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An interpretation is suggested that a spontaneous compactification of space-time can
be regarded as a topological defect in a higher-dimensional Einstein-Yang-Mills (EYM)
theory. We start with D-dimensional EYM theory in our present analysis. A compactification
leads to a D-2 dimensional effective action of Abelian gauge-Higgs theory. We find a *‘vortex™
solution in the effective theory. Our universe appears to be confined in a center of a “vortex™,
which has D-4 large dimensions. In this paper we show an example with SU(2) symmetry
in the original EYM theory, and the resulting solution is found to be equivalent to the
“instanton-induced compactification”. The cosmological implication is also mentioned.
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Recently there has been much interest in the study of higher-dimensional theories.
This is because the candidates for unified theory can be easily and naturally formulated
in higher dimensions {1, 2]. If the theories with more than four dimensions are to be taken
seriously, a mechanism which brings about dynamical compactification of the extra dimen-
sions is needed. Usually the size of the extra space is considered to be of order of the Planck
length in order that we cannot observe the extra space experimentally in the existing labora-
tory. Various mechanisms of compactification are proposed in the literature, using a variety
of “forces” to curl up the extra dimensions {1, 2].

Rubakov and Shaposhnikov offered a novel mechanism [3]. They considered a self-
-interacting scalar theory in higher dimensions and discussed the possibility that “we
live inside a domain wall”. It is implicitly suggested that there are many three-dimensional
“worlds” in the higher dimensions in their scenario. The possibility of “many worlds”
is of great interest particularly in the cosmological context. However, their analysis did
not include the connection to gravity. It is conceivable that no static solution coupled with
gravity can be found and such an energetic structure, which is adequately measured in the
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Planck mass, will soon collapse. In addition, the existence of elementary scalar field with
appropriate self-couplings has no compelling reason supported by unification theories.

On the other hand, it is shown in Ref. [4] that gauge boson-Higgs scalar systems are
derived from the dimensional reduction of higher-dimensional Yang-Mills theory. Unfortu-
nately, they consider the dimensional reduction as a mere device to obtain various breaking
patterns of Higgs mechanism.

Our scenario for compactification is the following: First we consider that the space-
-time is partially compactified in higher-dimensional Einstein-Yang-Mills (EYM) theory.
Then we obtain an effective gauge-Higgs theory. Second, we consider a topologically
non-trivial structure in the effective theory coupled to Einstein gravity. We suppose that
stable static solutions can be constructed in this way.

Because we start with EYM theory and consider the configuration with non-trivial
topology, it is hopeful to solve the fermion problem in Kaluza-Klein theory [S]. In fact,
a simple example has been found. Simplest effective (neutral) scalar theory can be derived
from SU(2) gauge theory compactified onto S3, three-dimensional sphere [6]. There is an
exact analytic solution of “kink™ or domain wall. This solution turns out to be equivalent
to “instanton-induced compactification” presented by Ranjbar-Daemi, Salam and Strathdee
[7]. Accordingly, the stability has already been guaranteed in this case.

By imagining the two-step compactification, or “double compactification”, we antici-
pate some kind of phase transition in the early history of the universe. As usual with Higgs
potential, the effective potential is dependent on temperature and the deformation of the
shape of the potential leads to phase transition [6]. During the phase transition, some
topological defects are formed and we were born and live inside one of them.

In this paper we adopt SU(2) gauge theory coupled to Einstein gravity in D dimensional
space-time as an example. First we consider compactification on $2, two dimensional
sphere, and then obtain effective Abelian Higgs model in (D-2) dimensions. Next we con-
struct a vortex solution with a unit-quantum of flux. The classical solution is coupled to
gravity. Here the term *“vortex” means that the topological defect has (D-5) dimensional
spatial extension in (D-3) dimensional space; the extension is two dimension less than the
space it can move.

In the following analysis, we set D = 8 in practice. The dimensionality of the resulting
flat space-time we live in can be taken as an arbitrary number, but in this paper the
dimensionality of the flat space-time is set to four.

We begin with the following Einstein-Yang-Mills action

S = stx \/’T;(— LRt L tr (F FM”)+A) m
22T e VMY ’
Here k2 = 8nG; G is Newton constant; e is a gauge coupling constant; A is a cosmological
constant. The scalar curvature of S¥ with unit radius is defined as R = + N(N—1). The
suffices M and N run from 0 to 7.

The gauge symmetry group under consideration is SU(2). This may be regarded as

a subgroup of a large unified symmetry group.
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The field equations are Yang-Mills equations

Dy FMN = vy FM*N 1 i[ Ay, F*M] = 0, 2
where the field strength is given by
Fyy = OyqAy—0xAy+i[Ay, Ay), 3
and Einstein equations
x*4 2 1 .
Ry~ = K gun+ 5 (Tyn—5 Temn)s “4)
where’
1
TMN = e—z‘ tr (FMPFIIV,—‘% FPQFPQgMN), (5)
and
T = Ty (6)

Here R,y is Ricci tensor derived from the metric gyy.
To solve the equations coupled to gravity, we take an ansatz for the form of the metric:

ds? = ds*(M*)+ g%(@)do® + a*(g)dy” + b*(0)dQ*(S?), (M

where dQ?(S?) = db*+sin? 0d¢? and 0 < p < 21, 0 < 0 < m and 0 < ¢ < 27. We assume
that the four dimensional space-time we live in admits flat Minkowski metric.
The form of gauge fields on S2 is assumed to be

0 —ie™¥ 0 e
A9 = ¢1 %<iei¢ 0 ) +¢2 %(eidi 0 ’ (8a)
/ 0 e\ 0 —ie i\ | 1—cos 6 0
Ay = —djlé(e“’ 0 )sm 0+d§z%(ie:¢ 0 )sm 0+%( 0 —(1—cos 0))'
(8b)

Here @, and @, are functions of the coordinates but independent of the S? coordinates
0 and ¢. Further, we assume the “U(1) gauge field” in six dimensional space-time, in general,
of the form:

a=aeiy ). ©

where 4,(x*) depends only on the coordinate of six dimensions. yu runs from 0to 5. Note
that here we use a coordinate basis associated with the metric and not an orthonormal one.

When the ansatz for the form of gauge configurations is substituted to the Yang-Mills
equation (2), the equations of motion for &, ¥, and A, closely resemble the equations
of motion in Abelian Higgs model considered by Nielsen and Olesen [8]. The equations
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of motion are
~ 1 PN
D*D, &+ b—2(1—1<p|2)¢ =0, (10a)

V(b2 F*") +i($*D'6 — $D"$*) = 0, (10b)

where ¢ = &, +i®, and F,, = V,A,~V,A,. The covariant derivative is definedas D, =V,
+id, where V, is the covariant derivative associated with six-dimensional metric g,,,.

Of course the equations coincide with theirs when g2 = 1, a? = ¢? and b? = constant.
When gravity is coupled, the solution obtained by Nielsen and Olesen is modified except
for near the origin, ¢ = 0. We impose an ansatz for the form of a vortex solution. They
are the following [8]:

é = 9] (Q)e", (112)
A, = 0 except for A,(e) (function on g). (11b)

Furthermore we assume physically plausible properties to solve the equation: In the
limit ¢ » 00, [®#| = 1 and b > 0, and at ¢ —» 0, g2 == 1, @? - ¢? (usual cylindrical co-
ordinates) and the “magnetic flux” {4,dy — 0.

At last, we find the following solution of vortex-type:

21 (0) = \715_—5_/;)— (122)
A0 = \/I—Tt——-g—lg—)—z -1, (12b)
£(0) = (11_(;/3)? (120)
a*(e) = H%;/YE . (124)
b*(0) = F(EZIIB? , (12¢)

where B? = k2/(2¢?) and the flatness of the large dimensions realizes provided that
A = 6e*/x*. These algebraic relations remain unchanged when the dimensionality of the
flat space-time left untouched varies.

The flux is quantized as expected:

1 (2n
fim — | " A,dp = 1. 13
o am]o Y (13

Note that here we obtain an analytic expression of the solution.
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For the natural values of the couplings, B is small of order of the Planck length. Thus
the size of the core of the vortex is nearly the Planck scale. The direction of ¢ is contracted
by gravitational effect, and then it becomes “compact”. At first sight the metric of the solu-
tion is a little bizarre, but the geometry of the space spanned by g, v, 6 and ¢ turns out to be
one of S§* after the rewriting of the coordinates.

Next, we examine the energy of the configuration of Yang-Mills fields.

One can find

o/B> /1 0
fov = “("1‘?(97?))_ o -1 ) e
sin 8 0
Fo= i » : (14b)
1/B ~jeTHe¥
fo = Tx@m™? (ze‘“‘ 0 ) (49
¢sin 6/B —ie~i#=w
Fe= 1, 1B’ %( w-o , (14d)
sin 6/B e lew
foo = (1+(e/B)2)3’2%( w0 ) (e
Q/B i(o~v)
o e o) e

If one utilizes the vierbeins to treat the suffices, one can immediately see the anti-self
duality of the solution. Thus the energy density per unit three-dimensional large spatial
volume is given by

2

1 e 1 ~ 4n
Z?fd‘y Ve(y) tr F? = 2 d*ytr FF' = (15)

where " = {0, v, 0,¢} and g(y) = det g,

The stability of the solution is expected from this relation, though the full stability
analysis should include the perturbation of the metric and the mixing with the modes from
graviton. The relation in the form of the gauge configuration exhibits the equivalence of the
well-known solution to the one of the “instanton-induced compactification” [7]. We
emphasize, however, that when the technique of the type we showed is applied to an EYM
theory with other gauge group and compactification, such as SU(m+1) on CP™ (m > 2)
[4], we can construct various types of solutions. We will not explore it further here.

In the model of the present type, we cannot take arbitrary values for coupling constants
of the scalar &. It can be read from the equation of motion that the effective “Higgs self-

. -coupling” is the same as the gauge coupling up to an adequate normalization {9]. This
fact suggests the existence of a static multi-vortex solution or a configuration of n-super-
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imposed vortices. The study of multi-vortex system is the most important task when we
wish to investigate a cosmological scenario (see later).

To conclude this paper, we should mention the cosmological implication. As mentioned
before, we wish to consider “double compactification” as a dynamical phase transition,
not merely a technical formulation of compactification. The investigation of the high-
-temperature phase of the model and the study of dynamical evolution of the scale factors
are of great importance if one wants to consider inflation or cosmological aspects.

Another remarkable concept is the possibility of “many worlds™. If topological defects
can be copiously produced after the phase transition, many lower dimensional “worlds”
can form networks. The event of “worlds in collision” may occur in higher dimensional
space. In analogy with cosmic strings [10], self-crossing of a vortex as a “world” may
lead to a “closed” world. The questions now arise: does it then collapse? If we live in the
vortex, how about the effect of the collision or crossing on our world ? The above questions
must be considered not only by analysing classical solutions of multi-defect system but
also by including quantum effects of matter and gravity. The selection of the manifold
on which the first-step compactification produces the gauge-Higgs system may also be
influenced by quantum effects.

As a variation of the scenario, one can consider that we live outside the'defects and
then we can find the extra space only inside the topological defect in our universe. This
possibility is also worth studying.

If the solution obtained here is included in some series of solutions, we must find
the method to obtain the series of the solutions and extend the solutions to apply to various
physical situations. We want to inveétigate other gauge configurations on other type of the
compact manifolds in future works.
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