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A STUDY OF INFRARED ASYMPTOTICS OF GREEN’S
FUNCTION IN A FOUR-FERMION MODEL
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It is shown by the method of functional integration that in the infrared energy region
the Green function of the four-fermion model has a. simple pole.

PACS numbers: 11.10.J;

One of the currently topical problems is the investigation of quantum chromodynam-
ics (QCD) at low energies when nonperturbative effects manifest themselves and the
quark confinement problem exists. In this energy region there is no rigorous calculation
scheme in QCD due to the large constant of the quark-gluon interaction ag. At the same
time there is a belief {1, 2] that at low energies the QCD passes to a theory with an effective
four-quark ‘interaction. Such an approach describes quite well an experimental situation
in the low-energy physics of mesons [3, 4]. Theréfore, it is interesting to study four-fermion
schemes in the infrared region of energies. It should be noted that in this case the require-
ment for renormalization is not placed upon this model, since the latter describes only the
low-energy limit of the whole theory. To eliminate the ultravielet divergences, cutoff at
large momenta will be used. With this approach the physical quantities — masses of
particles are expressed in terms of the cutoff momentum which therefore has a physical
meaning. Note that in QCD theré appears also a characteristic energy scale which is due
to- the phenomenon of “dimensional transmutation™ [5].

We shall study the infrared behaviour of the fermion Green function in an elemental
four-fermion massless model with the Lagranglan

K
L= —y,0,y+ 7(‘75"’)2’ (1)

where « is the fermion field self-action constant with dimensionality m-2.
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On introduction of the collective field ¢ and after functional integration with respect
to the Fermi-fields {§, ¢ the generating functional for Green's functions can be expressed
as [6-8]

Z[7,n] = N [ Do det (= 7,6, + 2o®)
x exp {i | dxdy[ —% u3@’0(x — p)+A()K(x, ylom(»)]}- 2

Here k = g&/ud; 8o Ho are the dimensionless and the dimensional constants, respectively.
The Green function of the fermion in the external collective field K(x, y|p) satisfies the
equation

(7,6, — oP(XDK(x, ylg) = o(x—y). 3)
Making C-numerical shift of the Bose-field ¢(x) = g, + ¢'(x) caused by the phase transi-

tion where ¢, = const and expressing the fermion determinant as a series in loops, we
arrive at the expression [6-8]
Z[A,n] = N, [ 2¢ exp {i | dxdy[3 ¢'(O~M*)9'Z5'8(x— )

PO

+A()K(x, ylpn(y)+ Z “:!-tr [Kogo?'T", 4)
n=3
.2
where the integral Z;! = — 8o f ,.i’i_., is cut off at a large momentum p? = A?
] 81’:‘ pz + mz . ’
m = —gy@, is the dynamic mass fermion (condensate), M = 2m is the mass of the collective

field ¢'Z3 '/? which is a bound fermion-antifermion state, and the free Green function of the
fermion is Ko(p) = (—ip+m)/(p>*+m?). As a result of taking into account the vacuum
polarization (fermion determinant) in the field ¢'Z;'/? there appeared a kinetic term
(¢’ [0 ¢’Z3 ") and the fermion has acquired a dynamic mass m. The sum in (4) represents
an expansion in loops and contributes to the effective action of the form {7} 2mg,¢'3Z; "
—1 g2¢’*Z5 " 4+ O(gd). In the infrared region, the contribution of the loops is usually ignored
and this sum therefore will not be: taken into account.
Changing the variable ® = ¢'Z; '/, neglecting the last term in (4), we shall write
the expression for the quantum Green function G(x,y) = 6°Z[#, n}/oi(x)on(y)|y=5=o0

G(x,y) = N, | GOK(x, yi®) exp {i | dx 3 &(01~M")®}. &)

The Green function (5) effectively corresponds to the Yukawd interaction gpypd
if the vacuum polarization is neglected. The infrared asymptotics of the Green function
from the point of view of the spinor field model with the Yukawa interaction has been
studied in [9]. To investigate (5), we shall employ another method involving the solution
of (3) in the form of the functional integral of [10]. To this end we quadrate equation (3)

(O-(m—g®)* + £7,8,P)D(x, y|®) = 6(x~y), (6)
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where .
K(x, y|®) = (7,0,— m+ g®(xN2(x, y|®P),
gop(x) = —m+gd(x), &= ¢'Z;'? g=g,Z}%

Let us write the solution of equation (6) as {10]
) s 5
D(x, y\®) = —i | dSC [ Dv exp {i | dE[vA(E)~(m—gD(x =2 | v(n)dn))*
o ] 4

S s
+87,(S)0, P(x -2 5‘ v(mdm]}o(x—y — 265 v(&)d?). )

Here functional integration with respect to the additional field is used and the constant
C satisfies the condition

s
Cfavexp i [ vi(§)de} = 1. (®)
0
% et us introduce the following designations:

s s
i(2) = %dﬁ&(z-x-%-Z j' v(n)dn),

S
[2v]s = C@v exp {i | vi(n)dn} 9
0
with the account of which equation (7) will take on the following compact form:
D(x, yi®) = —i j ds { [2v]s exp {—i [ dzj(2)

A
x [(m— g®(2))* ~ £7,0,H(2)]}0(x — y~2 Of w(&)dQ). (10)

As a result, we arrive at the solution of equation (3)
K(x, yi®) = (y“a —m+ig e )) (-1 fds j [Jv]o exp

{—i dz[j(z) ((m— g¥(2))* — £7,0, () + J(2)H(2)]}(x — y -2 % wEdE), (1)

where for comvenience the Schwinger source J(z) is introduced. We shall hereinafter
neglect the term g7,8,9(z) in the exponent of (11) responsible for the spin effects, since
it contains matrices y,. In the infrared region of energies this is justified (see [10]). On
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substituting (11) into (5) there appears a functional integral of the Gaussian type
§ @@ exp {~i | dz[[j(z) (m — gB(2))* + J(2)P(z)~ } H(O1 ~ M)}
e det ™V (—~ Dg+ M +2g%p(2))exp [ § dzedye

x (Je(z) —2mgje(2))A(z— y) (Je(y) — 2mgje(y))]- (12)
Here 4(z—y) satisfies the equa.tion
(DE—M2—2g2jE(z))A(z—y) = ~Jg(z~y) (13)

and the passage to Euclidean space-time has been realized. Hereafter we shall assume
that g? < 1, This condition is fulfilled in four-quark schemes describing the low-energy
meson physics 3, 4]. In this case, the solution of equation (13). can be spught by the itera-
tion method. The zeroth and the first term of 4 expansion by the coupling constant g have
the following form in the momentum space:

s
ik(x ~ 2{[ v(nydn

4%p) = , 4'(p) = «(14)

2+M2

2 %je(p) J dkg e
PP+M? | 2n) K2+ M?

We shall use hereafter only 4°%(p) and, therefore, assume that the constant N, has been
chosen from the condition N, det™!/? (—[Jg+ M2 +2g%x(z)) = 1. This requirement com-
plies with the fact that the free (at g.= 0) Green function had the standard form. Using
(11), (12) and the approximations made, we shall arrive at the complete Green function
in the infrared region

© o s

G(x, y) = f dSe™5" f [2v]§ (?,,6“ m—g )6(x y— 2fv(:)dc)
0 0

6J(x)
. . s s

x exp [—2mg | dzgJp(z) | dE4°(z—x+2 [ v(n)dn) -
0 z

s s . . e
+2m*g? ‘I) dg ,g dE4°2 g win)dn) +% { dzedyelo(2)4°(z = y)e(3)]- (15)
Taking the variation derivative in (15), then assuming J = 0 and passing to the

momentum space, we find

w© R s b ~2ip fv(()de-u(S)
“G(p) = —~1 § dSe™ "™ [ [DV]5(ip—m+2mg* [ dEA°Q2 [ vimdn)e (16)
0 ] ¢

Here

s s .k ) "
1(S) = 2m"g & [ at,4° | vindn). an
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If we assume g = 0 in (16) we shall arrive at the free Green function G°p)
= (= ip+m)(p*+m?), where p = p,y,.

In order to calculate the functional integral of (16), we use the approximate formula
[10-12]

§ [2VIF,(v) exp F,(v) = (F,) exp {F,),
where
(FY = [[2VIF(v) (i=12). (18)

Note that approximation (18) fairly well describes not only the infrared region, but
the high energy region, too {12, 13]. Applying (18) to expression (16), dropping the last
term enclosed in parentheses in (16) which gives a correction to the fermion mass and
making a shift of the integration variable v (£)—p, = ®,(£), we obtain

G(p) = —i (j) dSe™S®**m)(ip— m)ef, (19)

s s 4
F(S) = 2m’g’f déf dé, | [@w]w(zg o(m)dn+2plE—&,])

_ dkg exp {—ilE—¢,] (k2 ~2pk)} .

In (19), the presence of a negative imaginary addition (m> — m?®— i) in the exponent
is implicit. Expressions (19), (20) generahze the formula obtained in [9}, since they take
into account the values quadratic in boson momenta k, too. ‘This is important in takmg
into account g2 corrections [10]. To estimate the integral of (20), we act as does the author
of [9]. On substituting the variables |k| = Mshu, ko = M chu, diki/k, = du, passing
to the system of fermion rest and after adequate integration, we find

Sg*mA +i5g’M2 24 gt 24

F(S) = In —— ——In —
O =" * e "M T "M
2 ZAf2
M
- lg S HOEmMS)~ L2 .(ds,e‘sl'“‘yg”(zmmsl), @n
o
21

where the Hankel function is H{(x) = e~ *°®¥dy. To obtain (21), we have used the
1L'

0 ,
relations M = 2m, p*> ~ —m?. The first three terms of (21) are eliminated by renormalizing
the fermion mass m and the corresponding fields.

Being interested only in low energies, we correctly take into account the infrared



728

region when p? >~ —m?>. In this case, the main contribution to the integral of (19) is from
the region of large S. We can therefore replace the function F(S) by its asymptotic value
lim F(S).

S>>

Taking further into account that lim H{*(x) = 0 and reasoning as in [9), we come

xX—+ w0

to the conclusion that the integral of (19) yields

—ip+m .
G(p) = m +cons’§(——tﬁ+m). (22)

Thus, the Green function of the fermion in the model involved has a simple pole.
In this approximation, there is neither strengthening nor weakening of the pole. The
conclusion obtained is in excellent agreement with the resuits obtained in [9] which consid-

“ered the infrared asymptotics of the fermion Green function in scalar mesodynamics.

In [14], there is a suggestion that consistent treatment in quantum electrodynamics
leads also to a characteristic feature of the spinor propagator in the form of a simple pole
in the infrared region.

In conclusion, note that in [15] (see also [16]) a principal possibility of observing colour
from the point of view of QCD is shown. This suggests the existence of a pole in
the asymptotic state of the quark propagator. So, the investigation discussed in the present
paper points to the same asymptotic behaviour of the fermion Green function in the initial
model.
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