1 ,
CHIEFDY [ o @9

‘n(rz +1)| +a*
memw | — (2n
L e
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where

n=-—ow

1 1
T § =5, " ~ia . (25)
[ (2n+1)] 2 a(e™+l)
Inserting (25) into (24) we obtain

_ 1 ~LM
KL) = I(0) + fv_t_l:‘ln (1+e %) (26)

Formula (26) gives us an important result KL — o) - I(0). The gap equation for Mbius
strip topology is given by

~ v .
M= M1{1’+ n—Lﬁlf’ (1+e )}. @n

33. Case My = R; xS, xS,
The torus topology has the periodical condition
'p(xls 09 0) = 'p(xla Lly Lz)
and the momentum will- be -
2nn 2nm
k,(n) = —, kyim)=—, n,meN.
2(n) T a(m) - L

1 &2

To find the gap equation we have to calculate

X 2 -1
KLy, L,) = J dky Z [(2"") (2—?) +k§+M’] . (28)
2

n,m= - oc

The sum can be written is s-representation as
27n\? (2 !
— + —ni'—' +k}+M?
L, L,

- ?dse~s(hz+uz) i [ 2nn)2 2nm):} (29)
o

mn=— o

LetL = L; = L,. Using the formulae
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we have
@ a2 i i L2 e ] Lo © L2 _—
E e tTE +M)=m[1+4<'5 e ¥ + E e +m)>:|. 30)
g n=1 nm=1

Combining the results (28), (29) and (30) we find

1 r M2_-3/2 - _pw T _ Ln2+m?)
IL) = ——r | dse™™'s 321 144 s 4 4 . 31
(L) (47‘)3/26[ se M5 [ ( a e Z_e )] 31

A final result can be written in terms of the modified Bessel function

Hence, we have

M= MI1{1 \/ﬁ ! | 1K LM
= {+ T(_{)K’_’Z_Z:/_ﬁ -172(nLM)

n=1

o

1 1/4 ____ )
+ Z (Fﬁ?) K_y (LM Vm? +n2)]} . (32)

am=1
This is the gap equation for the torus topology.

3.4. Case M; = R; x Klein bottle

In this case the anti-periodical conditions must be imposed on fermions

'P(xb 0’ 0) = = 1P(xl_’ L: L)
and

] 2nn 4
ky(n) = —, kz(m)=-—@2m+1), n,meN.
This situation is similar to the previous one, and we have to calculate the following

éxpression
| 1 (dk, ~ 2nn\? 7 2 ]'fl
L) = = | — - —(2m+1 K+M2| . 33
(L) szzn E [(L>+(L(m+)>+1+ (33)

nm=—ow
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The formula

[ ] @K

1 i
Z e T DIAx N z (—1)e L, (€2))

n=—w ) n=-=o0

helps us to write the sum (33) in the form

o

4nn2  n2? 2 r z
e—rs —"I‘ZL+—E2‘(2m+1)2:| - E_[l +4 (_l)m
: / 4ns : : .
n

nm=-— m=1

_ L3(n2+m?2) d R L2m? z _ L2n2
xe 4 42 E (D" s +2 E e 4‘]’. (35)
m=1

Then the gap equation is

M= M1 1+\/M LT L K .LMn)
— e —— _ n
L (m)*A| J2n 12
. n=1

o

: 1 \M4
+ Z(—l)"‘K_,,z(LM Vm? +n?) (nz+m2) ]} (36)

n,m=1

4. Restoration of chiral symmetry

We can see that in all the cases mentioned above the gap equations have non-trivial
solutions along with trivial solution M = 0. The non-trivial solutions lead to the dynamical
breakdown of the chiral symmetry. These solutions depend on topological parameter
L and on renormalized constant 1. The latter is governed by the Gell-Mann-Low équation,
and L can be changed independently. The topological parameter can be regarded as the
size of a space region occupied by the fermions.

The most important problem is the investigation of stability conditions of trivial
solutions of the gap equations, because the existence of these solutions leads to the restora-
tion of chiral symmetry and to massless fermions. We consider here only the dependence
of the stable conditions on the topological parameter and we will show that in some cases
the stable trivial solutions can take place at some values of the topological parameter.

The stability conditions for trivial solution of the equation

M=f(M1L) €1)

can be found by means of the bifurcation theory [14]. The solution M = b of this equation
is stable when

[ =6LD<1 (38)
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and is unstable when
b, 4 L0=1. (39)

The function f(M, 1, L) for the cylindrical topology of the two-dimensional subspace
(see 2.1) is

1
fM, I, L) =M1 1— — In(1—e" ™) (40)
rnAL
and for the Mobius strip topology of the two-dimensional subspace (see 2.3) AM, 7, L) is
! -LM:
fu(M, A, L)y = M| 1+ — In(1+e ") . (41)
nlLA

The first function (40) defines
fA0, 4, L) - 0. (42)

So, there are no stable trivial solutions if the manifold has the topology of R; xR, x§,
and the fermions are mainly massive

1 LA

Mo == Tin(i-¢ 7 ). 43)
The second function (41) leads to

Fi0, 1, Ly = 1| 1+ b2 (44)

s foy = — In

M ) nLA

and in this case there is non-stable point
Z In2
L.= — —. 45

According to (38) and (39) the dynamical mass (or fermionic condensate) appears when
L < L., and evaporates when L > L. Thus, there are two regions in the size scale. The
first region is the region in which the fermions are mainly massive (L < L)) and

i an-lIL }
Mf(M)= —-—L—In(e °-"l)

The other region is that of the massless fermions, when the chiral symmetry is restored.

Unfortunately the gap equation in the cases of torus topology of two-dimensional
subspace and Klein bottle topology of two-dimensional subspace are very complicated
and cannot be analyzed in any explicit form. But we believe that the correlation of these
cases will be analogous to those written above. This is only intuitive proposition and to
make the full analysis it is necessary to use a computer. We intend to publish the results
in our forthcoming papers.
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The above results indicate not only the existence of non-trivial solutions of gap.

equations in the topologically different spaces but indicate the dependence of the value
of fermionic condensate on the size of space-time.

The evaporation of condensate and restoration of chiral symmetry proceed in different
ways and are ruled by topology. There are topologies in which these phenomena do not
take place. We believe that this will be important in the bag models, because the energy
of bag is strongly dependent on non-perturbative effects and- boundary conditions.
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