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The alternative definition of the many-particle Wigner functions for real and complex
scalar fields is proposed. It leads to the consistent quantum transport theory, We obtain
the exact. hierarchy of the quantum transport equations. Its truncation in the kinetic case
yields the relativistic Vlasov-type equation with the series of the quantum corrections. The
hierarchy is truncated also beyond the kinetic case.

PACS numbers: 12.90.+b

1 Introduction

There is a great interest in attempts to describe our reality at the many-body level.
Generally, there are two possible strategies. The first one is to investigate the modifications
to the interaction which are introduced by the presence of other particles. For the Quantum
Field Theory (QFT) this is represented by the QFT with finite temperature [1]. The other
way is to abandon the study of the microscopic interactions and to concentrate on investiga-
tions of the quasimacroscopic behaviour of the system. This is the Non-Equilibrium Quan-
tum Statistical Thermodynamics. It may be realized in the usual space-time or in the phase-
-space. The latter realization is called the Quantum Transport Theory (QTT) (for review
in the nonrelativistic case see Ref. [2]). The quasimacroscopic QTT uses QFT as the
microscopic theory of interaction only. Thus the full internal structure of QFT does not
have to be regarded in QTT.

QTT was initiated by E.P. Wigner [3). The author defined the quantum-mechanical
analog of the classical probability distribution function spanned on the phase-space —
Wigner Function (WF). The dynamical equation for WF was derived on the basis of the
Schrodinger equation. The particular solution to the equation was given as the quantum
correction to the classical equilibrium distribution.

There are known some QTTs for different models of QFTs [4, 5, 6, 7]. All of
them are effective kinetic theories. The kinetic theory is a proper tool for the description
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of dilute systems. It uses the one-particle WF only, which means that the correlations are
neglected. This method does not permit any examination of the role of the collective
effects. In dense systems that role may be essential. The only known definition of the many-
-particle WF for QFT, the one for the real scalar field [4], is unsatisfactory.

The aim of the present paper is to introduce many-particle WFs, for real and complex
scalar fields, and thus to reach the consistent QTT.

* The paper is organized as follows. In Sect. 2 we collect the consistency conditions
of WFs for QFTs. Next, we discuss the failure of the multiparticle produection approach,
then define our WFs and display their connections with the physical quantities of the field.
In Sect. 3 we derive general transport equations. The obtained hierarchy of the transport
equations is truncated in two approximations, in the kinetic case and beyond. In Sect. 4 we
comment on the definition of the WFs for different scalar fields. In Sect. 5 we summarize
our results.

2. WF for quantum fields

2a. Consistency conditions of WFs for QFTs

WF spanned on the quantum phase-space cannot be a proper probability distribution
function. The uncertainty principles are the main obstacles. Thus for the theory in the
quantum phase-space we do not have any a priori given probability distribution functions.
This causes two problems. First one is that WFs, especially many-particle WFs, may be
chosen in different ways (this is already the case with quantum mechanics {2]). The other
one is that phenomenological derivations of the transport equations, based on the conserva-,
tion of the probability densities, may fail. Still another problem is that since QTT is the
quasimacroscopic theory and it uses WFs only, we want the field operators to vanish from
the transport equations. In conclusion, while defining WFs for QFTs, the following con-
sistency conditions should be satisfied:

(1°) we should make it possible to express the physical quantities of the field in
terms of WFs;

(2°) the transport equations should be derived rigorously from the field equations;

(3°) the definition of the WFs should lead to the ¢-closed transport equations (we will
call an equation ¢-closed if it does not contain any averaged field operators ¢, which cannot
be expressed in terms of (different) WFs).

The conditions (1°)+(3°) are very natural ones, but, existing definitions of WFs for
QFTs mostly do not fulfil all of them. This is because those approaches are originally kinetic
ones, and therefore the condition (3°) is not fulfiled. It is not enough to have the certain
number of coupled field operators to say that the transport equations form the hierarchy.
The hierarchy should be exact, i.e. be formed by WFs.

2b. WF for the real scalar field in the multiparticle production approach

The above difficulties should be cured, in the systematic way, by introducing many-
-particle WFs, but the only known definition does not fulfil the consistency conditions either.
Carruthers and Zachariasen [4] have introduced their many-particle WFs, for the real
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scalar field, in the context of multiparticle production. Their N-particle WF reads
N -
Fy(piRy, .-, PxRy) = SII—II dr;exp (ip;r)) (T(PR—%FT) ... HRy—%1v))

xT($(Ry+7 1) .. p(Ry+3 ra))). 2.1)

The authors have shown that it is possible to connect the Fourier transform of the N-particle
WF Fy with the inclusive probability for the production of N particles

Pisa = %, ISr(X)I?

N
_ { [(py+% a)*— 11 [(p;—% 4,0
202n)’w;

- 2
a ]Fn(pan pnqn)} ) (22)

;=0
i=1 !

where @} = p*+p2

In spite of this attractive connection, the approach has one important shortcoming:
the transport equations are not ¢-closed. Even in the simplest case, the transport equation
for the one-particle WF, so called pairing approximation is necessary to make the equation
¢-closed. In the equation for the two-particle WF, the expressions that appear cannot
be expressed or sensibly approximated in terms of WFs. The multiparticle production
approach becomes a mere formality, due to the fact that the transport equations are not

¢-~closed.

2c. WF for scalar fields in the thermodynamical approach

We define our many-particie WFs in such a way to connect them with the thermo-
dynamical quantities of the field. For the N-particle WF for the complex scalar field we
take the averaged product of the one-particle Wigher operators [8]

N
S(PiRy, ... pyRy) = 11 dr,exp (ip;r) (" (R, +ar)p(R, —ar)

oo @ (Ry+ary)P(Ry—ary)Yregs (2.3)

where dr; = d*r; and the constant a will be chosen equal to l/J:’l to get the proper classical
limit of the transport equations. The average ... ) takes into account both field and thermal
degrees of freedom. The field operators are in the Heisenberg picture. The composite field
operator in (2.3) is regularized by means of the Zimmermann ordering.

Let us consider the complex scalar field with the Lagrangian density:

A
L(x) = 0,4*"p—m’(x)d*¢+ 3 (¢*¢)’, 249

with the effective mass m*(x) = p®+ u*(x),- where p*(x) is the form of the couplings of
external fields. With the use of the definition (2.3) one can express the densities of the aver-



20

aged physical quantities of the quantized field. The quantities of interest are the ones for
non-equilibrium thermodynamical description. It is a straightforward calculation to check
the identities for the energy-momentum tensor

-2 -2
7) = [ 00t 0.9- s [ 000,10,

1 .
"{% aaap+2gapm2(x)] J.dpf 1(p, x)—3 5 8ap J-dpxdpzf 2(p15 X, P2, X), (2.5)

for the Noether current associated with the global U(l) symmetry

Ju(x) = a™* [ dpp.f,(p, x) (2.6)

and for the nonconserved total number of particles density
n(x) = | dpfi(p, x). 2.7
‘Here dp = d*p/(2n)*, g, = (+, — — —) and the field equations in the quantum version

have been used to get Eq. (2.5). One sees that for the field theory with the (self) interaction
term in the Lagrangian there always is the need to introduce many-particle WFs,

3. The transport equations

3a. The hierarchy of general transport equations

The transport equations are derived by rewriting the field equations for the field opera-
tors present in the WFs. Using the quantum version of the fields equations in the form

(0= Dt ) " MPQ) .. $*(DP+1) ... $T (2N = DP2N)req
= <" (MPQ2) ... ;D +1) ... $* N =1DP2N)) e
=" (D) ... * D +1) ... "N —1)P2N))rey (3.9)
and applying the identities
Owpdip = a(Ox—0,), x, = Ry+ar;, y; = Ry—ary, (32)

we arrive at the equation for WF without the Fourier transform in the definiton (2.3).
Performing the Fourier transform we get the transport equation for the N-particle WF

N N
2, 2iBif@iRy, oo puRy) = ai 3 [ dr exp (ip;r) § dp exp (~ipr)

W ,
X fN(lelo s P Rj: ---s PNRy) [ﬂz(Rj-{-ar)-uz(Rj—ar)]

N .
—Aai Y [drexp(ip;r) f dp'dp exp (—ipr)
J=1
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w
x [fN+I(p1Rl’ v D R;+ar, pRy, ..., ~Ry)
[#)}
-fN+ l(lela coey pRj’ P'Rj"a", sers pNRN)]' (3'3)

Above hierarchy of the transport equations links higher WFs with first two WFs,
on which the physical quantities depend directly. The level of truncation of the hierarchy
(3.3) will determine how. precisely the physical quantities (2.5)(2.7) will be known.

3b. The kinetic case

The simplest way to truncate the hierarchy (3.3) is to assume that particles are uncorre-
lated, i.e. that the n-particle WF is equal to the product of the one particle WFs. Then we
have to deal with the one-particle WF only. This is the case of the kinetic theory. The
transport equation is then

P10:./1(p1> Ry)—ai j dr exp (ip,r) I dp exp (—ipr)fi(p, Ry)
x {*(Ry+ar)— p* (R, —ar)—A 5 dp’'[fi(p', Ry+an)—fi(p', Ry—an]} = 0. (3.4)

The collision term in the equation (3.4) is the very complicated integral. In order to write
it in the quasilocal form we develop p2(x) and WFs in the Taylor series. Due to the form
of the collision integral, the terms in this series appear as the quantum corrections

p10.f1(p1, Ry)— aﬂ”’szh(Rl)azp)f «(P1» Ry)

<]

( — 1)k+ 1
+ m a¢1 e aazm— nuszh(Rl)a:;;) v a:lzi’)‘ﬂfl(pb Rl) = 0’ (3-5)
k=1
where
pH(x) = B2()—2 [ dp'fi(p', %) (3.6)

is the shifted effective mass. The k-term in the series is proportional to #i2*. The transport
equation in this form resemble the relativistic Vlasov-type equation with the series of the
quantum corrections.,

3c. Beyond the kinetic case

For the Lagrangian density (2.4) the physical quantities depend upon f; and £, only.
To get these functions as the independent ones, one has to truncate the hierarchy at the
level higher than that in the kinetic case. First truncation beyond the kinetic case neglects
the three-body correlations. Then the equation for f; is strictly Eq. (3.3). The three-particle
WFs, present in the equation for f,, are approximated using f;, f> and assuming the three-
-body correlation function vanishes. The resulting transport equation for f, complicates
a lot. The equations in the full integral form are given in the Appendix.

The set of the coupled integro-differential equations (A.1) and (A.4) is the self-consistent
one. The equations may be expressed in the semiclassical form too.
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4. Other scalar fields

For the real scalar field the same definition of the WFs as (2.3) may be used. The
Hermitean conjugations in (2.3) act trivially. The current density (2.6) vanishes identically.

For the case of the multicomponent scalar field O(N) WFs should be supplied by extra
indices.

5. Summary

We have given the alternative definition of the many-particle WFs for scalar fields.
Our approach is based on the regularized composite operators. The definition fulfils the
consistency conditions of WFs for QFTs: the quantities of non-equilibrium thermo-
dynamics such as the energy-momentum, the current and the total number of particles
densities may be expressed in terms of our WFs; the transport equations derived rigorously
from the ficld equations are ¢-closed. The transport equations form the exact hierarchy.
The truncation of the hierarchy gives very complicated equations, but the equations may
be expressed as the sum of the classical parts and the series of the quantum corrections.

I would like to thank Professors I. Bialynicki-Birula and U. Heinz for reading the
manuscript and remarks.

APPENDIX

In this appendix we give the transport equations truncated by neglecting three-body
correlations.
The equation for f; reads

P1.0%1(py, Ry) = ai j dr exp (ipyr) | dp exp (—ipr)fi(p, R})
x [1*(Ry +ar)—p*(R, —ar)]—Aai § drexp (ip,r) [ dp'dp exp (—ipn)

+ [f2(p'R,+ar, pR))—f,(PR,, p'R,; —ar)]. (A.1)
The identities defining two-body correlations
L I = fi(D)f,(D) + g,(L, 11) (A2)

and three-body correlations
L0 IL L) = f((Df,(ADf,(TID) + £, (1) g,(11, 1)
+f1(ID g, (1, IID) + £, (1) g (1, II) + g,(I, 11, III), (A.3)
imply the right hand side of Eq. (3.3) for N =2
[P1.01 + P22031/2(P1 Ry, P2R2)
= {ai | dr exp (ip;r) | dp exp (— ipr)fz(pRi, p2R,)
[£*R, +ar)— (R, —an)]+(1 < 2)}
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+4ai § dr exp (ip,7) | dp’dp exp (—ipr) {f\(pR)) [2/1(P2R)f1(p'R, +ar)
=2fi(P2R)f1(P'Ry — ar) +£2(p'Ry —ar, p;R,)=f>(p'R, +ar, p2R,)]
+£1(P2R,) [f2(PRy, p'Ry —ar)=f5(p'Ry +ar, pR))]
+£2(PRy, P2R;) Lfi(p'Ry—ar)—f1(p'Ry +ar)]}
+4ai | dr exp (ip,r) § dp'dp exp (—ipr) {f(PR2) [2/1(p1R)f1(p' R, +ar)
~2f(P1R)f1(P'Ra—ar)+f3(psRy, PRy —ar)~fo(ps Ry, p'R+ar)]
+£1(1R,) [f2(PR;, P'Ry—ar)=f(p'R, +ar, pR,)]
+£2(P1Rys PR,) Lfi(P'Ry— ar)~f(p'R, +ar)]} (A4)
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