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1. Introduction

There exist different approaches to the problem of axial (or chiral) anomalies. First
of all, there is an euclidean formulation relating the quantum-mechanical symmetry break-
ing to the ultraviolet properties of the theory. In this approach one makes use of perturba-
tion theory [1] or appeal to the powerful geometrical and topological tools like index theo-
rems [2]. The Fujikawa method [3] is also the “‘ultraviolet” one.

In all the above approaches the physical origin of the effects caused by anomalies
remains rather obscure. On the other hand, the axial anomalies (or more generally —
the anomalies in global currents) do give rise to physical effects, the best known being
n® — 2y decay. As noticed in Ret. [4] it is hard to understand why this decay should depend
on dynamics far below hadronic scale.

Fortunately, many authors [5] offered a somewhat different explanation which seems
to be very appealing. Its main idea is as follows. First of all, one may confine himself to the
case of external background gauge fields. Then the first quantized theory of fermions
interacting with those fields can in principle be solved; the second quantized theory is
obtained in a standard way by filling all negative energy levels. Then the following picture
of axial anomaly emerges: the conservation law for chirality is violated due to the pair
creation, the chirality of a pair being nonvanishing. The way this happens is very nice
indeed. The chiral symmetry is of course present at the level of first quantization — the
solutions to the Dirac equation carry the representation of chiral group and ys charge
is conserved. After second quantization this symmetry prevents the external field to excite
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the negative energy particle to the positive energy state of different chirality; the process
depicted in Fig. 1 is forbidden. On the other hand the pair creation in the way that conserves
chirality, as in Fig. 2, is allowed. This is just the way the pair production usually takes
place. There is, however, one possibility to produce out of the vacuum the pair with non-
vanishing chirality in the final state, which is perfectly consistent with the chiral symmetry:
the whole tower of y5 = 1 negative states is shifted (say) up while the one corresponding
toys = —1 — down; see Fig. 3. This is why the chirality may be not conserved in quantum
theory still being the symmetry of the classical one.
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Fig. 1. The process not allowed by axial symmetry
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Fig. 3. The process leading to the change of chirality but allowed by axial symmetry
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The trouble with this explanation is related to the fact that the Dirac sea is infinitely
deep and one has to take care about book-keeping of large negative levels. This is the place
where the ultraviolet properties of the theory come into play. One can check [4] that the
gauge invariant point-splitting regularization of axial current gives the proper description
of damping out the contribution from the depth of Dirac sea.

Now, the important point is the following*. We are faced with the problem of ultra-
violet divergencies because we insists on having the detailed space-time description of chiral
symmetry breaking. Then the ultraviolet properties become relevant — we concentrate
on local operators like currents to be able to trace the behaviour in time of chiral charge.
The problem of defining the current is related to ultraviolet divergencies.

However, we may recognize the existence and properties of anomalies after their
ultimate effects. To this end we start with incoming vacuum in the distant past when the
field is such that it is possible to define unambiguously the positive and negative energies
(no pair creation). The chiral charge is then well defined in terms of the cor-
responding creation and annihilation operators. The chirality of the final state equals
12€01Q3,,/0>,... It can be calculated in two ways. We may trace the behaviour of the inter-
polating charge Q3(¢), i.e. consider the current with all ultraviolet problems related to it.
Alternatively, we may proceed as follows. The charge Q3 is unitarily equivalent to Qf,.
Therefore Q3,, is unambiguously defined in terms of “out” creation and annihilation
operators. To calculate the final chirality we have to express only {0}, in the “out” basis,
This second possibility has an advantage of skiping the problems with current. Moreover,
it offers the chance to formulate the whole problem of axial symmetry breaking in the
framework of relativistic quantum mechanical approach due to Feynman [6]. This is the
aim of the present paper. The paper is organized as follows. In Sect. 2 we discuss the general
framework. Time-dependent fields of some special type are considered in Sect. 3, while
Sect. 4 is devoted to the problem of static fields. Sect. 5 contains short conclusions. Some
information used in text is collected in the Appendices.

2. The relativistic quantum mechanics

We consider the massless charged fermions interacting with the external electro-

magnetic field. The corresponding Dirac equation reads

iy (0, +ied )y = 0; )
we adopt the choice of y-matrices made in Ref. [13]. We choose the hamiltonian gauge
Ay = 0.

We assume that in the distant past and future the potentials 4; are such that they allow
for unambiguous definition of positive and negative part of spectrum. In the massless case
it means that there is at most magnetic field (although arbitrary) for ¢ - +oo.

The Feynman approach to relativistic quantum mechanics is usually formulated
in terms of propagators. However, in the case of external field which does not vanish for
t - oo it is more convenient to adopt the equivalent approach based on the exact solu-

! strictly speaking, the picture sketched below is somewhat more complicated — see Sect. 3.
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tions to the Dirac equation with external field [7]. Namely, we take the solutions w7 (x|g)
defined by the Feynman boundary conditions. For example, vy (x|g) is the solution contain-
ing only negative frequency part in the distant past while in the distant future the negative
frequency part is g. Then the amplitude of finding f in the positive frequency part in future
is just the amplitude of creating a pair with the particle and antiparticle in the states f and
g, respectively. The corresponding probability is of course a relative one; to calculate the
absolute probability one has to calculate the probability of vacuum-to-vacuum transition.

In a similar way one computes the amplitude of antiparticle scattering as well as
(with the help of uf) the pair annihilation and particle scattering.

It is easy to see that the pair production calculated as above corresponds to Fig. 1.
In fact, we start with g having a definite chirality asymptotics in the past; then, due to the
fact, that Dirac hamiltonian commutes with ys, both negative and positive frequency parts
in future have the same chirality. Therefore, the total chirality of the pair produced equals
zero. Chirality is conserved in Feynman approach.

Now, we have to identify the processes responsible for chirality violation. As it is well
known one cannot in general impose the boundary conditions on the negative (positive)
frequency parts both in the past and future. This is easily seen by taking the free Dirac
equation. However, it may happen that there exist some special solutions which seem to
be “overdetermined” from the point of view of the allowed boundary conditions. We
claim that these are just the solutions responsible for violation of chirality conservation
law. More precisely, let yp(x|g) be the solution with the following asymptotic behaviour:
for the distant past there is only a negative frequency part while in the distant future there
is only positive frequency part g. We interprete such a solution as a creation of particle
in the state g with the probability one. This leads, of course, to the chirality production.
To save the principle of charge conservation the corresponding antiparticle must be pro-
duced. We associate with such a process the solution to the Dirac equation containing
only positive frequency part in the past and only negative one in future. The existence of
such a solution accompanying the former one follows from the CT-symmetry. It follows
also that the antiparticle carry the same chirality; there is no cancellation.

Now, what about the normalization of probabilities ? First of all, let us note that the
probabilities of creation of single particles (antiparticles) related to the solutions wp should
be considered to be the absolute ones; was it not so the charge would be conserved only
statistically. There would be nonzero probability of creating only one kind of particle?.
To determine the normalization of other processes let us note that now the probability
for the vacuum to remain vacuum is exactly zero. However, we may resolve this trouble
by demanding that the Feynman principle is still valid: the normalized total probability
of scattering should equal one, i.e. there is no Klein paradox. Due to the Pauli principle
there is no scattering to the final states occupied by the particles created with probability
one. Therefore we can simply discard the states described by 2 and apply the standard
normalization prescription to the all remaining processes.

2 Note that this is not possible for the processes described by yF, there we calculate the amplitude
of pair to appear.
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3. The creation of chirality

Let us assume the following field configuration. There is a magnetic field parallel to
the third axis, not depending on ¢ and z

H = H(x, y)z )
and the uniform electric field also parallel to it
E = E(t)z (3)
such that E = 0 for jf| > T. We choose the following gauge
Ay = Adx.y), A, =Alx,y), A.=A4(), 4,=0,
A< ~Ty=A_, A,(t>T)=A,. 4)
For definiteness we assume in the sequel that eA4; >> e4-. To solve the Dirac equation
[iy"@,+ied,)—m]y =0
we take its square

[(0u+ieA,,)+m—— —;;a‘”Fm] =0 (35)

and look for the solutions in the form {[8]

¥ =X, ©

where ¢ is some scalar function and X is an eigenvector of 6*'F,,. Below we list the eigen-
values and eigenvectors of this matrix.

a: AH—iE), 2H+iE), 2(—H+iE), 2(—H—iE),

1 1 0 0
0 0 i 1
X: 1}’ -1 o’ ol

0 0 1 - 1‘
The solution to the Dirac equation reads then

y = [iy"(0,+ied,) + m] (®X). N
With our choice of gauge Eq. (5) reads

ea
[af—(ax+ieA,)2—(a,.+ieA,)2—(a,+ieA,)2+m2- 5-] $=0 (8)

and admits the separation of variables. If we put

¢ = €™ f(Dg(x, ») ©
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we arrive at the following set of equations

[—(6x+ieAx)2—(0y+ieAy)2— eg—"] g(x, y) = Ag(x, y), (10a)

[a}+(p,+e,4,)2+m2_ -e?;f +A]f(t) =0, (10b)

where ay = +2H(x,y), ag = +2iE(t) and A is the separation constant.

Both equations (10) are rather nice. The first one describes the planar system consisting
of a charged nonrelativistic particle in the external magnetic field. As discussed in Appendix
A it exhibits N = 2 supersymmetry. This allows for some definite statements concerning
its spectral properties. , '

The second equation is the one-dimensional Schroedinger equation with complex
potential. It is discussed in Appendix B where the identification p,+eA, = V() has been
made. This equation also exhibits some kind of N = 2 supersymmetry.

Having solved equations (10) we obtain four solutions to the Dirac equation cor-
responding to four choices of eigenvectors X. They read

F——ZJ, +m]

wo= | TE o 08 e, (112)
A
-

wa= | 5 e e, (11b)
[ =24 —m
| —>_+m]

va=|_ 0 |0t e, (119
| 6.
f'_9+

we=| oo T At e (11d)
| 2 +m]

The operators 0., Z, are defined in Appendices. Of course, for fixed f and g only two
from the above solutions are linearly independent.

To obtain the solutions with the Feynman boundary conditions we have to select
the solutions f{¢) to the Schroedinger equation (10b). In particular, to obtain yg we have
to take f(¢) containing only the negative frequencies for t — —oo. This gives a nice inter-
pretation of the pair production and scattering in terms of reflection and transition in the
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one-dimensional complex barrier from Eq. (10b) (actually, one has to take the complex
conjugated barrier due to the opposite time vs space dependence of positive energy vs mo-
mentum waves).

With the assumptions about magnetic field made in Appendix A the spectra of the
hamiltonians on the left hand sides of Eq. (10a) are purely discrete. Let us call
A, n=0,1,..., A, =0, A, > 0 for n > 0 their eigenvalues and g¥ — their eigenfunc-
tions; one must keep in mind that g; = 0 and §_gg = 0. The functions y, and y; (y, and
y,) correspond to the upper (lower) parts of the supersymmetric hamiltonian (A.7). On
the other hand the functions v, and v, (y; and v,) correspond to the lower (upper) part
of the hamiltonian (B.3).

Let us now take the massless case, m = 0. First we investigate the effect of n > 0
levels on chirality production. The two linearly independent Feynman solutions Yr (X)
may be obtained for example, from u; and y, by choosing f(f) to be the solution f, to
(B.4a) with E = A,, with the following asymptotic behaviour

fF = BUple™ ',

t—+=—w

LEox Afp)e e (12)
t— = o
here v = (A,+(p, +eA;)?)"'*. According to the discussion in Sect. 2 such solutions do
not give rise to chirality nonconservation. They correspond to the processes pictured in
Fig. 2. To find the contribution to the chirality violation from the levels under considera-
tion we have to look for the solutions with the asymptotics
f A A A XU AT (13)
t—= -0 >
However, we do not need to consider the question whether such solutions do exist. To see
this we note that any such f, provides simultaneously the solutions in the form y; and y,.
Now, w; and y, correspond to opposite chiralities and they cancel. This cancellation
is complete because the degeneracies of the excited states of supersymmetric partners
are the same.
It is therefore enough to consider the case of 4, = 0. Then only y, and w5 survive
and take the following form

-2 2. f- —2Z2-f4
0 ip 0 ip
= ! ,z, p = el iz (14
¥ 8o Z+f- (G 5 N )
0 0
The functions X, f. = A_ fulfil the equations
Zihse =0 (15)

The solutions to Eq. (15) read

k(1) = constxexp [ Fi j di(p,+ed ()] (16)
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For —eA.>p, > —ed, h.J(t) contains only negative (positive) frequencies for
t - —(t = o). The number of states in the interval dp. is dp,L{2n times the number
of zero modes g,. It equals, for large L, ed(S)/2n, where S = L? and @(S) is the flux of
magnetic field through S.

The chirality of each particle produced in the state (which corresponds to A.(f) equals
1, so the total change of chirality is

—ed - T
_ ed(S)L [ _ (S .
K=o dp: = o5 f dtE(1). (17)
—eA s+ -T

The above process is accompanied by the antiparticle production. To see that this
is the case consider A_(¢) (which corresponds to v,). For —ed. > p, > —eA. h-(¢) contains
only positive (negative) frequencies for t = —oo (¢ — o0). Tfe chirality of y, is —1 which
corresponds to the positive chirality of antiparticle produced. The total contribution is then

T
52
de = fdv f deH(x, EQ). (%)
14
L3 -T

This is exactly the quantity one gets from the anomalous divergence equation

2
e ~

O,j's = g3 F, F*.
Note that the solutions p, and y; contributing to antiparticle and particle creation,
respectively, are related by CT-transformation, as indicated in Sect. 3.

3. Static fields

The case of static fields is especially interesting. The problem we are faced here is that
the external field is not switched off in the past and future; therefore, the definition of the
positive and negative frequencies possess a nontrivial problem. One way to solve it is to find
the solutions which reduce to the ones with definite frequency after adiabating switching
off the interaction in the past and future [9]. However, there exists another very nice
method of selecting the suitable sofutions {10]. One expects the motion of charged particle
in the constant uniform electric field to be quasiclassical for # - +oo0. The wave function
should take the form y =~ exp iS with the classical action S. We select the solutions by
solving the Hamilton-Jacobi equation and comparying the asymptotic behaviour in ¢ of
S with that of the wave function. The last problem is to choose the gauge. The point is that
in the free particle case the energy is related in a simple way to the time dependence of the
wave function only in the gauge A, = 0. Consequently, we expect such a gauge to be the
suitable for our purposes®. Therefore we choose the same gauge as in Sect. 2, i.e. 49 = 0,

3 Obviously the solutions to the H-J equations in different gauges are gauge-related. However,
this is not the case for the solutions obtained by separating variables in different gauges.
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A, = Et. To solve the Hamilton-Jacobi equation we put H = 0 because the magnetic
field cannot remove the gap between particle and antiparticle states. The H-J equation
reads

((8,8)* +(8,S)* + (8,5 +eEt)’ + m*)* +4,S = 0.
The solution to it is
a

JE

6 55— K
S = Pxx+Py}’+PzZ' 7 \/0'2+K2— ?afCSh

2,2, .2
+py+m eEt+p, ) )
with k = PxThy T , 6= —-—__i— The asymptotic behaviour of S reads
eE JeE
2
S —— —(sgn 0_)_0_ 19
fof~o 2’

To calculate the rate of chirality production we take for definiteness the uniform mag-
netic field H (in the case A = H(x, )z everything goes through without changes). With
the gauge choice 4, = — Hx, A, = 0 the two linearly independent solutions yr are

. 1+i
Y34 = | U3 D _1a24(—(14+i)o)— EN Usq
3

XD_ a2t (—-(1+i)a)]e"’z”e“”’”"“’, (20)
2
with
eHx—p, ., 2neH+m? . 2n+1DeH+m’
E e, Ay = e, Ay =
¢ JeH eH eE
and
JeE H(0)] [ mH,(0)
| o o _|-verH©@
PTIVeEH T P | —mH0) ’
o | | —i \JeH Hi(0)
“__(_) ] [ i \//e—i{ H,.(0)
| VERG] | mH
¢ 0 © T i el H, ()
~/€E H,(0) | mH,(e)

H,(o) are the Hermite polynomials while D, — the parabolic cylinder functions. From
the asymptotic behavior

~ —@%/2 i(pyy+pzz) ,~ic2/2 o - idal2
Yig4 = Uz4e 0%/2 i pyy + p22) /[-—(1+1)a] /
o=+ =0
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. _ 1+1
Y34 =~ {u3,4e '62/2[—(1+i)0' Ani2 (“—‘2 )%,4
—wAnf2
y 2ne ei62/2[~—(1+i)0']u"/2} xe—92/2ei(py.v+l’zz) (21)

r (1 + il”)
2

we get the well-known result [10] for the relative probability of pair production
0fpy P ) = (€ =171, i=3,4. (22)

Now take m = 0. It follows from Eq. (21) that for any » > 0 we get the usual Feynman
function yg . For n = 0 only the solution y; exists. According to the formula (22) w;(n = 0)
= oo. That means that the absolute probability equals one. However, in this case we are
dealing with p2 rather than vy . In fact, we see that v; = 0 and, according to the formula
(21) only the positive frequency part in the future survives. Our solution describe the
particle production. Taking into account that the density of final states is L?dp,dp,/(2n)?
while p,- and p,-integrations give eHL and eET, respectively, we get for the change of chira-
lity e?HEL3T/4n%. Adding the contribution from v, we have

dx e*

——— = — HE 23
didv  2n* (23)

again in the perfect agreement with anomaly equation.

5. Conclusions

The problem of violation of axial symmetry may be understood within a framework
of relativistic quantum mechanics. The processes responsible for the change of chirality
are described by the functions yg. They provide a special kind of solutions which exist
only in some circumstances. No local operators are involved and no ultraviolet problems
encountered.

However, it would not be fair to say in general that there are no ultraviolet aspects
involved. Let us note the following. Due to the conservation of electric charge the processes
leading to violation of axial symmetry must occur with the probability one or zero. There-
fore the expectation value of chiral charge should be an integer for ¢ — co. But integrating
the anomaly one may get any real number. This contradiction is due to the fact that there
are some ultraviolet divergencies to be taken into account. They manifest itself as a regular-
ization dependence of the current definition. The current has a c-number part depend-
ing on external field, which gives rise to the vacuum charge and causes the unitary
inequivalnce of “in“ and “out“ charges. v

The problem sketched here will be discussed in some detail elsewhere.

It is a pleasure to acknowledge a helpful discussions with Dr S. Giler and Dr. P. Ma-
$lanka.
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APPENDIX A [12]

The hamiltonian (actually — twice the hamiltonian) of a planar system consisting
of a charged particle in an external magnetic field H = H(x, y) reads

H = P}+P)—eHo,, (A1)

with P,, = —id,,+eAd,,. In spite of the fact that the number ot bosonic degrees of
freedom is two while that of fermionic ones — one only, the theory exhibits N = 2 super-
symmetry. To see this we define two supercharges

0, = o,P.+o,P,, @, =o0,P.—~0/P, (A2)
The SUSY aigebra reads
{Qi, Qu} = 250, (A3)
As usual one defines the charges
Q: = 3(Q,1i0,), (A4)
0. = (0 Px—iP,,> - (o e+>’
0 0 00
Q.= (Px-(:-iPy g = (g_ g)’ (A5)
with the properties |
ot =0, Qi=02=0
(0., 0.} = #. (A6)

Therefore one can write

_ (Pi+P}—eH 0 _(H#. O \_[6.6- 0
”‘( 0 P2+PlyeH) " \O #_)7\0 0.0,) A

As it is always the case for N = 2 SUSY all excited states are doubled. In fact, we have
the following relations

Hx+ = Exy, #_x-=Ex., E>O0

1 1
X+ = -ﬁgd-’ xX- = ﬁe—h- (A8)

The spectrum depends strongly on the configuration of magnetic field. If the total flux
@ = | dxdyH(x, y) is finite, there exist in general bound as well as scattering states and the
structure of spectrum is quite complicated. Here we consider the simplest generalization
of the case of uniform field: H = H,+ H(x, y) and the total flux of ﬁ(x, y) is finite. For
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definiteness we assume that eH, > 0. Then the spectrum is purely discrete. To solve the
problem of ground states we choose the gauge 3,4, + 0,4, = 0. Then 4, = 0,9, 4, = —0,¢
and ¢ obeys the equation

(9240 = H(x, y). (A9)

The possible candidates for ground states are u, = (g*) and y- = (2 ) with
(Pi+iP)y. =0_x, =0, (A10a)
(Py—iP)y_ = 0,x- = 0. (A10b)

We look for the solution to (A10a) in the form

X+ = exp (—ed)f. (AL1)

Then it appears that fis an analytic function of z = x+ iy (in fact an entire one). To answer
the question whether (All) is normalizable or not one has to determine the asymptotic
behaviour of ¢. To this end we note that the asymptotic behaviour of the solution to Eq.
(A9) is

¢ = %Holz) (A12)

|z}
so that y; from Eq. {A10a) is normalizable for any polynomial f{z). To determine the
number of ground states in some large “volume’ one proceeds along the same lines as for
the case of uniform field. The wave function (yx.)y = z" exp (—e¢) behaves like
—eH, N\
1z¥ exp( y 0 12[2) for large |z|. It follows then that for large N, {|z|> ~ ( 7 ) .
eity

If we include all states with {[z|> < R then the number of them in the disc of radius R will
be eH,R?/2. The density v of states is eH,/2n or, taking into account that the flux of H is
finite

ed(S)
278

e
== H . = 13
s f dxdyH(x, y) (A13)
S

Eq. (A10b) does not posses the normalizable solutions.

APPENDIX B
Let us consider the one-dimensional hamiltonian with the complex potential

d2

- — =V iV’ 0

, d? dav(t 2

H = — E?z- —V2(1)+l'“ di )0'3 = dt (Bl)
0 —P—VZ—W'
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is of course non-hermitean but still enjoys N = 2 supersymmetry. Introducing the operators

id . N .
2y m - ot +V(@), Xi=%2, Z2l=2X_ (B2)
we write
_(Z:E. 0
= ( 0 z_z,,>' (B3)
Let us consider the Schroedinger equations with real energy
d? 2 - N .
i =V (O+iv'(@) () = Efe (1), (B4a)
d2
[- Frc S OB V’(t)]fs'(t) = Efg (1) (B4b)

We are interested in the solutions with E > 0. The asymptotic expressions read

f() = exp(2iv.t), vy =vVE+VE,

| Sude

f(y =~ exp(kiv_ey), V= lim V().

1~ t>tow

The standard current is not conserved for Eqs. (B4) because the potential is complex.
However, it is not difficult to construct another current which is conserved. To see this we
write (B4a) as

Z+E—f£+ = Ef£+-

Now, (Z;)* = —X . and consequently
T_I.(fe)* = E(fE)

Multiplying the above equation by I, we see that Z.(f5 )* fulfils the same equation as fz
do. Their Wronskian

dfg

d
W=f T C -2, () i

provides the conserved current. Then
+ a + 2/ o+ idv +ysk +y% . +2 +12
Je 21—2(fb' PV + —dT(fE) +E(fg)* |—iW = E|fg |"+12_f¢"|

is also conserved. For Eq. (B4b) the conserved current reads

Elfy P+1Z.f 1

The existence of these currents is equivalent to the fact that Dirac equation preserves the
scalar product.
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