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The interaction between the ‘“‘macrosystem” (corresponding to the so-called slow
variables) and the “microsystem™ (corresponding to the so-called fast variables) is considered.
By using the Born-Oppenheimer adiabatic approximation it is shown that such interaction
modifies dynamics of the “macrosystem”. We find the form of modified Poisson brackets
for the “‘macrosystem”. We also show how symmetries and laws of conservation of the
“macrosystem’ are influenced by this interaction.

PACS numbers: 11.10.Jj

1. Introduction

In quantum mechanics onc usually deals with systems composed of several subsystems
interacting with each other. An often used method to describe the interaction between
subsystems is based on the so-called adiabatic theorem. In general, this theorem can be
stated in the following way [1]: Let us consider two interacting systems and let us freeze
out the motion of one of them (the “macrosystem’), then the dynamical variables of the
frozen system appear as external parameters in the Hamiltonian of the remaining (“micro”)
system. If we solve the Schrodinger equation corresponding to the “‘microsystem” with
the above assumptions, we find that a slow evolution of external parameters does not
cause any quantum transition between different energetic levels. Of course, the assumptions
of the adiabatic theorem arc not fully satisfied in rcal physical processes taking place
at a finite time interval. However, the notion of the adiabatic change provides a useful
hypothesis for discussing the wide class of quantum processes including quantum field
theory.

* This work was partly supported by the Polish Interdisciplinary Project CPBP 01.03.
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It has been recently shown that the traditional quantum adiabatic theorem is incorrect
in some special cases: namely in the case when external parameters change along a closed
loop, the wave function of the “microsystem” should be multiplied by certain phase term.
This term is of topological character and depends on the loop configuration in the phase-
-space of external parameters [2-5]. It is associated with the first Chern class of natural
Hermitian connection in the Hilbert fibre bundie over the manifold of parameters. This
discovery, duc to M. V. Berry, proves to be useful in a variety of situations. For example,
it has been applied to investigate the problem of semiclassical quantization [6], as well
as in the case of problems associated with the interpretation of gauge anomalies [7, 8];
by means of it anomalous commutators in chiral gauge theories have been determined
[9-11]. A review of problems connected with the adiabatic theorem can be found in two
papers by R. Jackiw [12, 13].

The aim of the present paper is to show how the interaction of “macro” and “micro”
systems, within the frame of Born-Oppenheimer adiabatic approximation, modifies dynam-
ics of the “macrosystem”. In Section 2, we calculate equations of motion modified by
this interaction for the classical version of the “macrosystem”. We find modified Poisson
brackets along with the symplectic form corresponding to the “macrosystem”. By choosing
a special case of the “microsystem”, we show in Section 3, how the assumed spherical
symmetry of the “macrosystem” is modified by interactions with “microsystem”. Section 4
contains conclusions and suggestions concerning the application of our results in the field
of chiral gauge theories.

2. Modification of the symplectic structure

Let us consider a quantum-mechanical system described by the hamiltonian

A = Hy(P, )+ H(p. x, 1), (2.1)
where
D it ¢ . T
P, = —11«5;71, p=1, .., N
b
pi=—ih—; i=1,..,M,
0x

The system described by the Hamiltonian H, will be called “macrosystem”, and the
system described by the Hamiltonian A — “microsystem”. Let us assume that there
exists a complete set of functions {u,(x, 1)} such that

H(p, x, Dun(x, 2) = E()U,(x, 7)
and
(U 1) = [ dMxup(x, u,(x,7) = 8,,,, for arbitrary 1.

Moreover, we assume that the Hamiltonian A (p, x, 1) is nondegenerate. The wave function
y of the system described by Hamiltonian [H| can be presented in terms of a complete set
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of functions {u,}
P(A x5 1) = 3, Pplhy (X, 7). 22

For m # n, we have:

)= 2.3)

oH
( aun> um’ aAA," un
U s = .

We assume that the Hamiltonian H (p, x, /) is a slow variable in A“-parameters; this means

oH
(um, — u,,) Akl
0" ’

shift of parameters A* during the Bohr time interval AT, ,, = A|E,—E,|~'. With the above

that |E,—E,|"* <1, where A/, , corresponds to a characteristic

oA

tion of the Born-Oppenheimer adiabatic approximation. By using this assumption we shall
now determine equations satisfied by wave functions &,(4, ) of the “macrosystem”.
Because the wave function (4, x; 7) satisfies the Schrodinger equation, one has

é . . .
ih E t = Byl 1) = g [Ho(B, 1)+ H(p, x, 3Y]® i (2.4)
v}

m

. 77 . .
assumptions the terms <u,,, —) can be neglected, for m # n. This is the basic assump-

Let us project this equation onto a fixed wave function u,(x, 1)

¢n(/’:L t) = Z (un, Iio(ﬁa ’:‘)¢m(;”’ t)um)+En(/‘“)¢n('%’7 t)-

m

We must calculate the term Y (u,, Hy(P, H®,(2, u,). In order to do this, let us assume

that the Hamiltonian H, (13, 2) has the following general form:

ﬁo<—zh5§;,/v>= V(DJFZV(DM..#,( if au> ...o<—-zh 6-%—) (2.5)

n

We shall show, by using the Born-Oppenheimer approximation, that the following estima-

tion is valid:
Z( Uy, —ih )”l .0 —ih — Py (D,(4, Dt ))

d
=~ <-—ih 9 —hAf['f) 0...0 <—~zh — —hA"”) @,(4, 1). (2.6)
0/:,
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where
AP ¢ 2.7
( ) = Uy, 6 nj Uy ( . )

is the so-called Berry connection.
We shall prove the equation (2.6) by induction with respect to k. For k = 1, we have:

Z ( Uy, lh’ —é:‘ (Qm(/ l)um)> Z (“n’ <_ lh -,i d)m> um)
oA or!

m m

0
—ih E <“m Oty )¢ (A1) = <—zh — hA(")> D, (A, 1). (2.8)
oA* art

m

If the equation (2.6) is correct for k, then for (k+1) we obtain:

0 5, 5,
Z < —ih S 0 © —ih S (dimu,,,)) Z <u,,, [—ih P

N -
—ih o Uy = i (1, =ik Y oy [y — i
Py R r e FYaY A T oK)

hence:

_ ) .1 0 n
—(-lh—z—' —hA!“> ...O<—lh é‘;f“‘*‘l iA;u()+1>d)n!

which proves the equation (2.6).
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This implies that:
S B g ; 0 ,
(un’ HO(P3 A’)¢m(’“’ t)um) = HO —if &7 _hAfln)3 A ¢n(A'9 t)' (2-9)

Hence the wave function @,(J, t) describing the “macrosystem’ satisfies the following
effective Schrodinger equation:

0 . 0
ih—®,(i, 1) = [HO ( —ih iﬂ ~hAP z) +E,,(/Z)] D, (4, 1). (2.10)
ct oL

We see that the interaction between “macro” and “micro-systems”, within the frame of
the Born-Oppenheimer approximation, leads to the following modification of the Hamilto-
nian corresponding to the “macrosystem’:

A

. 0 . 0 .
HO <—iﬁ F‘ N ;u) - HO (—ih ﬁ" —hAfln), l) +E"(/’v) = Heff‘ (2.11)

Now, let us assume that there exists a classical system described by the Lagrangian L,
which is equivalent to the system described by the Hamiltonian H,.

We shall find the form of the Lagrangian L, of this classical system corresponding
to the quantum system described by the Hamiltonian H,¢. This Lagrangian is the following:

Les = Lo+hAYA*~E (). (2.12)
This is so because the classical Hamiltonian corresponding to this Lagrangian is:

. D in
Heff = Pﬂ/" “Lefb

where
. oL
= Ga = Phal (2.13)
and
0L,
P = —, (2.14)
"= G,
Thus

Heye = (P, +hADYV — Lo —hAPA*+ E(2)
= P ~Lo+E () = Hy+E/(), (2.15)

where H = P,/‘.“—L0 is a classical Hamiltonian of the system described by the Lagrangian
L,. We see that

Hee = Ho(Pyy )+ E(2) = Ho((P,—hAP), 1)+ Ey(2). (2.16)
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-

. é
By replacing the generalized momenta P, by operators —ih —-; one obtains the quantum
; oA

theory from a classical one described by the Lagrangian L., Hence the Hamiltonian
operator of the system described at the classical level by L,y is

R . 0 )
Hye = Hy ((-ih Py ”IIA,(,") s A +EJ(72)
2

which proves the correctness of (2.12).
Our consideration can be summarized in the form of the following diagram:

Classical level Quantum level

adiabatic interaction with “‘microsystem”
(Born-Oppenheimer approximation) H .

4

“macrosystem” Lgy(4, 1)

Classical level

“macrosystem”, Leg (4, 4, 45”)

Let us discuss the problem at the classical level. We have shown that the adiabatic interaction
between “macro” and “micro-systems” modifies the Lagrangian of the “macrosystem™:

Lo(A, &) = Legg(2, 4, AT).

Let us find the equations of motion of the system described by the Lagrangian L, (4, i AD).
Tt is well known that the Lagrange-Euler equations for the functional

[ di[PA*—Ho(P, ) +h AP —E(4)]

in 2N-dimensional space (A*, P,) (i, v = 1, ..., N), are equivalent to the Hamilton equations.
These equations are:

e OH ¢
’ oP,”’
. oH, .
Py == @f +h[6,4"—0,4"]. (2.17)
Iy

Having defined Berry’s curvature two-form:

~(n) m_ 5 4 4
F® = 2,48 —06,4Y (2.18)
we arrive at the following Hamilton equations:
P CH ¢ ,
opP,
p, = = Betw ypon e (2.19)

g o épP,
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Let us introduce the following notation for variables (i, P,)

Oy =GN LA P, L PY)

and let us write down the Hamilton equations in the form:

.. dy' 6H, . 0l
y =g Ayr L "(1 ros=1,..,2N) (2.20)
oy" oy 2y’
We see that:
s 0 lN
o= [—I,N hFW]‘ (2.21)

Hence the Poisson brackets of two arbitrary dynamical variables f(A", P,) and A(}*, P,)
have the following form:

of oh of ok &f dh of oh
hy =g — — = — — — — — +hF®m 2.22
Uhh =82 o = amap, ap, o T ap. ap, (222)

We see that the Poisson brackets corresponding to the theory described by the Lagrangian
L. differ from Poisson brackets corresponding to the theory described by the
Lagrangian L,:

{ﬂh}o=7/—,,7’“-.—'~—._,,- (2.23)
The “anomalous” term in {,}-brackets is determined by Berry’s curvature two-form F).
For example, Poisson brackets of momentum components are non-zero
{P, P} = hF. (2.24)
By direct but tiresome calculation, we obtain that:

{f. {g: b3} +{g (h. [} +{h, (/. g3}

of og 6h

= —h [6,F) +8,F+6,Fy] —
[¢ ’ 2P, 0P, P,

(2.25)

Hence the Jacobi identity for {,}-brackets is broken by Berry’s curvatures at point where
this form is not closed. It takes place at points at which energy levels of the Hamiltonian
H(p, x, ) are degenerated [2]. For example,

{Pa{Ptb P?}}+{Pﬁ’ {Pw Pa}}+{P7’ {Pa’ Pﬂ}}
= —h[o,FQ)+3,F% +0,F]. (2.26)

At the points where energy levels are degenerated the Berry’s curvature is not well defined.
Therefore these are points at which Poisson brackets for dynamical variables cannot be well
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defined. A well-defined Poisson bracket {,} satisfies automatically the Jacobi identity at
any point.

Now, we shall find the symplectic form Q corresponding to the system described by
L. Tt is determined by an antisimmetric matrix g;; such that g g’ = 6*. We see that:

hF(u} _ 1’\1
L=z : 2
gt} [IN 0 . (2.;..7)

Q=1g,dv' A dy

Hence,

h
=dP" A dj,+ 51 FRdi* A di. (2.28)

Thus the symplectic form of the system described by L. differs from the symplectic
form Q, = dP* A dA, corresponding to the system described by L, of an “anomalous”
term, which is proportional to Berry’s curvature two-form, By virtue -of Darboux theorem
we know that if @ A ... A 2 % 0 and dQ = O then one can always choose such local

N-times
coordinates (x!, ..., x*, n, ..., ny) that the form @ has a canonical form Q = dr, A dx*.

Not always this can be done globally, however see [S]. Passing from the classical theory
described by the Lagrangian L. to the quantum theory, we change well-defined Poisson
brackets to commutators [ f” gl = ih{f g w'Iqéi'e f , g are operators corresponding to the
dynamical variables fand g. We see that the commutators are modified by Berry’s curvature
form. For example, [f’”, Pl = ih?F\)). Similar results have been obtained by H. Kuratsuji

and lida by using Feynman path-integrals [6, 14].

3. Modification of symmetrics and conservation laws

We shall discuss the problem of modification of symmetries and conservation laws
for a special case. We assume that the “macrosystem” corresponding to lagrangian L, at
classical level, has the 6-dimensional phase-space (' = (3, 4%, A3, P, P;, P3)) and that
it is spherically symmetric. Moreover, let us assume that at the quantum level it interacts
with another system described by the Hamiltonian H(4) = u:"{ - g, where ¢ are the standard
Pauli matrices. The Hamiltonian H(/) has eigenvalues E.(/) = imz}, where !ZI

= V(A2 +(A»)?+ (132 The degencracy of energy levels takes place at the point
i= (0, 0, 0). By introducing spherical coordinates (!, 42, 13) = II} (sin 6 cos ¢, sin 0 sin ¢,
cos #) we can easily show that eigenstates ¥, corresponding to energy levels E; (respec-
tively), are

1y _ | cos(8/2) ) —sin (0/2)e ¢
Y Tlsinget| Yo T cos(o2)

2 _ cos (8/2)e™ " @ _ | —sin(0/2)
Y+ sin (072) ¥- cos (6/2)¢* |-
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Vectors ¥4 are well defined for all values of angles (0, $) except for the southern pole
(@ = n). We consider the sphere S* as embedded in R® with the help of thc mapping
0,¢) = (sin 0 cos @, sin 0 sin¢, cos ). The image of (r, @), for any ¢, turns out to be
a single point (0, 0, — 1), which is the southern pole. With this point there are associated
spinors labeled by the variable ¢:

0 —eie
w‘ [e“b]’ y’_ [ 0 ]'

Therefore we do not have well-defined spinors ¥}’ at the southern pole. Similary vectors

w3 are well defined for all angles (0, ¢) except for the northern pole (0 = 0). We have:
P = oD and Y = £ Thus, the coordinates (0, ¢, ¥ and (0, ¢, ¥
can be thought of as coordinates in a vector fiber bundle corresponding to the level £.(4).

The S2-space is the base of this fiber bundle, the complex space C? is a typical fiber
and U(1) is a structural group. Coordinates (0, ¢, Py correspond to the upper hemisphere
of S2-sphere, and the (0,¢, ¥'?’) — coordinates correspond to the lower hemisphere.

Analogously, we can construct the vector fiber bundle corresponding to the energy
level E_(4). Obviously, the spherical coordinates on S? are singular at the points § = 0, n;
however we use them for the sake of visuality.

In this fiber bundle. Berry’s connection assumes the following form:

AL =i dyl’) = +1(cos 0-1)dg.
AP = i(p'?,  dy'?) = 4P +dé. (3.1)
The Berry’s curvature form is
Fio = dAY = dA'P = F1sin 0d0 A do. (3.2)

1
Because the first Chern number for both fiber bundles is nonzero: —Z—J F. = F1, these

bis
Sl
fiber bundles are nontrivial. The forms 44’ and A%, in coordinates (!, /2, ;3) are:

zd/ —A 1di.2

Af:l) if i .
G
4D 1 2dit —2tda? 3.3
L VARV O ’

We see that forms A’ have a string-like singularity along the negative semiaxis 43,
whereas A2’ forms have a string-like singularity along the positive semiaxis 3. The forms
AY and A4'®, where @ = 1, 2, correspond to a magnetic monopole with charge of F1/2,
respectively, placed at the origin of the coordinate system. The Berry’'s curvature forms,
in coordinates (2!, 42, 43), are

1
Fi= T3 [21di2 A diP4+23d03 A dir+3d20 A di?]. 3.4)
|/|
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Therefore the “magnetic field” (B.), = + &, Fy j, where ¢, is the completely antisymmetric
symbol, is

(3.5)

The fact that the system described by the Hamiltonian H, is spherically symmetric means
that:

where L; = g4 P* is the i-th component of the angular momentum, i.e. it is the rotation
generator.

We have just seen that the adiabatic interaction of the “macro” and “‘micro-systems”
modifies the Hamiltonian H, at the classical level: Iio = Ho+E(2) = H, .. If E ()
= E, (4. then {L;, H}o = 0.Inour case, E;(4) = *puiil and therefore {L;, H}, = 0.
However, this interaction modifies the Poisson brackets, and we must check if
{L,, H} = 0. The direct calculation shows that:

eL, 6H
(L. Hy) = hF,,— =T
[Rend M eff )y rs @P, aps
ot 5}1eﬁ' -'aHeff ‘
= h{(B —B,(/’ ) 3.6
{( ) p] ( iF, (3.6)

Hence, the components of the angular momentum L; ar¢ not conserved in the system
corresponding to L ;. However, we can search for modified rotation generators L, - M}
for which:
+ Pis * +
(MF. Hyet =0, and (M7, M7} = g, M. (3.7

Let MZE = L+WZI (). (3.8)

The condition that {M}, H ) = 0 provides the equation for W ():

ow= . o
— = h{B. " —(B%}+))d,]. 3.9
ds
) 1 A _
Having in mind that in our case By = F 3 —}3— , one obtains
owE h 1 Ai,
=t = =0 =5 ) (3.10)
o 2 1 4]
Hence,
fi A
u/ii = 4 — = .11
2 A
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h
We can show, by direct calculation, that the Poisson bracets of M = L+ — e

i
i T > m ar
(M, M¥} = &, M. Hence, the quantities M, and not L, are generators of rotation.

We meet a similar situation if we consider the motion of a charged particle in the field
of a magnetic monopole [15].

4. Conclusion

We have shown that the interaction of the “macro” and “micro-systems” in the Born-
-Oppenheimer approximation modifies the structure of the phase-space of the “macro-
system”. The Poisson brackets are affected by this modification. Therefore, commutators
with “anomalous™ terms, proportional to Berry’s curvature form, appear in the cor-
responding quantum theory. We have also shown that this interaction modifies the spherical
symmetry of the “macrosystem”. A certain term must be added to the angular momentum;
this term is proportional to Berry’s curvature two-form.

The procedure, which we have applied in the case of finite degrees of freedom can
be extended to a quantum field theory in a natural way. It can be used to discuss
the problems associated with the interaction of gauge fields and chiral fermionic fields.
Then the ‘“‘macrosystem” would correspond to gauge fields and the “microsystem” to
fermionic fields. In this case, one usually quantizes fermionic fields first, and then the gauge
fields. Hence, it is important to determine the fermionic effective action corresponding to the
effective lagrangian (2.12). The technique proposed in the present paper can also be used
to discuss gauge anomalies. Our approach is based on the adiabatic approximation and
it may appear to be inadequate to describe anomalies since they are independent of the
approximation scheme. However, the anomalous commutators result from the reaction
of physical states to gauge transformations, and the realization of gauge transformation
on the Fock vacuum, corresponding to fermionic fields {7, 11], can always be described
in terms of an adiabatic change.

The modification of the “macrosystem’ symmetry can provide suggestions how
to quantize theories with anomalies.

The modern approach {o investigate the ecarly Universe involves the quantum field
theory in a curved spacetime, and all calculations are performed with the help of quasi-
-static assumption. This means that the quantum processes are so fast that the spacetime
can be regarded as static. This corresponds to the adiabatic theorem. The results obtained
in the present paper can also be used as a suggestion how to develop quantum field theory
in curved spacetime.
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