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ON AN ANALOG OF THE HIGGS-LEPTON SECTOR IN
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The present paper considers a SU(2), ® U(1)-invariant model with the most general
four-fermion interaction of fermions of different generations. It is shown that as a result
of dynamic break of symmetry the “upper” fermions (neutrinos) of different generations
remain massless whereas the “’lower” fermions (leptons e, u, 7 ...) acquire different masses.
The spectrum of collective excitations has been found which includes Goldstone fields and
fields of massive particles, analogs of Higgs particles representing fermion-antifermion
bound states. We have found an effective action of the form similar to the Higgs form,
with the difference that for each generation of fermions the mass of the fields, analogs of the
Higgs fields, is twice the mass of the fermion.

PACS numbers: 12.50.-d

1. Introduction

The main problem of the standard theory of electro-weak interactions is at the present
time the existence and mass of Higgs particles. Attempts to replace the Higgs sector by
introducing technicolor [1, 2'] and by using the Schwinger mechanism [3-6] have been report-
ed. The former approach required amplification [7, 8], but it still involved difficulties
[9-15]. The status of the latter approach is not clear due to the difficulty of obtaining
nonperturbative solutions to the Schwinger-Dyson equations.

There exists another possibility of generating particle masses by introducing the four-
-fermion interaction [16-18]. Based on this idea, the authors of [19-20] considered a glob-
ally SU(3), ® SU(2), ® U(1)-invariant four-fermion model, where the role of gauge
fields was played by compound fermion-antifermion states. Later the problem associated
with the existence of massless composite vector fields was indicated [21].

In [22, 23] we proposed a model based on the replacement, in the standard theory
of electrically weak interactions, of the Higgs doublet by the quantity

¢ = RL = (g":;) (1.1)
RYL
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where

v vV - -
L=%(1+ys) (1,0) = ('/’I;) , R= %(1_75)’/’ =yg R=R"y, L= L'y,

y is the four-component lepton field and v is its corresponding neutrino. It should be noted
that we did not abandon the requirement for local gauge invariance and used the quantity
Apro with one dimensional coupling constant as the Higgs’ Lagrangian analog. Thus,
the scalar Higgs fields were not introduced initially but there appeared compound collective
excitations, analogs of the Higgs fields. In this case, the massless phase was unstable and
the dynamic SU(2); ® U(1) symmetry was broken. As a result, the lepton (e) acquired
a mass while the neutrino v remained massless. It should be noted that with this approach
it is necessary to introduce a cutoff momentum associated with the scalar condensate quan-
tity which ia actually the lepton mass reversed in sign. At the present time, however, methods
of regularizing four-fermion schemes [24-27] which form the basis for the present treatment
have been (and are being) developed. In a recent work [28], it was noted that models of
the Nambu-Yona-Lasinio type can be treated as renormalizable theories.

The present paper will generalize the model of [22, 23] to the case of a more general
four-fermion interaction of fermions of different generations.

2. Extended model

Let us consider an arbitrary number of fermion (lepton) generations »n. Then we shall
introduce analogs of Higgs doublets for each generation of leptons ¢' = R'L!, where

i
¢=($i), gh= Pk, g= Pl V=050 ) Y=(enT ).

The SU(2), ® U(1)-invariant Lagrangian describing the self-action of the fermions will
be taken in the form

& = ~D[y,0,L—R%,0,R +1¢'¢", Q.1

where summation over indices i,j=1,2,...n Is assumed, d, = (5, 04), 04 = —i—gt— ,

7, are Dirac matrices. The passage to a complete invariant Lagrangian describing the
interaction of leptons with W*, Z, A bosons in achieved by replacing 0, 2,=20,
—i(ghy(x)t"—% g'Ya (x)) and adding a free Lagrangian, where

Cip2 _ 1
"?0 = _‘szv——T G:vG:v’
where

F,, = 0,a,-0,a, G = ayb:_ 6vb: + ga""”bzbf,
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and the fields of the observed bosons are constructed in the conventional manner (see,
for example, [29]):

Loy, 2 ga,—g'b, g'a,+gh>
i), 4,= T En 7, - BRTEL
Vit

wE= I
SN Vgt g

In the present work, we shall investigate the dynamic break of the SU(2), ® U(1)
symmetry of the model with Lagrangian (2.1) and the formation of lepton masses. We shall
also find the spectrum of collective excitations (composite fields).

From the requirement for Lagrangian (2.1) reality it follows that 4;; is the Hermitian
matrix, i.e. {[A]!t = [14][. The A;; matrix elements have dimensionality (m)-2.

The generating functional for the Green functions will be written as follows:

Z[i, n] = No | 20DypDvav exp [i | dx(L + Lin, +iLL + Rigg + 7 RH . (2.2)
To linearize the four-fermion interaction entering into (2.2), we shall use the formula
[ 2@ exp (i[DLgi* + D gl — g,;®.BI*} = (det fig]l)~ lePrea'ee", (2.3)

where summation with respect to indices i, j = 1,2, ... n, a = 1, 2 is made and the matrix
g; is reverse to 4, ie., [gl[ = {IA]I-%.
For convenience, we shall introduce the 6-dimensional functions and matrices of [23]:

g = <Vl;), 5= (—w,,a,‘ (2 ) &, = (—o, il),
L4 0 79,

010 0 0 0 0 00
M,={0 0 0], M,={0 0 0|, M,=|0 I 0], (2.4)
000 1 00 0 00

N ~ 0 o 0 I
My =0 000 v={_ig0) "=\ o)
00 I

where ¢ are Pauli matrices, / is a 2x 2 unit matrix.
Taking into account the designations of (2.4) and formulae (2.3), expression (2.2)
is rewritten as

Z[A,n] = N [ DE2ED® exp i | dx[ &3¢
+E(DIM, + PIM)E — g, @ 01" + E + HET). (2.5)

For the functional integral of (2.5) to exist in Euclidean space-time the integrand
at large @, must decrease. Therefore, it is necessary to impose the requirement for positive
definiteness of the matrix g;;. Due to the fact that the matrix |/g|| is Hermitian, as is the
matrix |}4]/, its eigenvalues are real and, taking into account the foregoing, must be pos-
itive,
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The complex Bose-fields @ introduced above are collective variables [30]. Since the
continual integral (2.5) is Gaussian in the fermion fields &, & it is possible to perform the
integration. The result is

Z[ii, 1] = N | 2@ det [(— 6+ LM, + ®-*M]) (3,;)]
x exp {i | dxdy[ — g,;®Ux)®J*(1)3(x— ) +7'()K“(x, Y’ (M1}, (2.6)

where (8,;) is the unit nx n matrix valid in the space of generations and K“(x, y) is the
Grecn function of fermions in the external collective fields ®:, satisfying the equation

(— 0+ BiM,+ DI M)K(x, y) = —d(x—y). 2.7

This equation takes into account that K“(x,y) is a diagonal matrix, i.c., K'(x,y)
= 8,;K'(x, y) and in (2.7) there is no summation over the index i.

Let us assume that in the model with the generating functional (2.6) dynamic break
down of the SU(2), ® U(l) symmetry takes place. In this case, the collective fields &
acquirc a vacuum mean {®.> = @},. It will be shown below that this corresponds to the
effective potential minimum. Isolating the condensate and making a shift ®i(x) » &},
+®i(x) (#}, = const) using the formula det = exp tr In, we express equation (2.6) as

Z[fi, n] = N [ 2P exp [iSeq+i | dxdyif'(x)K(x, )P (»)], (2.8)
where the effective action is
Setr = § dx[ — gi(Poo+ DLx)) (Phh + PI¥(x))
— i tr In [(— 0+(Ph, + DUX))IM, + (Do + DH(x)M) (5.)]- (2.9)

The operation tr in (2.9) means taking the trace over matrix and space-time variables.
Note that the above shift of the collective fields must be mase in equation (2.7), too.

3. Mass spectrum

Operation (2.9) includes the real fields ®.(x) which represent quantum excitations
over the physical vacuum. The equation of motion of the fields @.(x) can be found by taking
a variation of the effective action (and assuming ¢ = 0):

éseff i . i l;
5—“¢£*sz = —gij¢0a+ltr KéMa =0 (3.1)

plus the complex-adjoint equation. Here Ki — Green’s function of free fermion satisfies
the equation
(= 0+ Do, M, + BEMDKo(x, 1) = —8(x— ). (3.2

The condition of (3.1) corresponds to the absence of “tadpole” type diagrams and received
the name of the selfconsistency condition. Passing into the momentum space, one can, verify
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that the solution of equation (3.2) is the matrix [23]

) —(P*+1902P PP — PO,
; i ik =
KoP) = i) ~p* 5, -r'®%:  -P’P | (3.3)
N @0 00p —(PP PP —p P

where § = p,G,, m? = |0h,|2+|®h,1%, p = p,0,. 6, = (0,il), p*> = p*—p}. Substituting
(3.3) into (3.1) and calculating the trace, we arrive at the equations

. i P).d .
gi;®ha = — {,?f?{?m% (j=12..na=12). (3.9)

By virtue of the fact that the matrix 4;; entering into (2.1) is Hermitian the matrix
g;; entering into (2.6) is also Hermitian. Therefore, there exists a unitary transformation
in the space of generations &, —» Ug,, |igll = UllgliUr, UtU = UU+ =1 leading
the matrix {|g|| to the diagonal form with real eigenvalues g'. We assume that these eigen-
values g' are positive and different. Then, doing the above unitary transformation of equa-
tions (3.4), we arrive at the conditions

. i &}, dp
P, = — | oy 35
g Qa 871:4 f p2+m'2 ( )

It should be noted that the values of m, are not invariants of the unitary transformation
but they are transformed.

We could have diagonalized the quadratic form in (2.1) from the very beginning,
¢'hue’™ = 6'Ai6'* where o' = U, U|jA{|U = A(8;). Then we could straightforward
have arrived at (3.5) where the value of g' = (1)~". In this case the collective fields would
have the value @), = (¢'>.

Besides the trivial solutions &}, = 0, corresponding to the non-breaking of the SU(2),,
® U(l) symmetry, equations (3.5) have nonanalytical nontrivial solutions (&}, # 0)
at 0 < 8n2g/A% < 1, where A is the cutoff momentum [16). Consequently, at A2 > 8z2g*
the phase transition to the state with m? # 0 occurs. Equations (3.5) are of the same form
as the equations for the energy gap in the superconductivity theory the nontrivial solutions
of which correspond to the superconducting state and the trivial solutions correspond
to the normal state. Now we shall show that m; are masses of leptons (e, u, 1, ...). For
this purpose it is convenient to use unitary gauge at which &), = 0, @), = &%, # 0.
In this case, the fermion Green function of (3.3) will be written as

- 0
i _ p
Ko(p) mi—ip (3.6)
0 2z 2
p +my
Here m; = —&,,, p = DY, It follows from the form of (3.6) that as a result of dynamic

symmetry breaking, the neutrinos (v, v,, v, ...) remain massless and the fermions
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(e, p, 7, ...) acquire nonzero masses m; (i = 1,2,3 ... n).. To prove the vacuum stability
at @}, # 0, let us calculate the effective potential. In a single-loop approximation, when
we restrict ourselves to the constant fields @}, the effective action related to the effective

potential by the formula Sy = — | V°dx has the form
Sar = — [ dxgy @, 84, —itrIn [(— 0+ Bp,M, + Bo.M.) (3:))] (3.7)
Subtracting from (3.7) the action corresponding to the unbroken symmetry
§° = —itrin(—9) and using the property tr In = In det we find
ngf_so = — jdx{gij‘pf)a‘pg: 4
, dp A i iy pr
+i )t In det [(1 + Go(p) (PoaM,+ Po.M.) (61}, - (3.8)
i
where
. 1/p O
G = . 3.9

Calculating the determinant entering into (3.8), we obtain

o i
Vete = 890, Pha+ Py fdp In (1 +
n : ,

The second term in (3.10) determines the one-loop addition to the effective potential.
The effective potential minimum of (3.10) yields the condition 0V 5%/0®h, = 0 and a com-
plex-adjoint one. It can easily be verified that this condition exactly gives equation (3.4)
of selfconsistency. Thus, the nontrivial solutions of equation (3.4) correspond to the effective
potential minimum. It should be noted that we have used only the extremum condition.
Actually it is necessary to check also that 82V3/0dl, > 0 is fulfilled (in the gauge
@), =0, &, = &, % 0), which can be verified immediately.

2
m;

2
p

) . 3.109)

4. Expansion in loops

Let us now transform the effective action (2.9) by expanding it in low fields (excitations)
&.(x). Drop in (2.9) the constant S and take into account the equality trIn [(-é
+(Poqg+ D(NM, +(Dog+ DLHx)M;) (5,)] = tr In [(— 0+ $p, M, + Po(M,) (5;)] +1tr In [(1
—~ Ko(DUx)M,+ DF(x)M)) (6,))]. Let us also make use of the fact that in (2.9) the terms
linear in fields ®.(x) are absent by virtue of the condition of (3.1) (or (3.4)). Taking into
account the foregoing, expand the action of (2.9) near statistical solutions ®},:

Ser =S+ Y L, (4.1a)

n=3



735
S =~ [0l 0+ SuIK@MAOIMYGIF, @10

L, = — tr [Ky(®:M,+ &*M)T. (4.10)
n
The. field-quadratic term of (4.1b) which determines the propagation of ®,(x) particles
can be expressed as
S = *-*f dxdy®'(x) [T"(x, y)] '@i(y), 4.2

where the four-component wave function o' = (¢!, &', &5, 1) has been introduced,
and the propagator T(x, y) is determined by the relations

0100

iy - 1 000 [ dk .

(TSP = gy 000 1] ¢ (2n)4K(k)I’ 4K'(k—p)I g6y, (4.3)
~\0 01 of

where

ry=M,, M;’ M, M3).
Calculating (4.3) with the use of (3.6), we find the nonzero elements in the basic set where
the matrix [lg|! has a diagonal form (i.e., g; = £9;))

q(g—p)dq

1™ = [7,] — | ——55—5 =p"Z5'+0, 44
[ 12(17)} [ 21] Py (q_p)z(qz_*_m?) p 4.4)
u R o - i m?d -
[T = [T = - — 1 = 2m?Z3'+0,

[(g~p)*+mi] (¢ +m])

. 1 A 1 B 9(q—p)dq 2 271
(@] = [Ts(p]™" = &+ 5= [G=p)i+mi] (q2+m§)"(” +2m;{)Zg" +0.

. . 1 A?
Here we have used the fact that [T¥ (p)]' = [TH(p)]"'d;, Z5' = 62 (ln——z— ——1> s
T m

A is the cutoff momentum, m is the point of normalization, O denotes the last part which
is independent of the cutoff momentum and determines the radiative corrections. To
obtain (4.4), we have used equation (3.5), too.

Substituting (4.4) into formula (4.2) in the momentum space and renormalizing the
fields &' — &'Z/? [24-26], we find the field-quadratic action to an accuracy of up to higher
radiative corrections

S =3fax{o\ O+ O+, 00 +05 0 @', —2m{ (P, + B5)*). (4.5)

In (4.5) summation over the generation index i is implicit and the notation [ = 0,0,
is used. Designating @5 = x'+iy' we rewrite (4.5) in the form

S@ = [dx{t (@ O &L+ 0l O oM+ (O—4mH'+x O ¥} (4.6
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It follows from (4.6) that we have in each generation three massless fields Re &}, Im &',
x' and one massive field x' with a mass 2m,. In this case, @} are charged massless fields
and y' and «' are neutral massless and massive fields, respectively.

‘So, as a result of the dynamic SU(2), ® U(1) symmetry breaking, in each generation
there appeared three Goldstone fields and one massive field, an analog of the Higgs field.
This is in agreement with the general Goldstone theorem [31]. It should be noted that the
fields @, are composite and represent bound fermion-antifermion states. The fact that the
mass of the composite boson field is twice the fermion mass was initially found in an ele-
mental four-fermion model [16]. This phenomenon is analogous to the formation of Cooper
pairs in the theory of superconductivity.

The diverging three-point and four-point Green functions that follow from (4.1¢)
at n = 3, 4 will contribute to the effective action (4.1a). The terms of (4.1c) with
the number n = 5 are converging and determine the higher radiation corrections.

To calculate the remaining contributions to the effective action (4.1a), we find the
three-point and four-point Green functions as a one-loop approximation

23
0" Ses

0i _
T D = o s e (5T @D

54S eff
80, (x)5P5(y)SP(2)6D(1)

FTBCD(Z’ Vs Z, 1) =

in the momentum space

dk . ) .
I'Scp, @) = { J 5 [K'(k+p—)I' JK(K)[ gK'(k + p)
(2n)

+ Ki(k— )L K (kI (K'(k+q— p)]I’C}, (4.8)

ABCD(kp kyy ky) =i tf{ {K" (p)I" K (p+ky) [TcK' (P+kz k3)

Q2n )4
x FyK'(p—k ) 4+ cK'(p+ky— k) (K (p+ky+k,—k3)Tg

+T K (p—k, +k)[cK (p— k)T 4+ T K (p+k, +k)[K'(p+k,+k,—k3)Tp
+T K (p+ky+ k) gK'(p+k3)+ K (p+ ks — kI [K'(p+ ka)rc]}} s

dpdq

2 Tiac(p, @)eO ™0™, 4.9)

Tisc(x, v, 2) =

dk,dkydk,

i + +ik
T'sen(%, y, 2, 1) = J%(Zn)lz Anco(k1, k,, k )e'kl(x M+ ika(t=y) +ika(y—2)
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Calculating (4.8), (4.9) taking into account (3.6), on renormalization of the fields and sub-
stitution into the formula

i 2y~ 1 i 1 i i i
Ser = =% j dxdy®'(x) (1) ®'0) + o fdxdydzd&(x)rb,,(.v)@c(z)r,,ac(x, »2)

1 . . . .
+ T jdxd ydzdttp;(x)fbi,( WPA)P (D pep(x, ¥, 2, 1) (4.10)

we find (see also {32))
Ser = [ dx (3 (@7 O @, + @) O &) +#/(O—4m))i’

+x O £ +4max'((041% + |941%) = 2310} 1 + 195 1%)2 (4.11)
Here a dimensionless coupling constant A2 = Z, has been introduced. The action of (4.11)
is analogous to the Higgs sector (on field shift) of the standard theory of electro-weak
interactions, the only difference being that the Higgs fields are introduced for every genera-
tion of fermions.
The fields x' have mass which is twice the fermion mass (2m;) of the corresponding
generation.

5. Conclusion

Thus, we have shown that if we proceed from a model with Lagrangian (2.1) we find
that this model leads, after taking into account the reconstruction of the physical vacuum
and the dynamic symmetry breaking, to the same conclusions as in the Glashow-Weinberg~
-Salam theory. The difference is in the composite nature of the Higgs particles and their
mass.

On introduction of interaction with gauge vector bosons, some of them (W?*, Z)
will acquire nonzero masses while the electromagnetic field 4, will remain massless, as the
calculations of [33] show. It should be noted that the complete effective Lagrangian is analo-
gous to the standard one.

The present treatment is only an analog, but not the substitute of the Glashow-
~Weingerg-Salam theory, since there has been, so far, no interpretation of ' states with
masses 2m, (for example, parapositronium, etc.) and the quark sector has not been taken
into account. Tempting is the fact that there is no ambiguity here in regard to the Higgs
particle mass which exists in the standard theory.

We also believe that the investigation of dynamic symmetry breaking in the SU(2),
® U(1) four-fermion model may itself be of interest without appealing to the GWS theory.
The model considered In this paper can find application in considering strong interactions
at low energies when nonperturbative effects manifest themselves and the QCD passes
to the four-quark model [34-36].
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