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Some structural considerations are made on the field equations in the theory of fields
in Finsler spaces. In particular, much attention is paid to the Finslerian gravitational field
equations proposed by Miron.
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1. Introduction

As has been mentioned in a previous paper [1], the Finslerian gravitational field may
be regarded as a unified field between the Einstein gravitational field spanned by points
{x} and the internal field spanned by vectors {y}. The former, which will be called
the (x)-field, is, of course, dominated by the Riemann metric y,.(x) (x, 4 = 1,2, 3, 4),
while the latter, which will be called the (y)-field, is governed by the Riemann metric
hi(» (. j=1,2,3,4), in general. In other words, the Finslerian field is “nonlocalized”
and “multi-dimensionalized” by the vector y (cf. [2]). In the previous paper [1}, in order to
reduce the dimension number 8 of the unified field to 4, a compactification process of the
internal (y)-field has been considered, where the (y)-field is mapped on the external (x)-field
by means of the so-called N-mapping. The quantity N = (N}, N}) denotes the nonlinear
connection, which plays the most important role in the theory of vector bundles (cf. [3], see
below). As a result, a new Finsler metric

8ax(%5 ¥) = Ya(X) + ha(x, ¥);
ha(x, y) = NiNIh(y) (1.1

has been induced for the Finslerian gravitational field (see (2.6) of [1]). The term A,, may
be interpreted in various ways such as the metrical fluctuation, the non-gravitational or
material effect, etc. (cf. [4]). It should be remarked that N cannot be regarded as the
vierbein, because N combines h;; with k,,, not with g;,.

On the other hand, from the vector bundle-like standpoint [3, 5], the (y)-field is regarded
as the fibre at the point x of the base (x)-field. Therefore, the unified ficld mentioned above
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may be compared to the total space of this vector bundle, which has an eight-dimensional
Riemannian structure with the Riemann metric G 5 (X4) (X4 = (x*,y); 4 = (x,i) = 1, 2,
3, ..., 8). In this paper, we shall make some structural considerations on the field equations
for the Finslerian gravitational field on the basis of differential geometry of the total space
(cf. [3]), without taking account of the dimension-reduction-process represented by the
N-mapping. (The dimension-reduction-process corresponds to the compactification of the
(y)-field.) In particular, we shall focus our attention on the Miron field equations [3, 5],
which are obtained from the Einstein field equation for the total space.

2. On the geometrical structures

As mentioned above, the internal (y)-field is unified with the external (x)-field and the
resulting unified field has an eight-dimensional Riemannian structure. In this unified field,
the following adapted frame is set from a general standpoint (cf. [3, 5]:

O\ _ (8 _2 .2 a)
att) T \ox*  ax*  tay'aey')’

(6L%) = (dx", 8y' = dy'+ Nidx?), @)

where N is geometrically fixed as the horizontal distribution supplementary to the vertical
distribution in the tangent space of the vector bundie. From (2.1), the so-called decomposi-
tion factors are defined by (cf. (2.4) of [1])

AL = (85, —ND, A5 =(5850),
Bf=(0, &), B,=(N;0). (2.2)

The metric component g,, of (1.1) is, therefore, given in this form by decomposing G 45 by
means of (2.2), i.e., g, = A542G 5 (cf. [6]), under the assumption that

_ (¥ O
G = (OA hu(}’)) .

In our theory [1], however, N has been determined physically from the inherent law
of the internal variable y such as the rotation 3 = K’(x))’, which is reformulated in the
form of intrinsic parallelism as follows: 6y' = dy'+ Nidx* = 0, where N} = K},)’ and

F:] i
K} 2 = — —5{({ (see (2.1) of [1]). This rotation may be regarded as the gauge transformation,
X

different from the Lorentz transformation or the coordinate transformation X* = X"(x*).
As is understood from the above, N prescribes, in general, the interaction between the (x)-
and (y)-fields, so that it plays also a role of unified gauge field.

From (2.1), for example, the metric tensor G, of the total space is written as [3, 5]

G(SL, ) = G 4p0L"3L"
= gax, Y)Ax"dx*+g,(x, y)oy'oy’. 23
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The quantities g,, and g;; express the two kinds of unified Finsler metrices, whose concrete
forms such as (1.1) can be discussed by prescribing suitably the concrete form of G g, as
mentioned above.

Now, the connectlon coefficient I'j.. in the total space is stipulated formally by the

=T 0
ac ar ot
of [1]) I’ﬁc = (Fji,, Fj, 05, ,k)- That is to say, the covariant derivatives of a vector
V4 = (V*, V') are defined by (see (2.3) of [1]

covariant denvatlve , where the components are denoted by (see (2.2)

. ovE , oV .
Vie=—5 +F VOV = Y +F, V7,
7K aV" K i aV' i
Vi = ra +OV Vi = e +O4L V. (2.4)

On the other hand, the almost Hermitian structure such as
G(JX,JY) = G(X,Y) (2.5)

can be easily introduced by means of the almost complex structure J o J = —I. However,
it should be remarked that there exist two kinds of almost Hermitian structures [7]: One is

X, 6 i a
J = J%x,y) 5 ® dx*+Ji(x, y) P ® oy,

T g =g  Jiigy = gu (2.6)

and the other is

0
J_Jx_®5y+J)' ®dx

I8 = gips Ji-’figij = Bxar Q2.7

Generally, the two Finsler metrices g, and g;; have no relation with each other, so that the
case of (2.6) seems to be suitable. More specialized structures such as Hermitian, almost
Kihlerian or Kihlerian, etc. can also be introduced, if necessary.

3. On the field equations

Since the total space has an eight-dimensional Riemannian structure with the unified
metric G5, as mentioned before, its field equation may be written in the same form as the
Einstein field equation, i.e.,

QAB_% RG 45 = Tups (CRY
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where R,z (= R%sc) and # (= #,3G*®) denote the Ricci-tensor and the total scalar
curvature respectively, and 7 45 is the energy-momentum tensor. Starting from (3.1), Miron
[3, 5] proposed the following field equations for the Finslerian gravitational field by de-
composing (3.1) based on (2.1): :

1
__% (R+S)gvl = Tyas

1 2

Pj;_ = le,
2 3
P‘.j = "'T‘.j,
1 4
Su—7 (R+9)gu = Ty 3.2)

2 3 4
where 1,5 = (7,3, Tj1, Tvj» Tp)- TO reach (3.2), it is necessary to obtain the components

of #Ssp, R 45 and #. We shall here describe only the results for the sake of simplicity
(For details, see [3, 5]):
The curvature tensor formed with I's::

QABD = (Rwun J;.uQ j‘lks :;.ﬁ :ijv S;u)- (3.3)
The Ricci tensor & ,5:
1 2
%AB = (Rv}. = vax’ P,M = Pﬂ.n P = chj9 SJk = S;kl) (34)
The total scalar £:
2 = R,:8"*+5,8" = R+5. (3.5)

Hitherto, the Finslerian field equations have been derived under quite special condi-
tions (cf. [8]): For example, the field equation for the indicatrix R,,—3 Rg,, = T, (a, b
= 1, 2, 3) is extended to the whole field in the form S,,—7 Sg,,—g,; = T,; by means of
the Gauss equation; Or, from the conservation law (R,*—% Ré5—% KSy,)| = 0 in the
case of constant curvature K, a field equation such as R, — 3 Rg,.—+ KSy,y, = 1,, is intro-
duced; etc. Therefore, Miron’s method seems to be quite systematic and his results (3.2)
are .very instructive. In the following, we shall .pick up some interesting features
underlying (3.2).

The decomposition of (3.1) can be considered in various ways accordmg to the different
frames, instead of (2.1). But the adapted frame (2.1) seems to be the most simple one and
does not lose any physical essence.

The components of energy-momentum tensor 7, have different meanings, so that
1 4 ‘

7,2 = 0 and 75 = 0, for example; do not mean the same vacuum states.
It should be noticed that these field equations contain the eight-dimensional effects,
which are explicitly embodied in the S-term in (3.2), or the R-term in (3.2),. The former
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may be compared to the cosmological term summarizing the contributions of the internal
field.
If the compactification of the internal (y)-field is taken into account, then the R-term

1

in (3.2), must vanish and then (3.2), becomes formally R ,—% Sg,, = 1,; (= 0 or #0).
In this case, (3.2), and (3.2); cannot be treated precisely, but they may be supposed to
vanish, because the total space may approach a direct-product structure of the (x)- and
(y)-fields. These situations provide a geometrical background for the complete compactifica-
tion of the internal space (cf. [9]). In future, some relation with the theory of Inflation
Universe should be considered under these situations.

By the way, Miron [3, 5] also proposed the following conservation laws by decomposing
R L R

1
[R — 3 (R+9)5].+ P4y =0,
2
8/ -3 R+85)8—Pf, = 0. (3.6)

1 2 1
From the standpoint of (3.2), such special cases as P,/; = 0 and P*; =0 or P’ =0

2
and P;* = 0 seem to be physically suitable. (But these specializations should be motivated
by some physical conditions).

4. Other comments

In this Section, we shall consider one interesting special case by taking y' = y! = x°
(independent scalar). Then, we can rewrite (2.1), (2.3), (3.4) and (3.5) as follows (For
details, see [3]):

o (6 & .8 0
== s N an )
ot ox*t  oxt ox°’ ox

84 = (dx", 6x° = dx°+ Nidx". 4.1)

G = G g00*0L% = g, (%", xV)dx"dx*+ goox", x%)6x%5x°. “4.2)
i 2

QAB = (Rv;_, PO/’D PVO’ Soo = 0)- (4'3)

# =R, (S = 0). 44)

The decomposition factors introduced by (2.2) are now reduced to
By =0, 1), B} = (N3, D). 4.5)



Therefore, if we apply (4.5) to G4p as in (1.1), then we can obtain, e.g., g,(x", x°)
= 95X+ NIN2hoo (x°), where goo = hoo in this case.
With the aid of the relations (4.1)-(4.4), (3.2) is reformulated as

o 1
1 —
Ryy—7 Rgyi = Ty

1 2
Py, = oy,
2 3
PvO = —Tyo»
X 4
~3 Rgoo = Tgo- (4.6) .

Concerning (4.6), the same things as mentioned at the end of Section 3 can also be said.
4 .
From (4.6)4, if 1700 = 0, then R = 0 or go, = 0 must be satisfied: If R = 0, then (4.6),

1
becomes R,, = 1,, (=0 or # 0).

In order to find the physical meaning of x° and N7,'we shall here compare (4.2) with
the square of arc length in the classical Kaluza-Klein theory (cf. [10]), i.e.,

G = G g0LA5LE = Gyo(dx®)? +2G,0dx°dx* +(G,odx")?
+(Gpy— G oGyo)dx"dx" = g, dx"dx"+(dx° + 4,dx")?, 4.7
where we have put g,, = G,,—4,4,, 4, = G, = Gy, and Gy = 1.

{2l 44
Therefore, we can put in (4 2) g, (x", x°) = g, and goo(x", x°) = 1 with the definition
0x° = dx®+ A,dx". That is to say, x° is compared with the fifth coordinate of the Kaluza-

-Klein theory and N,? is regarded as the electromagnetic potential 4,. Under these assump-

SNY ON?
tions, the torsion tensor defined by Rg,, = ?—j— ~ may be identified with the (Fmsle-
X
rian) electromagnetic field tensor. In this case, if it is assumed that F;, = F}; and

N; = NJ(x"), then the Maxwell equations of the first class, i.e. RM,‘+R”,C| it Rm" 0
can be obtained through a kind of Bianchi identity (cf. [12]). Therefore, the new meaning
of RM‘ may be somewhat effective from a physical viewpoint. These facts have not been
noticed within the Finslerian or Lagrangian theory of electromagnetism (cf. [11]).

In the Lagranglan theory of electromagnetism [11], the (Finslerian) electromagnetic
field tensor F,, is defined by

le(x’ J’) = ';—(Dln_Dxl);
Dy, = guDy, Di= yv[m (48)

where Dy js called the deflection tensor. At this general stage, however, (4.8) cannot be
given by the rotation of the (Finslerian) vector potential 4,(x, y). So, in order to reduce
(4.8) to the form

w = AMK—ARM’ 4.9)



it is assumed in [11] that the metric tensor g,, (x, y) dgrived from the Lagrangian £(x, y)

. o0*Y . .
(l.e., i = %6—}/‘5;)7> becomes homogeneous of degree 0 in y. Then, #(x, y) is proved

to be given by
L(x, y) = g%, MYV + A+ U), (4.10).

where g,., 4, and U are physically regarded, from the standpoint of unified ficld theory,
as the gravitational potential, the electromagnetic potential and the external potential
respectively. By doing so, the general theory based on (4.8) becomes, for the first time, the
electromagnetic theory by means of (4.9). Without (4.10), the Lagrangian theory of electro-
magnetism will lose all physical meaning.

In conclusion, our own theory of electromagnetism based on Rj, and (4.6) should
be investigated in future; the theory is quite different from the Lagrangian theory.

REFERENCES

[1] S. Ikeda, Acta Phys. Pol. B19, 793 (1988).

[2] G. S. Asanov, S. P. Ponomarenko, S. Roy, Fortsch. Phys. 36, 679 (1988). )

[3] R. Miron, M. Anastasiei, Vector Bundles. Lagrange Spaces. Applications to the Theory of Relativity,
Ed. Acad. R. S. Romania, Bucuresti 1987 (in Romanian).

[4] A. A. Lognov, Yu. M. Loskutov, M. A. Mestvirishvili, Prog. Theor. Phys. 80, 1005 (1988).

[5] R. Miron, A4 Lagrangian Theory of Relativity, Preprint No. 84, Univ. Timisoara, Romania 1985.

[6] T. Fukuyama, Gen. Rel. Grav. 20, 89 (1988).

[7]1 G. Atanasiu, E. Stoica, in Proc. IVth Nat. Sem. Finsler and Lagrange Spaces, Brasov Univ.,
Romania 1986, pp. 83-90.

8] S. Ikeda, J. Math. Phys. 22, 1211, 1215 (1981).

9] M. Gasperini, Nuovo Cimento 88 B, 172 (1985).

[10] P. Bergmann, Introduction to the Theory of Relativity, Prentice-Hall, New York 1960.

[11] R. Miron, M. R.-Tatoiu, 4 Lagrangian Theory of Electromagnetism, Sem. de Mecanica No. 11,
Univ. Timisoara, Romania 1988.

[12] S. Tkeda, Some Remarks on the Lagrangian Theory of Electromagnetism (to be published).



